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Abstract

Recent works show that it is possible to train a deep network to determine the
geographic location of a ground-level image (e.g., a Google street-view panorama)
by matching it against a satellite map covering the wide geographic area of interest.
Conventional deep networks, which often cast the problem as a metric embedding
task, however, suffer from poor performance in terms of low recall rates. One
of the key reasons is the vast differences between the two view modalities, i.e.,
ground view versus aerial/satellite view. They not only exhibit very different visual
appearances, but also have distinctive geometric configurations. Existing deep
methods overlook those appearance and geometric differences, and instead use
a brute force training procedure, leading to inferior performance. In this paper,
we develop a new deep network to explicitly address these inherent differences
between ground and aerial views. We observe that pixels lying on the same azimuth
direction in an aerial image approximately correspond to a vertical image column
in the ground view image. Thus, we propose a two-step approach to exploit this
prior. The first step is to apply a regular polar transform to warp an aerial image
such that its domain is closer to that of a ground-view panorama. Note that polar
transform as a pure geometric transformation is agnostic to scene content, hence
cannot bring the two domains into full alignment. Then, we add a subsequent
spatial-attention mechanism which brings corresponding deep features closer in
the embedding space. To improve the robustness of feature representation, we in-
troduce a feature aggregation strategy via learning multiple spatial embeddings. By
the above two-step approach, we achieve more discriminative deep representations,
facilitating cross-view Geo-localization more accurate. Our experiments on stan-
dard benchmark datasets show significant performance boosting, achieving more
than doubled recall rate compared with the previous state of the art. Remarkably,
the recall rate@top-1 improves from 22.5% in [5] (or 40.7% in [11]) to 89.8% on
CVUSA benchmark, and from 20.1% [5] to 81.0% on the new CVACT dataset.

1 Introduction

Image based Geo-localization is referred to the task of determining the location of an image (known
as a query image) by comparing it with a large set of Geo-tagged database images. It has important
computer vision applications such as for robot navigation, autonomous driving, as well as way-finding
in AR/VR applications.

In this paper, we study ground-to-aerial cross-view image based Geo-localization problem. To be
specific, the query image is a normal ground-level image (e.g., a street view image taken by a tourist)
whereas the database images are collections of aerial/satellite images covering the same (though
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(a) Aerial (b) Ground (c) Ground Attention map

(d) Polar-transformed Aerial Image (e) Polar-transformed Aerial Attention Map
Figure 1: Illustration of geometric correspondences between ground and aerial images, and visualiza-
tion of our generated spatial embedding maps.

wider) geographic region. Cross-view image based localization is a very challenging task because the
viewpoints (as well as imaging modality) between ground and aerial images are drastically different;
their image visual appearances can also be far apart. As a result, finding feature correspondence
between two views (even for a matching pair) can be very challenging. Recently, machine learning
techniques (especially deep learning) have been applied to this task, showing promising results
[5, 11, 19, 24].

Existing deep neural networks developed for this task often treat the cross-view localization problem
as a standard image retrieval task, and are trained to find better image feature embeddings that bring
matching image pairs (one from ground view, and one from aerial view) closer while pushing those
unmatching pairs far apart. In other words, they cast the problem as a deep metric learning task, and
thus learn feature representations purely based on image content (appearance or semantics) without
taking into account spatial correspondences between ground and aerial views. To be precise, as seen
in Figure 1(a) and Figure 1(b), one can easily observe that the locations of objects in an aerial image
exhibit a strong spatial relationship with the ones in its corresponding ground image. Furthermore,
the relative positions among objects also provide critical clues for the cross-view image matching.

By exploring such geometric configurations of the scenes, one can significantly reduce the ambiguity
of the cross-view image matching problem, and this is the key idea of our paper, which will be
described next.

Unlike conventional approaches, our method focuses on establishing spatial correspondences between
these two domains explicitly and then learning feature correspondences from these two coarsely
aligned domains. Although deep neural networks are able to learn any functional transformation in
theory, explicitly aligning two domains based on geometric correspondences will reduce the burden
of the learning process for domain alignment, thus facilitating the network convergence. In our
method, we apply polar coordinate transform to aerial images, making it approximately aligned with
a ground-view panorama, as shown in Figure 1(d). After polar transform, we train a Siamese-type
network architecture to establish deep feature representation. Since polar transform does not take
the scene content into account and the true correspondences between the two different domains are
more complex than a simple polar transform, some objects may exhibit distortions. To remedy that,
we develop a spatial attention based feature embedding module to extract position-aware features.
Precisely, our spatial feature embedding module imposes different attention on different locations and
then re-weights features to yield a global descriptor for an input image. In this manner, our method
not only retains image content information but also encodes the layout information of object features.
To achieve robustness of feature representation, we employ a feature aggregation strategy by learning
multiple spatial feature embeddings and then aggregating the embedded features. We further employ
a triplet loss to establish the feature correspondences between these cross-view images. Our extensive
experimental results demonstrate that our method achieves superior Geo-localization performance
to the state-of-the-art. Remarkably, the recall rate@top-1 improves from 22.5% in [5] (or 40.7% in
[11]) to 89.8% on CVUSA benchmark, and from 20.1% [5] (or 46.9% in[11]) to 81.0% on the new
CVACT dataset.

Contributions of this paper can be summarized as follows:
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• We propose a new pipeline to address the cross-view Geo-localization problem. We first
exploit the geometric correspondences between ground and aerial image domains to align
these two domains explicitly by a polar transform, allowing the networks to focus on learning
detailed scene-dependent feature correspondences.

• We present a spatial-aware attention module to re-weight features in accordance with feature
locations. Since our method embeds relative positions between object features into image
descriptors, our descriptors are more discriminative.

• We conduct extensive experiments which confirm that our proposed method significantly
outperforms the state-of-the-art on two standard cross-view benchmark datasets. Our method
achieves nearly 4-fold improvement in terms of top-1 recall, compared with the CVM-Net
proposed in 2018 [5].

2 Related Work

Due to the drastic appearance and viewpoint changes, it is very difficult to match local features [12,
2, 18, 22] between ground and aerial images directly. Several methods [3, 10, 13] warp ground
images into bird-view images and then match the warped images to the aerial ones. Jegou et al.[6]
aggregate the residuals of local features to cluster centroids as image representations, known as
VLAD descriptors. The work [17] aggregates a set of local features into a histogram, known as Bag
of words, to attain a global descriptor. The aggregated descriptors are proved to be partially viewpoint
and occlusion invariant, and thus facilitating image matching. However, hand-crafted features are
still the performance bottleneck of traditional cross-view Geo-localization methods.

Deep neural networks have demonstrated their powerful image representation ability [14]. The
seminal work [20] fine-tune AlexNet [8] on Imagenet [14] and Places [25] to extract features for
the cross-view matching task. This work also indicates that the better discriminativeness of deep
features compared to hand-crafted features. The work [21] fine-tunes CNNs by minimizing the feature
distances between aerial and ground-view images and obtains better localization performance. [19]
employs a triplet CNN architecture to learn feature embedding and achieves significant improvements.
[5] embeds a NetVLAD layer on top of a VGG backbone network to represent the two-view images
more discriminatively. Liu & Li [11] observe that orientations play a critical role in learning
discriminative features. Thus, this method incorporates per-pixel orientation information into a CNN
to learn orientation-selective features for the cross-view localization task. Shi et al.[15] propose
a feature transport module to bridge the spatial and feature response domain differences between
ground and aerial images. However, it might be difficult for networks to explore both geometric and
feature correspondences simultaneously via a metric learning objective. Therefore, we propose to
decouple the procedure of constructing geometric and feature correspondences, and let networks
learn simple tasks.

3 Methodology

In this section, we first introduce the polar transform applied to aerial images for aligning these
two cross-view domains, and then we present our spatial-aware position embedding module for
descriptor extraction of both ground and aerial images. We employ a Siamese-like two-branch
network architecture and our entire pipeline is illustrated in Figure 2.

3.1 Polar Transform

As we observed, pixels lying on the same azimuth direction in an aerial image approximately
correspond to a vertical image column in the ground view image. Instead of enforcing neural
networks to learn this mapping implicitly, we explicitly transform the aerial images and then roughly
eliminate the geometric correspondence gap between these two domains. In doing so, we ease the
task of learning multiple correspondences (i.e., geometry and feature representations) and only need
to learn a simple feature mapping task, thus significantly facilitating network convergence.

We apply polar transform to aerial images in order to build more apparent spatial correspondences
between aerial and ground images. Specifically, we take the center of each aerial image as the
polar origin and the north direction (as it is often available for a satellite image) as angle 0◦ in
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Figure 2: Illustration of the pipeline of our proposed method.

the polar transform. Note that there is no ad hoc pre-centering process for the aerial images, and
we do not assume that the location of a query ground-level image corresponds to the center of an
aerial image during testing. In fact, small offsets on the polar origin do not affect the appearance of
polar-transformed aerial images severely, and the small appearance changes will be reduced by our
SPE modules (as illustrated in detail in Section 3.2). On the contrary, when a large offset occurs, the
aerial image should be regarded as a negative sample and the polar-transformed aerial image will
be significantly different from the ground-truth one. In this manner, the polar transform effectively
increases the discriminativeness of our model.

To facilitate training of our two-branch network, we constrain the size of the transformed aerial
images to be the same as the ground ones Wg ×Hg . Note that, the size of the original aerial images
is Aa ×Aa. Therefore, the polar transform between the original aerial image points (xsi , y

s
i ) and the

target transformed aerial image points (xti, y
t
i) is defined as:

xsi =
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2

+
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2

yti
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sin(
2π
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2
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2

yti
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cos(
2π
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(1)

After polar transform, the objects in the transformed aerial images lie in similar positions to their
counterparts in the ground images, as seen in Figure 1(d). However, the appearance distortions
are still obvious in the transformed images because polar transform does not take the depth of the
scene content into account. Reducing these distortion artifacts for image descriptor extraction is also
desirable.

3.2 Spatial-aware Feature Aggregation (SAFA)

As illustrated in Figure 2, we first employ a backbone network, i.e., the first sixteen layers of VGG19
[16], to extract features from ground and polar-transformed aerial images. Considering the features
from aerial images undergo distortions, we intend to impose an attention mechanism to select salient
features while suppressing the features caused by the distortions. Moreover, since spatial layout
provides important clues for image matching, we aim to embed spatial configuration into our feature
representation as well. Thus, we develop a spatial-aware feature aggregation (SAFA) module to
alleviate the distortions in transformed aerial images while embedding the object features into a
discriminative global image descriptor for image matching. Our SAFA is built upon the outputs
of a Siamese network and learns to encode ground and aerial features individually. The detailed
architecture of SAFA is shown in Figure 3.

Spatial-aware Position Embedding Module (SPE):

Our SPE is designed to encode the relative positions among object features extracted by the CNN
backbone network, as well as the important features. In particular, given input feature maps from one
branch, our SPE automatically determines an embedding position map from them. Note that, we do
not enforce any additional supervision for SPE and it is learned in a self-attention fashion by a metric
learning objective. Moreover, although polar transform can significantly reduce the domain gap in
terms of geometric configuration, object distortions still exist and cannot be removed by an explicit
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Figure 3: Spatial-aware position embedding module.

function. Thus, we employ SPE to select the features from transformed aerial images while reducing
the impact of the distortion artifacts in the feature extraction.

Figure 3 illustrates the workflow of our SPE module. Our SPE first employs a max-pooling operator
along feature channels to choose the most distinct object feature, and then adopts a Spatial-aware
Importance Generator to generate a position embedding map. In the Spatial-aware Importance
Generator, two fully connected layers are used to select features among the prominent ones as well as
encode the spatial combinations and feature responses. In this manner, our method can mitigate the
impacts of the features from distortions caused by polar transform while represent input images by
using salient features. Furthermore, since we choose features based on a certain layout, the encoded
features not only represent the emergence of certain objects but also reflect the positions of the
objects. Hence, we encode the spatial layout information into feature representation, thus improving
the discriminativeness of our descriptors.

Given the position embedding map P ∈ RH×W , the feature descriptor K = {kc}, c = 1, 2, ..., C, is
calculated as:

kc = 〈f c, P 〉F , (2)

where f c ∈ RH×W represents the input feature map of the SPE module in the c-th channel, 〈., .〉
denotes the Frobenius inner product of the two inputs, and kc is the embedded feature activation for
the c-th channel.

As seen in Figure 1, only a certain region achieves high responses in the visualized feature maps. This
indicates that our SPE not only localizes the salient features but also encodes the layout information
of those features. Note that the SPE module is adopted in both the ground and aerial branches, and
our objective forces them to encode correspondent features between these two branches.

Multiple Position-embedded Feature Aggregation: Motivated by the feature aggregation strategy
[9], we aim to improve the robustness of our feature representation by aggregating our embedded
features. Towards this goal, we employ multiple SPE modules with the same architecture but different
weights to generate multiple embedding maps, and then encode input features in accordance with the
different generated masks. For instance, some maps focus on the layout of roads while some focus on
trees. Therefore, we can explore different spatial layout information in the input images. As illustrated
in Figure 2, we concatenate the embedded features together as our final image descriptor. Note that,
we do not impose any constraint on generating diverse embedding maps but learn embeddings through
our metric learning objective. During training, in order to minimize the loss function, our descriptors
should be more discriminative. Therefore, the loss function inherently forces our embedding maps to
encode different spatial configurations to increase the discriminativeness of our embedded features.

3.3 Training Objective

We apply a metric learning objective to learn feature representations for both the ground and aerial
image branches. The triplet loss is widely used to train deep networks for image localization and
matching tasks [5, 11, 19]. The goal of the triplet loss is to make matching pairs closer while pushing
unmatching pairs far apart. Similar to [5], we employ a weighted soft-margin triplet loss as our
objective:

L = log(1 + eγ(dpos−dneg)), (3)

where dpos and dneg are the `2 distance of matching and unmatching image pairs. γ is a parameter to
adjust the gradient of the loss, thus controlling the convergence speed.
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(a) CVUSA (b) CVACT
Figure 4: Ground-to-aerial image pairs sampled from CVUSA [24] and CVACT [11]. Each subfigure
illustrates a ground image (Left) and an aerial image (right).

4 Experiments

Training and Testing Datasets: Our experiments are conducted on two standard benchmark
datasets: CVUSA [24] and CVACT [11], where ground images are panoramas. CVUSA and CVACT
are both cross-view datasets, and each dataset contains 35, 532 ground-and-aerial image pairs for
training. CVUSA provides 8, 884 image pairs for testing and CVACT provides the same number
of pairs for validation (denoted as CVACT_val). Besides, CVACT also provides 92, 802 cross-
view image pairs with accurate Geo-tags to evaluate Geo-localization performance (denoted as
CVACT_test). CVACT_test is a real geo-localization/retrieval test set where all aerial images within
5 meters to a query ground image are regarded as ground truth correspondences for this query image.
In other words, for a query ground image, there may exists several corresponding aerial images in the
database. Note that in these two datasets the ground and aerial images are captured at different time.
Figure 4 presents sampled image pairs from these two datasets.

Implementation Details: We use the VGG16 model with pretrained weights on Imagenet [4] as
our backbone to extract features from cross-view images, and the output of the last convolutional
layer of VGG16 is fed into the proposed SAFA block1. The parameters in our proposed SPE module
are randomly initialized. Similar to [5, 11], we set γ to 10 for the triplet loss. Our network is trained
with Adam optimizer [7], and the learning rate is set to 10−5. Exhaustive mini-batch strategy [19] is
utilized to create triplet images within a batch, and the batch size Bs is set to 32. In a mini-batch,
there is 1 matching/positive aerial image and Bs − 1 unmatching/negative aerial images for each
ground-view image. Thus, we construct Bs(Bs − 1) triplets in total. Similarly, for each aerial
image, there is 1 matching ground-view image and Bs − 1 unmatching ground-view images, and
thus Bs(Bs − 1) triplets are also constructed. Hence, we have 2Bs(Bs − 1) triplets in total within
each batch.

Evaluation Metric: Similar to [19, 5, 11], we use the recall accuracy at top K as our evaluation
metric to exam the performance of our model and compare with the state-of-the-art methods. Specifi-
cally, given a ground-level query image, it is regarded as “successfully localized" if its ground-truth
aerial image is within the nearest top K retrieved images. The percentage of query images which
have been correctly localized is reported as r@K.

4.1 Comparison with State-of-the-Art Methods

We compare our method with two recent state-of-the-art cross-view localization methods: CVM-NET
[5] and Liu & Li’s method [11]. For fair comparisons, we use the released models or codes provided
by the authors. In our method, we apply polar transform to the aerial images and our SAFA outputs 8
spatial-aware embedding maps and then aggregate these embedded features, denoted as Polar_SAFA
(M = 8). Note that, the dimension of our descriptors is as the same as that used in CVM-NET. We
report recalls at top-1, top-5, top-10, up to top 1%, and the results are listed in Table 1.

As indicated by Table 1, our method significantly outperforms all the state-of-the-art methods. In
particular, we almost double the recall at top-1 compared to Liu et al.’s method. The complete
recall@K performance is shown in Figure 5.

1The code of this paper is available at https://github.com/shiyujiao/SAFA.
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Table 1: Comparison with state-of-the-art methods on CVUSA [24] and CVACT_val dataset [11].

CVUSA CVACT_val
r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

CVM-NET [5] 22.53 50.01 63.19 93.52 20.15 45.00 56.87 87.57
Liu & Li [11] 40.79 66.82 76.36 96.08 46.96 68.28 75.48 92.01

Our polar-SAFA(M=8) 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17

2 6 11 1%
TOP_K

0.2

0.4

0.6

0.8

1

R
ec

al
l

CVM-NET
Liu & Li
Polar_SAFA(M=8)

(a) CVUSA

1 5 10 1%
TOP_K

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

CVM-NET
Liu & Li
Polar_SAFA(M=8)

(b) CVACT_val

50 100
TOP_K

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

CVM-NET
Liu & Li
Polar_SAFA(M=8)

(c) CVACT_test
Figure 5: Recall rates on cross-view Geo-localization datasets. This figure demonstrates that our
method (i.e., Polar_SAFA(M = 8)) significantly outperforms the state-of-the-art methods.

4.2 Accurate Geo-localization

We conduct experiments on the large-scale CVACT_test dataset [11] to illustrate the effectiveness
of our method for accurate city-scale Geo-localization applications. We also compare with the
state-of-the-art methods, CVM-NET [5] andLiu & Li’s method [11]. The recall performance at top-K
is shown in Figure 5(c). Our method significantly outperforms the second-best method [11], with a
relative improvement of 35.6% at top-1.

4.3 Visualization of Learned Spatial Correspondences

To visualize our generated embedding maps, we employ the method of [23] to back-propagate the
embedding maps to the input ground image as well as the polar-transformed aerial image. As visible
in Figure 6, our SPE is able to encode similar spatial layout as well as feature correspondences
between ground and polar-transformed aerial images. Furthermore, different SPE modules can
generate different spatial embedding maps. In this way, we can encode multiple spatial layouts into
our feature representations.

4.4 Ablation Study

In this part, we demonstrate the effectiveness of our proposed polar transform and Spatial-aware
Position Embedding (SPE) modules. For the baseline network, we remove the polar transform from
our network and replace the SPE module with a global max-pooling operator, which has been widely
adopted in image retrieval tasks[5, 11, 1]. In this case, spatial correspondences between ground and
aerial branches are not used and the baseline network is only trained by our triplet loss.

Effects of Polar Transform: To demonstrate the effectiveness of polar transform for the cross-
view Geo-localization problem, we train our baseline network in two different settings: one takes
original cross-view ground and aerial images, marked as VGG_gp, and the other takes ground and
polar-transformed aerial images, marked as Polar_VGG_gp. As indicated in Table 2, applying polar
transform to aerial images improves the performance greatly on both datasets.

Moreover, we also investigate the applicability of polar transform to other cross-view Geo-localization
models.Liu & Li [11] needs an additional pixel-wise orientation map for input images and the
orientation maps are not available for polar transformed images. Thus, we only conduct experiments
on CVM-NET [5]. As illustrated in Table 2, using the polar-transformed aerial images as input, we
even improve the performance of CVM-NET by 27.47% on CVUSA and 14.77% on CVACT at r@1.
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Ground Polar-transformed Aerial Ground Polar-transformed Aerial

Figure 6: Visualization of eight-groups generated spatial embedding maps for ground and polar-
transformed images. The corresponding ground and polar-transformed aerial images are shown in
Figure 1(b) and Figure 1(d). (Best viewed on screen with zoom-in)

Table 2: Effectiveness demonstration of polar transform.

CVUSA CVACT_val
r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

VGG_gp 39.72 66.91 77.49 96.38 32.22 59.08 69.41 91.85
Polar_VGG_gp 65.74 84.76 89.91 98.30 56.65 79.20 84.98 95.76
CVM-NET [5] 22.53 50.01 63.19 93.52 20.15 45.00 56.87 87.57

Polar_CVM-NET 50.00 77.22 85.13 97.82 34.92 61.74 71.05 91.78

Effects of Spatial-aware Position Embedding: We demonstrate the effectiveness of our proposed
Spatial-aware Position Embedding (SPE) module using original cross-view images as inputs. We
firstly replace the global max-pooling in VGG_gp with a single SPE module. Since our SPE module
explicitly establishes spatial correspondences for cross-view images, it outperforms VGG_gp as
indicated in Table 3. Especially, our single SPE model achieves 58.79% on CVUSA and 42.96% on
CVACT_val for r@1, and obtains 48% and 33% relative improvements compared with VGG_gp,
respectively.

Effects of Multiple Spatial-aware Position Embeddings: To demonstrate the effectiveness of
aggregating feature embeddings by using multiple SPE modules, we use different numbers of SPE
modules, i.e., 1, 2, 4, and 8, and report the recall rates in Table 3. The results indicates that as M
increases, we can obtain better recall performance. Note that, significant improvements ( 10%) for
r@1 are obtained when M increases from 1 to 2 and from 2 to 4. However, when M increases from
4 to 8, we only attain slight improvements (<4%). Therefore, we do not increase M to an even larger
number. As indicated by Table 3, our method, combining polar transform and multiple SPE modules,
achieves the best performance on both datasets. By employing polar transform, we improve the
performance over 7%, thus demonstrating the effectiveness of polar transform as well.

5 Conclusion

We have proposed a new deep network to solve the cross-view image based Geo-localization problem.
Our network addresses the difficulty caused by significant domain differences between ground-level
and aerial-view images by a two-step procedure. The first step approximately brings the two image
domains into a rough geometric alignment, and a subsequent spatial-attention mechanism further
alleviates content-dependent domain discrepancy. Our key idea is to exploit available problem-
dependent geometric priors of the task. In contrast to existing methods, we exploit the geometric
constraint to coarsely align one domain to the other first. By doing so, we can force our network to
focus on learning discriminative features without requiring to minimize the domain gap. Moreover,
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Table 3: Effectiveness demonstration of the proposed SPE modules.

CVUSA CVACT_val
r@1 r@5 r@10 r@1% r@1 r@5 r@10 r@1%

VGG_gp 39.72 66.91 77.49 96.38 32.22 59.08 69.41 91.85
SAFA (M = 1) 58.79 84.19 90.84 99.08 42.96 71.51 80.56 95.48
SAFA (M = 2) 69.33 89.01 93.52 99.31 58.98 82.86 88.46 97.13
SAFA (M = 4) 79.93 93.29 96.15 99.54 74.61 90.02 93.03 98.01
SAFA (M = 8) 81.15 94.23 96.85 99.49 78.28 91.60 93.79 98.15

Polar_SAFA (M = 8) 89.84 96.93 98.14 99.64 81.03 92.80 94.84 98.17

1 5 10 1%
TOP_K

0.4

0.6

0.8

1

R
ec

al
l

CVUSA

VGG_gp
Polar_VGG_gp

1 5 10 1%
TOP_K

0.4

0.6

0.8

1

R
ec

al
l

CVACT_val

VGG_gp
Polar_VGG_gp

(a) With and without polar transform

1 5 10 1%
TOP_K

0.4

0.6

0.8

1

R
ec

al
l

CVUSA

VGG_gp
SAFA(M=1)
SAFA(M=2)
SAFA(M=4)
SAFA(M=8)

1 5 10 1%
TOP_K

0.4

0.6

0.8

1

R
ec

al
l

CVACT_val

VGG_gp
SAFA(M=1)
SAFA(M=2)
SAFA(M=4)
SAFA(M=8)

(b) Different number of SPE modules
Figure 7: Comparison of recalls on CVUSA [5] and CVACT_val [11] datasets.

we propose a spatial-aware feature aggregation module to not only embed features but also the feature
layout information, achieving more discriminative image descriptors. Since the cross-view feature
learning process has been decoupled, the domain gap does not affect feature learning. Our method
is able to learn more discriminative image descriptors and thus outperforms the state-of-the-art.
Although our current experiments are conducted on query ground images which are panoramas with
known orientation, this restriction can be relaxed under the same network architecture and this is left
as our future extension.
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