
A Technical Results

The following proposition shows that the guarantee of a safe estimate on the return is achieved when
the true transition model is contained in the ambiguity set.
Lemma A.1. Suppose that an ambiguity set P satisfies PD

[
p?s,a ∈ Ps,a | P ?

]
≥ 1 − δ/(SA) for

each state s and action a. Then:

PD [v̂πP ≤ vπP? , ∀π ∈ Π | P ?] ≥ 1− δ .

Proof. We omit P and P ? from the notation in the proof since they are fixed. From Lemma B.1, we
have that v̂π ≤ vπ if

T̂π v̂π ≤ Tπ v̂π .
That is, for each state s and action a:

min
p∈Ps,a

pTv̂π ≤ (p?s,a)Tv̂π.

Using the identity above, the probability that the robust value function is a lower bound can be
bounded as follows:

PD [v̂πP ≤ vπP , ∀π ∈ Π | P ?] = PD

[
min
p∈Ps,a

pTv̂π ≤ (p?s,a)Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | P ?
]
≥

≥ PD

[
(p?s,a)Tv̂π ≤ (p?s,a)Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | P ? ∈ P, P ?

]
PD [P ? ∈ P | P ?] +

+PD [P ? /∈ P | P ?] ≥ 1PD [P ? ∈ P | P ?] + 0PD [P ? /∈ P | P ?] ≥
≥ PD [P ? ∈ P | P ?] .

Now, from the union bound over all states and actions, we get:

PD [v̂π > vπ|P ?] ≤ PD [P ? /∈ P | P ?] ≤
∑
s∈S

∑
a∈A

PD

[
p?s,a /∈ Ps,a | P ?

]
≤ δ ,

which completes the proof.

The next proposition is the Bayesian equivalent of Lemma A.1.
Lemma A.2. Suppose that an ambiguity set P satisfies PP?

[
p?s,a ∈ Ps,a | D

]
≥ 1 − δ/(SA) for

each state s and action a. Then:

PP? [v̂πP ≤ vπP? , ∀π ∈ Π | D] ≥ 1− δ .

Proof. We omit P and P ? from the notation in the proof since they are fixed. From Lemma B.1, we
have that v̂π ≤ vπ if

T̂π v̂π ≤ Tπ v̂π .
That is, for each state s and action a:

min
p∈Ps,a

pTv̂π ≤ (p?s,a)Tv̂π.

Using the identity above, the probability that the robust value function is a lower bound can be
bounded as follows:

PP? [v̂πP ≤ vπP , ∀π ∈ Π | D] = PP?

[
min
p∈Ps,a

pTv̂π ≤ (p?s,a)Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | D
]
≥

≥ PP?

[
(p?s,a)Tv̂π ≤ (p?s,a)Tv̂π, ∀π ∈ Π, s ∈ S, a ∈ A | P ? ∈ P,D

]
PP? [P ? ∈ P | D] +

+PP? [P ? /∈ P | D] ≥ 1PP? [P ? ∈ P | D] + 0PP? [P ? /∈ P | D] ≥
≥ PP? [P ? ∈ P | D] .

Now, from the union bound over all states and actions, we get:

PP? [v̂π > vπ|D] ≤ PP? [P ? /∈ P | D] ≤
∑
s∈S

∑
a∈A

PP?

[
p?s,a /∈ Ps,a | D

]
≤ δ ,

which completes the proof.
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B Technical Proofs

B.1 Proof of Theorem 3.1

Before presenting the proof of the theorem, we need to show some auxiliary results.

The following lemma shows that when the robust Bellman update lower-bounds the true Bellman
update then the value function estimate is safe.
Lemma B.1. Consider a policy π, its robust value function v̂π , and true value function vπ such that
v̂π = T̂π v̂π and vπ = Tπvπ. Then, v̂π ≤ vπ element-wise whenever T̂π v̂π ≤ Tπ v̂π. That is, if
minp∈Ps,a p

Tv̂π ≤ pTs,av̂π for each state s and action a = π(s) then v̂π ≤ vπ .

Lemma B.1 implies readily that the inequality above is satisfied when p?s,a ∈ Ps,a.

Proof. Using the assumption T̂π v̂π ≤ Tπ v̂π, and from v̂π = T̂π v̂π and vπ = Tπvπ, we get by
algebraic manipulation:

v̂π − vπ = T̂π v̂π − TπP vπ ≤ Tπ v̂π − Tπvπ = γPπ(v̂π − vπ) .

Here, Pπ is the transition probability matrix for the policy π. Subtracting γPπ(v̂π − vπ) from the
above inequality gives:

(I− γPπ)(v̂π − vπ) ≤ 0 ,

where I is the identity matrix. Because the matrix (I− γPπ?)−1 is monotone, as can be seen from its
Neumann series, we get:

v̂π − vπ ≤ (I− γPπ)−10 = 0 ,

which proves the result.

The next lemma formalizes the safety-sufficiency of K. Note that the rewards rs,a are not a factor in
this lemma because they are certain and cancel out.
Lemma B.2. Consider any ambiguity set Ps,a and a value function v. Then minp∈Ps,a

pTv ≤
(p?s,a)Tv with probability 1− δ/(SA) if and only if Ps,a ∩Ks,a(v) 6= ∅.

Proof. To show the “if” direction, let p̂ ∈ Ps,a ∩ Ks,a(v). Such p̂ exists because the in-
tersection is nonempty. Then, minp∈Ps,a

pTv ≤ p̂Tv ≤ V@Rζ
P?

[
(p?s,a)Tv

]
. By definition,

V@Rζ
P?

[
(p?s,a)Tv

]
≤ (p?s,a)Tv with probability 1− δ/(SA).

To show the “only if” direction, suppose that p̂ is a minimizer in minp∈Ps,a p
Tv. The premise

translates to PP? [p̂Tv ≤ (p?s,a)Tv | D] ≥ 1 − δ/(SA). Therefore, V@Rζ
P?

[
(p?s,a)Tv

]
≥ p̂Tv and

p̂ ∈ Ps,a ∩Ks,a and the intersection is non-empty.

The following lemma formalizes the properties of Ls,a.
Lemma B.3. For any finite set V of value functions, the following inequality holds for all v ∈ V
simultaneously:

PP?

[
min

p∈Ls,a(V)
pTv ≤ (p?s,a)Tv

∣∣∣∣ D] ≥ 1− δ

SA
.

Proof. Assume an arbitrary v ∈ V and let q?v ∈ arg minq∈Ks,a(v)‖q − θs,a(V)‖1 using the notation
of (4). From the definition of θs,a(V) in (4), the value qv is in the ambiguity set Ls,a(V). Given that
also qv ∈ Ks,a(v), Lemma B.2 shows that:

PP?

[
min

p∈Ls,a(V)
pTv ≤ (p?s,a)Tv

∣∣∣∣ D] ≥ 1− δ

SA
,

because qv ∈ Ls,a(v) ∪Ks,a(v) 6= ∅. This completes the proof since v is any from V.

We are now ready to prove the theorem.
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Proof. Recall that Algorithm 1 terminates only if Ks,a(v̂k) ∩ Pks,a 6= ∅ for each state s and action a.
Then, according to Lemma B.2, we get with probability 1− δ/(SA):

min
p∈Pk

s,a

pTv̂k ≤ (p?s,a)Tv̂k

for any fixed state s and action a. By the union bound, the inequality holds simultaneously for all
states and actions with probability 1− δ. That means that with probability 1− δ we can derive the
following using basic algebra:

min
p∈Pk

s,a

pTv̂k ≤ (p?s,a)Tv̂k ∀s ∈ S, a ∈ A

rs,a + min
p∈Pk

s,a

pTv̂k ≤ rs,a + (p?s,a)Tv̂k ∀s ∈ S, a ∈ A

T̂ π̂k

Pk v̂k ≤ T π̂k

P? v̂k

Note that v̂k is the robust value function for the policy π̂k since v̂k = v̂?Pk
and π̂k = π̂?Pk

. Lemma B.1
finally implies that v̂k ≤ vπ̂k

P? with probability 1− δ.

B.2 Proof of Theorem 4.1

Proof. The first part of the statement follows directly from Lemma A.1 and Lemma C.1. The second
part of the statement follows from the fact that the lower bound property holds uniformly across all
policies.

B.3 Proof of Theorem 4.2

Proof. The first part of the statement follows directly from Lemma A.2 and the definition of ψBs,a.
The second part of the statement follows from the fact that the lower bound property holds uniformly
across all policies.

C L1 Concentration Inequality Bounds

In this section, we describe a new elementary proof of a bound on the L1 distance between the
estimated transition probability distribution and the true one. It simplifies the proofs of Weissman
et al. (2003) but also leads to coarser bounds. We include the proof here in order to derive the tighter
bound in Appendix C.1. Note that in the frequentist setting the ambiguity set P is a random variable
that is a function of the dataset D.

Recall that our ambiguity sets are defined as L1 balls around the expected transition probabilities
p̄s,a:

Ps,a = {p ∈ ∆S : ‖p− p̄s,a‖1 ≤ ψs,a} . (6)

Lemma A.1 implies that the size of the L1 balls must be chosen as follows:

P [‖p̄(s, a)− p?(s, a)‖1 ≤ ψs,a ] ≥ 1− δ/(SA) . (7)

We can now express the necessary size ψs,a of the ambiguity sets in terms of ns,a, which denotes the
number of samples in D that originate with a state s and an action a.

Lemma C.1 (L1 Error bound). Suppose that p̄s,a is the empirical estimate of the transition probability
obtained from ns,a samples for each s ∈ S and a ∈ A. Then:

P
[
‖p̄s,a − p?s,a‖1 ≥ ψs,a

]
≤ (2S − 2) exp

(
−
ψ2
s,ans,a

2

)
.

Therefore, for any δ ∈ [0, 1]:

P

[
‖p̄s,a − p?s,a‖1 ≤

√
2

ns,a
log

SA(2S − 2)

δ

]
≤ 1− δ/(SA) .
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Proof. To shorten the notation, we omit the indexes s, a throughout the proof; for example p̄ is used
instead of the full p̄s,a. First, express the L1 distance between two distributions p̄ and p? in terms of
an optimization problem. Let 1Q ∈ RS be the indicator vector for some subset Q ⊂ S. Then:

‖p̄− p?‖1 = max
z

{
zT(p̄− p?) : ‖z‖∞ ≤ 1

}
=

= max
Q∈2S

{
1T
Q(p̄− p?)− (1− 1Q)T(p̄− p?) : 0 < |Q| < m

}
(a)
= 2 max

Q∈2S

{
1T
Q(p̄− p?) : 0 < |Q| < m

}
.

Here, (a) holds because 1T(p̄− p?) = 0. Using the expression above, the target probability can be
bounded as follows:

P [‖p̄− p?‖1 > ψ] = P
[
2 max
Q∈2S

{
1T
Q(p̄− p?) : 0 < |Q| < m

}
> ψ

]
(a)
≤ (|Q| − 2) max

Q∈2S

{
P
[
1T
Q(p̄− p?) > ψ

2

]
: 0 < |Q| < m

}
(b)
≤ (|Q| − 2) exp

(
−ψ

2n

2

)
= (2S − 2) exp

(
−ψ

2n

2

)
.

The inequality (a) follows from union bound and the inequality (b) follows from the Hoeffding’s
inequality since 1T

Qp̄ ∈ [0, 1] for any Q with the mean of 1T
Qp̄

?.

C.1 Ambiguity Sets for Monotone Value Functions

A significant limitation of the result in Lemma C.1 is that the ψ depends linearly on the number of
states. We now explore an assumption that can alleviate this important drawback when the value
functions are guaranteed to be monotone. In particular, the monotonicity assumption states that the
value functions v of the optimal robust policy must be non-decreasing in some arbitrary order which
must be known ahead of time. Assume, therefore, without loss of generality that:

v1 ≥ v2 ≥ . . . ≥ vn , (8)

where vi is the value of state i.

Admittedly, monotonicity is a restrictive assumption, but we explore it in order to understand the
greatest possible gains from tightening the known concentration inequalities. Yet, monotonicity
of this type occurs in some problems, such as inventory management in which the value does not
decrease with increasing inventory levels or medical problems in which the value does not increase
with a deteriorating health state.

It is important to note that any MDP algorithm that relies on the assumption (8) needs to also
enforce it. That means, the algorithm must prevent generating value functions that violate the
monotonicity assumption. Practically, this could be achieved by representing the value function as a
linear combination of monotone features.

The bound Lemma C.1 is large because of the term 2S which derives from the use of a union bound.
The union bound is used because the L1 norm can be represented as a maximum over an exponentially
many linear functions:

‖x‖1 = max
Q⊆I

(
1Q − 1I\Q

)T
x .

Here, the set I = 2S represents all indexes of x and 1Q is a vector that is one for all elements of Q
and zero otherwise. We now show that under the monotonicity property (8), the L1 norm can be
represented as a maximum over a linear (in states) number of linear functions. In particular, the
worst-case optimization problem of the nature:

min
p

vTp

s.t.
(
1Q − 1I\Q

)T
(p− p̄) ≤ ψ, ∀Q ⊆ I

1Tp = 1,

p ≥ 0

(9)
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can be replaced by the following optimization problem:

min
p

vTp

s.t. (1k...n − 11...(k−1))
T(p− p̄) ≤ ψ, ∀k = 0, . . . , (n+ 1)

1Tp = 1,

p ≥ 0

(10)

Lemma C.2. Suppose that (8) is satisfied. Then the optimal objective values of (9) and (10) coincide.

Proof. Let fa be the optimal objective of (9) and let f b be the optimal objective of (10). The
inequality fa ≥ f b can be shown readily since (10) only relaxes some of the constraints of (9).

It remains to show that fa ≤ f b. To show the inequality by contradiction, assume that each optimal
solution pb to (10) is infeasible in (9) (otherwise fa ≤ f b). Let the constraint violated by pb be:(

1C − 12S\C
)T

(p− p̄) ≤ ψ,

for some set C. Since this constraint is not present in (10), that means that there exist i and j such
that i < j, i ∈ C, j /∈ C, and because the constraint is violated:

pbi = p̄i − ε, or pbj = p̄j + ε

for some ε > 0. Assume now that pbi = p̄i − ε, the case when pbj = p̄j + ε follows similarly.

Now, choose the largest k > i possible, and let pa = pb, with the exception of:

pai = pbi + ε, and pak = pbk − ε .

This does not increase the violation of the constraint by pa over pb:(
1C − 12S\C

)T
(pa − p̄) ≤

(
1C − 12S\C

)T
(pb − p̄),

And it does not increase the objective function:

vTpa = vTpb − ε(vi − vj) ≤ vTpb,

and thus remains optimal in (10). Repeating these steps until no constraints are violated leads to a
contradiction with the lack of an optimal solution to (10) that is not optimal in (9).

Lemma C.2 shows that we can replace the L1 ambiguity set in (6) by the following set without
affecting the solution.

Ps,a = {p ∈ ∆S : (1k...n − 11...(k−1))
T(p− p̄s,a) ≤ ψs,a, ∀k = 0, . . . , (n+ 1)} (11)

Now, following the same steps as the proof of Lemma C.1 but using (11) in place of (6) gives us the
following result.

Lemma C.3 (L1 Error bound). Suppose that p̄s,a is the empirical estimate of the transition probability
obtained from ns,a samples for each s ∈ S and a ∈ A. Then:

P
[
‖p̄s,a − p?s,a‖1 ≥ ψs,a

]
≤ S exp

(
−
ψ2
s,ans,a

2

)
.

Therefore, for any δ ∈ [0, 1]:

P

[
‖p̄s,a − p?s,a‖1 ≤

√
2

ns,a
log

S2A

δ

]
≤ 1− δ/(SA) .
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D Detailed Description of Selected Algorithms

D.1 Computing Bayesian Confidence Interval

Algorithm 2: Bayesian Confidence Interval (BCI)
Input: Distribution θ over p?s,a, confidence level δ, sample count m
Output: Nominal point p̄s,a and L1 norm size ψs,a

1 Sample X1, . . . , Xm ∈ ∆S from θ: Xi ∼ θ;
2 Nominal point: p̄s,a ← (1/m)

∑m
i=1Xi;

3 Compute distances di ← ‖p̄s,a −Xi‖1 and sort increasingly;
4 Norm size: ψs,a ← d(1−δ)m;
5 return p̄s,a and ψs,a;

E Why Not Credible Regions

Constructing ambiguity sets from confidence regions seems intuitive and natural. It may be surprising
that RSVF abandons this intuitive approach. In this section, we describe two reasons why confidence
regions are unnecessarily conservative compared to RSVF sets.

The first reason why confidence regions are too conservative is because they assume that the value
function depends on the true model P ?. To see this, consider the setting of Example 2.1 with rs1,a1 =
0. When an ambiguity set Ps1,a1 is built as a confidence region such that P[p?s1,a1 ∈ Ps1,a1 ] ≥ 1− δ,
it satisfies:

PP?

[
min
p∈Ps,a

pTv ≤ (p?s,a)Tv, ∀v ∈ RS
∣∣∣∣ D] ≥ 1− δ.

Notice the value function inside of the probability operator. Lemma B.1 shows that this guarantee is
needlessly strong. It is, instead, sufficient that the inequality in Lemma B.1 holds just for v̂π which is
independent of P ? in the Bayesian setting. The following weaker condition is sufficient to guarantee
safety:

PP?

[
min
p∈Ps,a

pTv ≤ (p?s,a)Tv

∣∣∣∣ D] ≥ 1− δ, ∀v ∈ RS (12)

Notice that v is outside of the probability operator. This set is smaller and provides the same
guarantees, but may be more difficult to construct [13].

The second reason why confidence regions are too conservative is because they construct a uniform
lower bound for all policies π as is apparent in Theorem 4.2. This is unnecessary, again, as Lemma B.1
shows. The robust Bellman update only needs to lower bound the Bellman update for the computed
value function v̂π , not for all value functions. As a result, (12), can be further relaxed to:

PP?

[
min
p∈Ps,a

pTv̂πR ≤ (p?s,a)Tv̂πR

∣∣∣∣ D] ≥ 1− δ, (13)

where πR is the optimal solution to the robust MDP. RSVF is less conservative because it constructs
ambiguity sets that satisfy the weaker requirement of (13) rather than confidence regions. Deeper
theoretical analysis of the benefits of using RSVF sets is very important but is beyond the scope of
this work. Examples that show the benefits to be arbitrarily large or small can be constructed readily
by properly choosing the priors over probability distributions.
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