
Quality Aware Generative Adversarial Networks

We present supplementary material for Quality Aware Generative Adversarial Networks (QAGANs).
The material includes the following:

1. Convergence analysis of QAGAN (SSIM)
2. Motivation for QAGAN (NIQE)
3. Convergence analysis of QAGAN (NIQE)
4. Overfitting analysis
5. Details of network architecture
6. Loss curves
7. More qualitative examples

1 Convergence analysis of QAGAN (SSIM)

Brunet et al. [BVW11] present a systematic analysis of the mathematical properties of the SSIM
index. For completeness, we present a few results from their work that help in our convergence
analysis. We follow the same notation and convention as in the paper draft. We start with two
normalized metrics that they have defined and connected with the terms in the SSIM index.

Normalized metrics:

d1(µP , µT ) :=

√
||µP − µT ||2
µ2
P + µ2

T + c1

From this definition it follows that L(P, T ) = 1 if and only if µP = µT (where L(P, T ) is the image
level mean term of the SSIM index). Also, d1(µP , µT ) can be equivalently written as

d1(µP , µT ) :=
√

1− L(P, T ).

Similarly, CS(P, T ) = 1 if and only if P − µP = T − µT and d2(P, T ) :=
√

1− CS(P, T ) can
be equivalently written as

d2(P − µP , T − µT ) :=

√
||(P − µP )− (T − µT )||2

||P − µP ||2 + ||T − µT ||2 + (N − 1)c2
,

d2(P − µP , T − µT ) :=

√
σ2
P − 2σPT + σ2

T

σ2
P + σ2

T + c2
,

d2(P − µP , T − µT ) :=
√

1− CS(P, T )

where CS(P, T ) is a combination of the contrast and structure comparison terms. The similar forms
of d1(µP , µT ) and d2(P − µP , T − µT ) can be written as the normalized root mean square error
(NRMSE) as defined in the following:

d(x, y) = NRMSE(x, y, c) =
||x− y||2

||x||2 + ||y||2 + c
,

where c is a stabilizing constant.
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NRMSE was proved to be a metric in the vector space RN for c ≥ 0. Then, a vector valued metric
d(P, T ) is formulated from the two normalized metrics d1(µP , µT ) and d2(P − µP , T − µT ).

d(P, T ) = (d1(µP , µT ), d2((P − µP ), (T − µT )))

taking the weighted l2 norm of the metrics d1(µP , µT ) and d2(P − µP , T − µT ) with the weights
w = (1, 1) and p = 2 leads to a metric.

dQ(P, T ) := ||d(P, T )||2 :=
√
||d1(µP , µT )||2 + ||d2((P − µP ), (T − µT ))||2

dQ(P, T ) := ||d(P, T )||2 :=
√

2− L(P, T )− CS(P, T )

Based on this formulation, it is shown that the distance function dQ(P, T ) derived from the compo-
nents of the SSIM index is a valid distance metric between two images P, T .

Theoretical and perceptual validation: They have also verified that the distance metric dQ(P, T )
is equivalent to the original SSIM index theoretically. The metric dQ(P, T ) is the lower order
estimation of the

√
1− SSIM(P, T ) as shown below:√

1− SSIM(P, T ) =
√

1− L(P, T )CS(P, T )

=
√

1− ((1− d1(µP , µT ))2)((1− d2((P − µP ), (T − µT )))2)

=
√

(d1(µP , µT ))2 + (d2((P − µP ), (T − µT )))2 − (d1(µP , µT ))(d2((P − µP ), (T − µT )))

Further,

||d(P, T )||2 ≈
√

(d1(µP , µT ))2 + (d2PT ((P − µP ), (T − µT )))2)

which can be equivalently written as ||d(P, T )||2 ≈
√

1− SSIM(P, T )

The quality aware distance metric

dQ(P, T ) =
√

2− L(P, T )− CS(P, T ) (1)

is a valid distance metric that preserves the quality discerning properties of the SSIM index. Also,

0 ≤ dQ(P, T ) ≤
√

2. (2)

When two images are equal (i.e., P = T or perceptually identical), then dQ(P, T ) = 0. If two
images are far apart perceptually then dQ(P, T ) =

√
2

To show that dQ(P, T ) is a good approximation of
√

1− SSIM(P, T ) with respect to its quality
assessment capability, they conducted an experiment on the LIVE [SSB06] and TID-2008 [Pon+09]
IQA databases with the realistic distorted images. First, they directly compared the two object
metrics. The correlation between dQ(P, T ) and

√
1− SSIM(P, T ) was found to be 0.967. Further,

they got correlations of 0.948 and 0.839 between dQ(P, T ) and subjective scores on the LIVE and
TID 2008 databases respectively.

Convergence analysis of QAGAN (SSIM):

• Mescheder et al. [MGN18] have proved in their analysis that WGAN-GP is not convergent
since it does not have negative eigenvalues for its Jacobian matrix. They have also proved
that unregularized and WGAN-GP methods will have energy solutions and work well in
practice.

• As our gradient penalty term with respect to SSIM dQ(P,Q) also imposes a bound on the
gradient and falls into the category of 1-GP, we can’t prove the convergence property of
QAGAN (SSIM). However, we claim that since we are operating on top of the WGAN-GP
loss function, and from the boundedness property of dQ(P, T ) in(2), our extra SSIM based
gradient penalty term will not adversely effect the GAN training and will also have energy
solutions.

• Empirically, our SSIM based regularization worked well and did not have any instability
issues.
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2 Motivation for QAGAN (NIQE)

We present more empirical evidence to substantiate our claim about the local statistical properties
of spatial gradient maps and discriminator gradient maps∇xD(x).

We have taken inspiration from the Natural Image Quality Evaluator (NIQE) [MSB13] for introduc-
ing the discriminator gradient penalty regularizer in our quality aware approach. Before describing
NIQE, we define how an image can be mean subtracted and contrast normalized (MSCN). Suppose
X is a natural image from the set of natural images. The MSCN coefficients of X are obtained by
subtracting the local mean from the image and then dividing with its local standard deviation.

X̂(i, j) =
X(i, j)− µ(i, j)

σ(i, j) + 1
,

where µ(i, j) is the local mean of an N ×N region centered around (i, j) and σ(i, j) is the standard
deviation of the same region.

NIQE relies on the following observations about the statistics of naturals scenes: a) the statistics of
MSCN natural images reliably follow a Gaussian distribution, b) the statistics of MSCN pristine and
distorted images can be modeled well using a generalized Gaussian distribution (GGD).

We claim in our work that the unique local statistical signature of natural images carry over to spatial
gradients and more importantly, to discriminator gradients. We make this claim about discriminator
gradients based on the observation that even a minimally trained discriminator function is smooth.
We provide empirical evidence to this claim in Figs. 1, 2 and 3. It is quite clear from these visual
examples that both spatial gradients and discriminator gradients of real images do indeed have a
unique statistical signature in them. Specifically, their MSCN coefficients are unimodal and lend
themselves to being modeled by a GGD.

Thus, the motivation for our discriminator gradient penalty regularizer is to ensure that the generated
images preserve this unique statistical property. In order to find the “distance” of the discriminator
gradient map of a generated image from discriminator gradient map of the class of real (or pristine)
images, we proposed a function whose form is identical to NIQE. Therefore, we present how NIQE
computes this “distance.”

• MSCN pristine image patch coefficients are modeled using a generalized Gaussian den-
sity (GGD), and the products of neighbouring MSCN coefficients are modeled using an
asymmetric GGD (AGGD).

• The parameters of the GGD and AGGD are used to formulate the Natural Scene Statistic
feature vectors from the image patches.

• NSS feature vectors are computed from image patches of a large corpus of pristine natural
images.

• Let x1,x2,. . . ,xk denote the NSS feature vectors computed from the corpus of natural image
patches,

• A multivariate Gaussian (MVG) model is fit to the NSS feature vectors of pristine image
patches.

fX(x1, x2, . . . , xk) ∼ 1

2π|ΣP |
1
2

× exp(−1

2
(x− µP )TΣP (x− µP )).

The parameters of this fitted MVG distribution (µP ,ΣP ) represent the class of pristine
natural images.

The quality of a test image T is measured in terms of the “distance” of its MVG parameters µT ,ΣT
from the pristine MVG parameters. This is quantified as:

NIQE(T ) = D(µP , µT ,ΣP ,ΣT ) =

√
(µP − µT )T

(
ΣP + ΣT

2

)−1
(µP − µT ), (3)

assuming that the sum of the matrices is invertible. The NIQE score measures how far a given image
is from the class of pristine natural scenes. Mittal et al. [MSB13] have reported a linear correlation
score of 0.9147 between NIQE and subjective scores on the LIVE IQA database [SSB06].
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(a) Real image (b) Spatial gradient (c) Discriminator gradient

(d) MSCN of real image (e) MSCN of spatial gradient (f) MSCN of discriminator gradient

(g) Real image (h) Spatial gradient (i) Discriminator gradient

Figure 1: Top row shows real image, its corresponding spatial gradient and discriminator gradi-
ent maps. Second row shows their corresponding mean subtracted contrast normalized (MSCN)
coefficients. Bottom row shows the normalized histograms of MSCN maps.

In the proposed quality aware gradient penalty, we simply replace MSCN real images in the previous
steps with MSCN discriminator gradient maps of real images.

We demonstrate the effectiveness of this regularizer in Fig. 4. We see that the histogram of the
MSCN coefficients of the discriminator gradient map of generated images clearly approaches the
histogram of discriminator gradient map of real images as the generator reaches optimality. We
attribute this to the guidance provided by the quality aware gradient penalty.

3 Convergence Analysis of QAGAN (NIQE)

Based on the definition of the NIQE function in (12), we present a few of its properties in the
following.

Properties of NIQE:

• NIQE(X) ≥ 0.
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(a) Real image (b) Spatial gradient (c) Discriminator gradient

(d) MSCN of real image (e) MSCN of spatial gradient (f) MSCN of discriminator gradient

(g) Real image (h) Spatial gradient (i) Discriminator gradient

Figure 2: Top row shows real image, its corresponding spatial gradient and discriminator gradi-
ent maps. Second row shows their corresponding mean subtracted contrast normalized (MSCN)
coefficients. Bottom row shows the normalized histograms of MSCN coefficients.

• NIQE(X) can be written as the Euclidean norm

NIQE(X) =
√

(µP − µX)TSX(µP − µX),

where

SX =

(
ΣP + ΣX

2

)−1
.

• Since NIQE assumes that ΣP + ΣT is invertible, SX is a positive definite matrix. By
spectral decomposition, there exists a matrix UX such that SX = UTXUX . Therefore,

NIQE(X) =
√

(µP − µX)TUTXUX(µP − µX).

• Thus, NIQE(X) can be written as

NIQE(X) = ||UXµPX ||2 (4)

where UX is the spectral decomposition matrix of SX and µPX = µP −µX . We make use
of these properties in our convergence proof.
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Figure 3: Real images and their corresponding discriminator gradient maps.

Figure 4: Demonstration of the effectiveness of the proposed quality aware gradient penalty.

Convergence proof: In order to prove the convergence of our regularizer, we use the approach
proposed by Mescheder et al. [MGN18]. They have proved that adding the extra regularizers (zero
centered penalties make the GAN training stable by computing the eigen values of the Jacobian
matrix.)

Following the same procedure, we prove that our NIQE based quality aware gradient penalty also
makes the GAN training stable and convergent.

While we prove this for the standard GAN setting, it applies to the WGAN framework as well.
Suppose the generator G is parameterized θ and the discriminator D is parameterized by ψ. The
objective function can be described as follows:

L(θ, ψ) = Ez∼p(z)[f(Dψ(Gθ(z)))] + Ex∼pD(x)[f(−Dψ(x))] (5)

The choice of the function f decides the variant of the GAN. For the DCGAN objective function:
f(t) = −log(1 + exp(−t)) while for WGAN objective function: f = t.
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f has to be continuously differentiable and f ′(t) = 0 for all t ∈ R. The goal of the GAN training
is to minimize the objective function in (5) with respect to generator parameters θ and to maximize
the objective function with respect to discriminator parameters ψ.

Let the parameters at Nash equilibrium be (θ∗,ψ∗). The gradient vector field v(θ, ψ) is given by

v(θ, ψ) =

(
−∇θL(θ, ψ)
∇ψL(θ, ψ)

)
. (6)

Mescheder et al. [MGN18] and Nagarajan et al. [NK17] have shown that local convergence can
be analyzed by the eigenvalues of the Jacobian v′(θ, ψ) at stationary point (θ∗, ψ∗). The Jacobian
v′(θ∗, ψ∗) is given by the following for the unregularized case

v′(θ∗, ψ∗) =

[
−∇2

θL(θ∗, ψ∗) −∇2
θ,ψL(θ∗, ψ∗)

∇2
θ,ψL(θ∗, ψ∗) ∇2

ψL(θ∗, ψ∗)

]
(7)

This can be equivalently written as the following by taking into the assumptions made by Mescheder
et al. [2].

v′(θ∗, ψ∗) =

[
0 −KT

DG
KDG KDD

]
, (8)

where KDD and KDG matrices are defined as follows

KDD = 2f ′′(0)EpD(x)[∇ψDψ∗(x)∇ψDψ∗(x)T ],

KDG = f ′(0)∇θEpθ [∇ψDψ∗(x)]|θ=θ∗ .
For the regularization case, the gradient vector field and Jacobian matrices are the following.

v(θ, ψ) =

(
−∇θL(θ, ψ)

∇ψL(θ, ψ)−∇ψRq(θ, ψ)

)
. (9)

v′(θ∗, ψ∗) =

[
−∇2

θL(θ∗, ψ∗) −∇2
θ,ψL(θ∗, ψ∗)

∇2
θ,ψL(θ∗, ψ∗) ∇2

ψL(θ∗, ψ∗)−∇2
ψRq(θ, ψ)

]
(10)

This can be equivalently written as the following by taking into the assumptions made by Mescheder
et al. [MGN18].

v′(θ∗, ψ∗) =

[
0 −KT

DG
KDG KDD − LDD

]
(11)

Here our proposed penalty aim is to minimize NIQE(∇x̂(D(x̂))). We operate only on the discrimi-
nator and so it is only a function of parameters ψ.

Rq(ψ) =
γ

2
Ep(x̂)(NIQE(∇x̂(Dψ(x̂)))),

where γ is the hyper parameter, which is equal to 2λ2. By taking the directional derivative
∇x̂(Dψ(x̂)) as the test image, NIQE score will be estimated by the following

D(µP , µT ,ΣP ,ΣT ) =

√
(µP − µT )T

[
ΣP + ΣT

2

]−1
(µP − µT ), (12)

The parameters µT,ψ and ΣT,ψ are the MVG parameters obtained from the directional derivative
∇x̂(Dψ(x̂)). So the µT,ψ and ΣT,ψ are also the function of parameters of discriminator (ψ). Let us
consider matrix SPT,ψ and vector µPT,ψ

SPT,ψ =

[
ΣP + ΣT,ψ

2

]−1
, (13)

µPT,ψ = (µP − µT,ψ), (14)

NIQE(∇x̂(Dψ(x̂)))) =
√
µTPT,ψSPT,ψµPT,ψ. (15)

As in NIQE, we assume that the matrix SPT,ψ is positive definite. Then by spectral theorem for
symmetric matrix. There exist a diagonal matrix (Λψ) = diag(λ1, λ2,λ3,. . .,λn) and an orthogonal
matrix Qψ such that QTψ = Q−1ψ and

SPT,ψ = QTψΛψQψ.
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Let the matrix SPT,ψ be a positive definite matrix. λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, . . . , λn ≥ 0.

Uψ = diag(
√
λ1,
√
λ2,
√
λ3,
√
λ4, . . . ,

√
λn)Qψ,

Note that,
SPT,ψ = UTψ Uψ,

and ˆµPT,ψ = Uψ.µPT,ψ .

Equivalently, NIQE(∇x̂(Dψ(x̂))) can be written as the Euclidean norm || ˆµPT,ψ||2.

NIQE(∇x̂(Dψ(x))) =
√
µTPT,ψSPT,ψµPT,ψ,= || ˆµPT,ψ||2.

Our NIQE based regularizer will be written as the following

Rq(θ, ψ) =
γ

2
Ep(x̂)[||Uψ. ˆµPT,ψ||2]

the derivatives for the regularizer Rq(ψ) with respect to ψ are derived as follows.

∇ψRq(θ, ψ) = γEp(x̂[∇ψUψ. ˆµPT,ψUψ. ˆµPT,ψ],

The second derivative ∇2
ψRq(ψ) with respect to parameters ψ at the optimal point (θ∗, ψ∗) are

derived as follows

∇2
ψRq(θ

∗, ψ∗) = γEpx̂ [(∇ψUψ∗ . ˆµPT,ψ∗)(∇ψUψ∗ . ˆµPT,ψ∗)T ]

LDD = ∇2
ψRq(θ

∗, ψ∗)

Our quality aware regularizer based on NIQE introduces the new term LDD term into the Jacobian
matrix. Other than this, all terms in the Jacobian matrix remain the same.

vTLDDv = γEp(x̂)(||∇ψUψ∗ ˆµPT,ψ∗ ||2)

vTLDDv ≥ 0

KDD remains the same as in Mescheder et. al [2]. Therefore, we can conclude that

vTKDDv ≤ 0

and it follows that the matrix MDD = KDD − LDD will be a negative definite matrix.

By this, we have proved that the Quality Aware Gradient Penalty regularizer Rq has not affected the
properties of the Jacobian matrix. It is convergent.

4 Overfitting

Figure 5 shows the histograms of the discriminator’s weights for the WGAN-GP, QAGAN (SSIM)
and QAGAN (NIQE) approaches respectively. We observe that our proposed regularizers make the
discriminator network more sparse compared to WGAN-GP. The weight distributions of WGAN-
GP, QAGAN (SSIM) and QAGAN (NIQE) are as follows: [−1.73551, 1.4799], [−0.9153, 1.0258]
and [−.051438, 0.42510] respectively. Variances of the weights with WGAN-GP, QAGAN (SSIM)
and QAGAN (NIQE) are 0.03804,0.007948 and 0.002483 respectively. Clearly, the proposed qual-
ity aware regularizers avoid overfitting.

5 Loss curves

Figure 6 shows that discriminator loss with WGAN-GP saturates quickly, while our QAGAN
(SSIM) consistently increases. This shows that the objective function provided by QAGAN (SSIM)
gives more informative gradients to the generator. Figure 7 shows that the discriminator loss with
QAGAN (NIQE) also increases consistently.
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Figure 5: Weight distribution of discriminator block for various methods.

Table 1: Generative Model Architecture for CIFAR-10 data set
Discriminator D(x) Generator G(z)

Input image :(3×32× 32) Input latent vector size :128
Residual block, Resample=Down :(128 ×16× 16) Linear-dense layer : :(128 ×4× 4)

Residual block, Resample=Down:(128 ×8× 8) Residual block, Resample=Up:(128 ×8× 8)
Residual block, Resample=-:(128 ×8× 8) Residual block, Resample=Up:(128 ×16× 16)
Residual block, Resample=-:(128 ×8× 8) Residual block, Resample=Up:(128 ×32× 32)

ReLU- Mean pooling: 128 Convolutional block,:(3 ×32× 32)
Linear : 1 Tanh :(3× 32× 32)

Table 2: Generative Model Architecture for STL-10 dataset
Discriminator D(x) Generator G(z)

Input image :(3×48× 48) Input latent vector size :128
Residual block, Resample=Down :(128 ×24× 24) Linear-dense layer : :(128 ×6× 6)
Residual block, Resample=Down:(128 ×12× 12) Residual block, Resample=Up:(128 ×12× 12)

Residual block, Resample=Down:(128 ×6× 6) Residual block, Resample=Up:(128 ×24× 24)
Residual block, Resample=-:(128 ×6× 6) Residual block, Resample=Up:(128 ×48× 48)

ReLU-Mean pooling: 128 Convolutional block,:(3 ×48× 48)
Linear : 1 Tanh :(3× 48× 48)
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Figure 6: Convergence curves of discriminator loss for WGAN-GP and QAGAN (SSIM).

6 Network Architecture

We have used the ResNet architecture for discriminator and generator and is a faithful reconstruction
of the architecture proposed in the WGAN-GP framework [Gul+17]. We have used ReLU non-
linearity. The input to the generator is of dimension 128. Batch normalization was used in the
generator. The kernel size used in the all convolutional and residual layers is [3× 3× 2].
For CelebA dataset (64 × 64), We have used the same CIFAR-10 ResNet architecture reported in
Table 1. We have added the up sampling residual block at the end in the generator to get to 64× 64
and have added the extra down sampling residual block in the discriminator. For STL-10 data set of
resolution 48×48, we have used a latent vector of size 128. The latent vector is mapped to 6×6. We
have used the network architecture mentioned in Table 2. For STL-10 data set of resolution 96×96,
we have added up/down sampling layers to generator and discriminator respectively.

7 Representative Samples

In Figs. 7-14, we present more samples from both the proposed Quality Aware GANs for all the data
sets: CIFAR-10, STL-10 and CelebA. We also show the generated samples from STL-10 (96× 96)
data set. Our claim that QAGANs’ emphasis on the local structural information and local statistical
information leads to improved image quality is evident from the qualitative samples below.

Through this work, our primary goal is to demonstrate that statistics of natural scenes, and the
ability of IQA algorithms to quantify the naturalness of a scene have an important role to play in the
generative modeling of natural images. The WGAN-GP framework provides us a good setting to
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Figure 7: Convergence curves of discriminator loss for various methods.

convey our idea effectively. Nevertheless, we believe that the core idea of imposing a “naturalness”
constraint in generating natural scenes would be effective wherever the discriminator function is
smooth. This includes the 1-Lipschitz functions in WGAN-GP and PGGAN, hinge-loss objective
function based Self-attention GAN and Spectral GAN, CT-GAN and WGAN-LP etc. Also, since we
impose no constraints on the generator, we expect it to work well in the conditional GAN setting too.

8 Experiments with Progressively Growing architecture (PGGAN) [Kar+18]

To further justify our claim, we have applied the proposed regularizers to the PGGAN architecture
(both original and growing) at resolutions of 128 × 128 and 256 × 256 on the CelebA dataset,
and show the results in Fig. 17. The original PGGAN framework uses WGAN-GP [Gul+17] loss
function.Interestingly and importantly, we observed that the proposed regularizers resulted in faster
convergence and improved visual quality of the generated images. We hope that these results also
address concerns about the effectiveness of QAGANs at higher resolutions. While memory and time
constraints limited our testing to a resolution of 256× 256 and 6K iterations, we are optimistic that
our method would work at higher resolutions as well.
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Figure 8: Randomly sampled generated images for CelebA dataset for Quality Aware Distance
Metric.
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(a) .

(b) . (c) .

Figure 10: Randomly sampled generated images for STL-10 dataset for Quality Aware Distance
Metric.(48 × 48)
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Figure 11: Randomly sampled generated images fro STL-10 dataset for Quality Aware Distance
Metric.(96 × 96)
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Figure 12: Randomly sampled generated images for CelebA dataset for Quality Aware Gradient
Penalty.

16



Figure 13: Randomly sampled generated images for CIFAR-10 dataset for Quality Aware Gradient
Penalty.
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Figure 14: Randomly sampled generated images for STL-10 dataset for Quality Aware Gradient
Penalty.(48 × 48)
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Figure 15: Randomly sampled generated images fro STL-10 dataset for Quality Aware Gradient
Penalty.(96 × 96)

Figure 16: Resolution: 128 × 128. Top: PGGAN, FID128×128 = 64.50. Middle: PGGAN with
SSIM, FID128×128 = 47.46. Bottom: PGGAN with NIQE, FID128×128 = 49.80 These are results
after 6K iterations on the CelebA dataset.
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Figure 17: Resolution: 256 × 256. Top: FID256×256 = 62.86. Center: PGGAN with SSIM,
FID256×256 = 40.834. Bottom: PGGAN with NIQE, FID256×256 = 47.27. These are results after
6K iterations on the CelebA dataset.
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