
Supplementary Material for
muSSP: Efficient Minimum-cost Flow Algorithm for

Multi-Object Tracking

Anonymous Author(s)
Affiliation
Address
email

1 Proofs of theorems and lemmas in the methods section1

Any definition, lemma, or theorem is referred to using the same index in the main body and in this2

supplementary material, if it is discussed in both of them. The major goal of the proofs is to show3

that with the fundamental changes to the graph or to SSP framework, the optimality of final solution4

is not influenced.5

1.1 Independent flipping lemma6

Definition 1.1a. The cost associated with a directed path π is

pathcost(π) =

{∑
(u,v)∈π C(u, v) if π 6= ∅

∞ otherwise.

Lemma 1 (Independent flipping). Given a residual graph Gr(Vr, Er, Cr) and its SP denoted as T7

rooted at s, if we flip all edges in path πT (t) and get new graphG′r, for node v ∈ Vr that is independent8

with node t in T , its least-cost path πT (v) is still valid in the new graph, i.e., πT (v) ∈ Π∗G′
r
(s, v).9

Proof. Assume there is a new shortest path πG′
r
(s, v) from s to node v after flipping, which is shorter10

than πT (v). It is obvious that this path contains flipped edge(s). We can cut πG′
r
(v) into 4 parts11

{(s, . . . , v1), (v1, . . . , v2), (v2, . . . , v3), (v3, . . . , v)}. Part 1 and 3 contain only edges existing in Er12

and part 2 contains only flipped edges. Except the 4th part, the other three can not be empty. Because13

(v1, . . . , v2) are flipped edges in T , we have dT (v2) + pathcost(v2, . . . , v1) ≤ pathcost(s, . . . , v1).14

For the same reason, dT (v3) ≤ dT (v2) + pathcost(v2, . . . , v3). After adding these two inequalities15

together, we have dT (v3) ≤ pathcost(s, . . . , v1) − pathcost(v2, . . . , v1) + pathcost(v2, . . . , v3),16

which is dT (v3) ≤ dG′
r
(v3). If the 4th part is empty, the proof is done. If not, we can further cut17

(v2, . . . , v) into 4 parts and continue until the 4th part is empty. Then we can have dT (v) ≤ dG′
r
(v),18

which means πT (v) is still the shortest path in G′r.19

1.2 Dummy edge clipping20

Lemma 2. No dummy edge will appear in any optimal solution.21

Proof. Assume an optimal solution f∗ contains a dummy edge (u, v), which is in s-t path π =22

{(s, . . . , u), (u, v), (v, . . . , t)}. It is clear that fsv = fut = 0. From the definition of dummy edge,23

we know that by separating π into two paths {(s, . . . , u), (u, t)} and {(s, v), (v, . . . , t)}, the total24

cost of f∗ can be further decreased. This contradicts the assumption.25

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

Theorem 1. Given a graph G(V,E,C) for MOT, removing all its dummy edges does not influence26

the optimality of the final solution.27

Proof. For a min-cost flow problem on a graph G, assume G′ is the same graph as G but clipping28

all dummy edges. It is clear that the optimal solution f∗G′ on G′ is a feasible solution on G. For an29

optimal solution f∗G on G, because it does not contain dummy edges, it is also a feasible solution to30

G′. Thus, the optimal solutions on G and G′ are equivalent.31

1.3 Permanent edge clipping32

Lemma 3. Any s-t path with permanent edge is not a simple path.33

Proof. An s-t path should start at s and end at t. If the path contains an edge that leaves t, it needs to34

eventually come back to t, which creates a cycle. The same reasoning applies to the case when the35

path contains an edge that go toward s.36

Lemma 4. Given a residual graph, we can always find a shortest s-t path which is also a simple path,37

unless t cannot be reached from s.38

Proof. Our original graph is DAG with no cycles. Because we only augment flow along the shortest39

path in the residual graph, this will never generate negative-cost cycle in residual graph [1]. Removing40

cycles in a path will not increase its cost, so for any non-simple s-t path, we can find a simple one at41

least as good as it.42

Theorem 2. Given a residual graph Gr(Vr, Er, Cr), removing all its permanent edges does not43

influence the optimality of the final solution.44

Proof. Assume this residual graph Gr is generated in iteration i and we totally need K iterations.45

We first prove that the ith iteration to Kth iteration in SSP, it is equivalent to solve a new min-cost46

flow problem with excess flow number K − i+ 1 on Gr. This is obvious from the paradigm of SSP47

algorithm. Now we prove that for the new min-cost flow problem, removing permanent edges does48

not influence the optimality of the final solution. We denote the graph without permanent edges as49

Gr\p. From lemma 3 and 4, we know that we can have at least one optimal solution f∗ to the new50

min-cost flow problem on Gr with only simple paths. Assume the optimal solution on Gr\p is fo if51

there is one. It is clear that fo is a feasible solution to Gr, and we have Cr ∗ fo ≥ Cr ∗ f∗. Because52

f∗ contains no permanent edges, f∗ is also a feasible solution for Gr\p and Cr ∗ fo ≤ Cr ∗ f∗. Then53

we get Cr ∗ fo = Cr ∗ f∗, so the optimality are not influenced.54

1.4 Multi-path finding55

Lemma 5. Given a residual graph Gr(Vr, Er, Cr), its SP rooted at s, and the shortest distance56

function d from s to each node, we have d(t) = min(d(v) + dt(v)), v ∈ Vr \ {t}.57

Proof. For any s-t path π = {(s, . . . , vx), (vx, t)}, pathcost(π)≥ d(vx) + dt(vx). Thus we have58

d(t) ≥ min(d(v) + dt(v)), v ∈ Vr. Based on the definition of shortest path and dt(v), we have59

d(t) ≤ d(v) + dt(v), for any v ∈ Vr. Thus d(t) = min(d(v) + dt(v)), v ∈ Vr \ {t}.60

By maintaining a sorted list {d(v) + dt(v)} in ascending order, we can directly extract the shortest61

s-t path by popping the top element in the list. The updating of sink t after path flipping can also be62

fulfilled by updating this list.63

Lemma 1.4a. Given a graph G(V,E,C) with source node s and sink node t, and its SP T rooted at64

s with shortest distance function d, flipping the shortest s-t path will never decrease distance d(v) in65

the new graph, for any v ∈ V .66

Proof. The proof is similar to lemma 1. From lemma 1, we know this is true for nodes that67

independent with node t. Here we only consider nodes that inside the same branch with t. Assume68

the graph with flipped path is Gr. There is a new shortest path πGr
(v) in Gr, from s to node v, whose69

cost is smaller than πT (v). It is obvious that this path contains flipped edge(s). We can cut πGr
(v)70

2

into 3 parts {(s, . . . , v1), (v1, . . . , v2), (v2, . . . , v)}. Part 1 contains only edges existing in E and part71

2 contains only flipped edges. Part 1 can not be empty. If part 2 and 3 are empty, the lemma is correct.72

If part 2 is not empty, from SP T , we have dT (v2) + pathcost(v2, . . . , v1) ≤ pathcost(s, . . . , v1),73

which means dT (v2) ≤ dGr
(v2). If part 3 is empty, v2 = v, the proof is done. If part 3 is not empty74

but contains no flipped edges, we have dT (v2) + pathcost(v2, . . . , v) ≥ dT (v). After adding the75

previous inequality together, we have dT (v) ≤ dGr (v). If part 3 is not empty and contains flipped76

edges, we can continue previous cutting strategy on part 3 until the new part 3 is empty or contains77

no flipped edges. Then we can have dT (v) ≤ dGr (v), which means the cost of the new shortest path78

does not decrease.79

This lemma shows that every time when we find a shortest s-t path, flipping it will not create a shorter80

path in the residual graph. Before flipping the shortest path, the node occupying the top of the sorted81

list {d(v) + dt(v)} denotes current shortest path that should be instantiated. After flipping, the top82

element is popped out. After that, if the new top node of the list is independent with the popped83

one, it will hold that position and become the next shortest path to be flipped. Based on the same84

reasoning. We can generalize this reasoning in the following theorem.85

Theorem 3. Given a residual graph Gr(Vr, Er, Cr), its SP denoted as T (V ′r , E
′
r, Cr) rooted86

at s and a sorted list of {d(v) + dt(v)} with v ∈ Vr with ascending order, if the k nodes87

{v1, v2, . . . , vk} that occupy the top k locations of the list are mutually independent, the k paths88

{πT (v1), πT (v2), . . . , πT (vk)} can be simultaneously instantiated as k shortest paths.89

Proof. From lemma 5, we know v1 indicates current shortest path π1. We only need to prove that for90

any i ∈ {1, . . . , k}, after popping the nodes {v1, . . . , vi} in the list, the i+ 1 node will occupy the91

top of the list. Because the k nodes are mutually independent, vi+1 is independent with {v1, . . . , vi}.92

From lemma 1, we know d(vi+1) does not change in the residual graph after i iterations. From93

lemma 1.4a, we know d(u) does not decrease for any u ∈ Vr, so after popping out {v1, . . . , vi}, in94

the new graph vi+1 will occupy the top location of the list and indicate the new shortest path.95

1.5 Batch updating and heap shrinking96

Lemma 6. Given a 0-tree T0(V0, E0, Cr) embedded in residual graph Gr(Vr, Er, Cr), if v ∈97

descendants(v0), d∗u(v) ≤ d∗u(v0), ∀u ∈ Vr,∀v0 ∈ V0.98

Proof. Because v ∈ descendants(v0), there is a path from v to v0 in T0 with only 0-cost edges. Thus99

d∗u(v) ≤ d∗u(v0), ∀u ∈ Vr,∀v0 ∈ V0.100

Theorem 4. In Dijkstra’s algorithm, if the distance from s to a node v in a 0-tree is permanently101

labeled as d(v), d(v) is also the permanent label for the nodes in descendants(v) that haven’t been102

permanently labeled.103

Proof. Based on the property of Dijkstra’s algorithm, for a permanently labeled node v, its distance104

d(v) ≤ d(u) for any node u with temporary label. If u ∈descendants(v), d(v) ≥ d(u) based on105

lemma 6. Thus, we can permanently label node u as d(v).106

Lemma 7. In a 0-tree, nodes with larger temporary distance labels than their parent belong to set P .107

Proof. The temporary distance of a node v is from the relaxation of edges linked from nodes outside108

of the 0-tree. If it is larger than the temporary distance label of its parent node u, based on lemma109

6, v will be updated at least once more by relaxing edge (u, v). Thus v cannot be correctly labeled110

without checking nodes in the 0-tree.111

2 Complexity analysis112

2.1 Time complexity analysis113

Min-cost flow in MOT problem can be solved by successive shortest path (SSP) algorithm with114

computational complexity O(K(n log(n) + m)) [7], where n and m are the number of vertices115

and arcs, respectively. We now show that the complexity of muSSP algorithm does not increase116

3

compared with SSP. The complexity of graph cleaning and finding the shortest path in DAG is117

O(m), which only run once. The loop will terminate with K iterations. For one iteration, identifying118

the nodes to update takes O(n) operation by checking their branch nodes. Finding multi-paths for119

flipping can be efficiently done by maintaining the list mentioned in section 3.5. The list can be120

implemented by priority queue with updating complexity O(n log(n)). Converting edge costs takes121

O(m) time, while building residual graph and clipping permanent edges take amortized constant122

time. The best complexity for implementing Dijkstra’s algorithm is O(n log(n) +m). Consequently,123

the complexity in one iteration is still dominated by Dijkstra’s algorithm as O(n log(n) +m) and the124

overall complexity is O(K(n log(n) +m)). The worst case for muSSP happens when the shortest-125

path tree contains only one branch in each iteration of Alg. 1. This worst case is unlikely to happen126

in the graph of MOT problem, as the number of branches is at least equal to the number of objects in127

the first (or last) frame of the video.128

2.2 Space complexity analysis129

The efficiency improvement is achieved without scarifying memory cost. Given a graph with the130

number of nodes n and number of edgesm, the memory consumption for the graph itself isO(m+n).131

Dummy edge clipping and permanent edge clipping use O(1) space. For each node, we save a branch132

node label, parent node label, distance label of each node which need O(n) space. The list and133

heap used in Dijkstra algorithm in multi-path flipping also need O(n) space. Thus our memory134

consumption is totally O(m+ n), which is the same as SSP and FollowMe[6].135

3 Experiments136

3.1 Effectiveness of each individual strategy137

For different graphs, the contribution of these strategies incorporated in muSSP varies significantly.138

First, we check the number of nodes updated in each iteration, and Fig.1 shows the comparison139

of our first three strategies and the other methods on the two sample graphs. Details of the graphs140

can be found in the captain of the figure. "DC" and "PC" are short for "dummy-edge clipping" and141

"permanent-edge clipping", and "DC-PC" represents these two strategies are applied simultaneously.142

We can see that by clipping dummy/permanent edges, the number of nodes to update dramatically143

decreases compared with FollowMe or SSP. Because SSP can have an early stop once it finds the144

shortest s-t path [1], the updated number of nodes is not necessarily to be the same as node number145

in the graph. In fig.1a, we did not show the result of "DC-PC", because in this graph, there is no146

dummy edge. DC will not contribute to decrease the number of nodes for updating. However, in147

fig.1b, there is a clear difference between curve "PC" and "DC-PC" especially in the early iterations.148

Purple spikes denote the iterations updating is really conducted. Gaps between purple spikes mean149

we find those shortest s-t paths without updating the shortest path tree. After applying multi-path150

flipping, the number of updating shortest path tree decreases from 470 to 123 in the graph used in151

fig.1a and 466 to 106 in the graph used in fig.1b.152

Using the same graph as fig.1a, we show the power of batch updating (BU) and heap shrinking (HS)153

in table 1. Here "muSSP" incorporates the first 3 strategies. "muSSP-BP" includes the batch updating154

and "muSSP-BU-HS" includes both the batch updating and heap shrinking. The heap we are using155

are based on binary search trees, which has amortized constant complexity for popping and log(n)156

for pushing. Thus, the heap operation here only considers pushing operation. Clearly, purely with the157

first 3 strategies, the number of nodes for updating has already significantly decreased. With batch158

updating, the number of heap operations decreases for one more order. The initial heap size can also159

be decreased to half with heap shrinking. Here we do not consider the number of heap operations in160

building the initial heap because for SSP, it is always 1. FollowMe indeed suffers a lot from the initial161

heap size. They insert every node in the previously flipped path to the heap first. This operation will162

make the heap huge when we have a large number of paths.163

3.2 Implementation details164

Except for cs2, muSSP, SSP, and FollowMe are all implemented in C++. The source code of these165

3 algorithms can be found on GitHub(https://github.com/yu-lab-vt/muSSP). We use166

the data structure of self-balanced binary search tree to implement the Dijkstra’s algorithm which167

4

https://github.com/yu-lab-vt/muSSP

0 100 200 300 400 500

Iteration Index

10
0

10
1

10
2

10
3

10
4

10
5

#
 n

o
d

e
s

 u
p

d
a

te
d

SSP

dSSP

PC

(a)

0 100 200 300 400 500

Iteration Index

10
0

10
1

10
2

10
3

10
4

10
5

#
 n

o
d

e
s

 u
p

d
a

te
d SSP

dSSP

PC

DC-PC

(b)

Figure 1: The effectiveness of dummy-edge clipping ("DC"), permanent-clipping ("PC") and multi-
path flipping on two different graphs. Gaps between purple spikes denote the iterations we skipped
because of multi-path flipping. The graph used in (a) is from sequence 07 in MOT CVPR19 dataset
with graph design method in [6]. The graph in (b) is from ISBI12 Particle Tracking Challenge
(sequence name: "RECEPTOR snr 7 density low") with probability principled graph design described
in supplementary.

Table 1: Comparison of # heap operation and initial heap size
Avg. of all iterations SSP FollowMe muSSP muSSP-BU muSSP-BU-HS

#Heap operation 44889.5 6225.1 49.6 5.8 5.7
Initial heap size 1.0 33273.9 85.4 85.4 39.4

has O(1) for popping top element and O(log(n)) for pushing a new value. This is the reason why168

we mainly compare pushing operation number used in Dijkstra’s algorithm when testing the fourth169

strategy.170

For muSSP, SSP and FollowMe, it is not needed to explicitly set flow number. For cs2, we use binary171

search to find the best flow number as did in [11, 7].172

Except for cs2, the other 3 methods accept real-valued edge cost and saved using "double" data type.173

For cs2, we round the edge costs with accuracy to 1e-7. More details about implementation can be174

found in the attached source code. The cs2 package can be found on the author’s website [4].175

All comparisons were conducted on Ubuntu 16.04 LTS, compiled by g++ v5.4.0 with single core of176

2.40GHz Xeon(R) CPU E5-2630 and memory speed at 2133MHz.177

3.3 Detection results used for graph building178

For KITTI-Car dataset, we chose four long sequences (seq00, seq10, seq11, seq14) for a clear179

efficiency comparison. For sequences that too small, there is no need to speed up for any solver.180

KITTI provides two detection results DPM[3] and reglets[10]. We test on both of them. For MOT181

CVPR 2019 dataset, we use its test set with 4 videos. Each video contains a crowd of pedestrians.182

The detection results are provided by their website. The detection results of ETHZ (BAHNHOF and183

JELMOLI) dataset is also DPM from [7]. Particle tracking challenge provided two different types of184

simulated particle tracking data: RECEPTOR and VESICLE, each of them contains 15 data with185

different signal to noise ratio and particle density. We test our efficiency on the RECEPTOR snr 7186

with density from low to high. As this dataset does not provide detection results, we directly use the187

ground truth as input to build the graph. The data RECEPTOR snr 4 was used as training data.188

For the quadratic programming problem, we directly use the function formulated in the published189

software package [2]. We use Frank-Wolfe algorithm to approximate the solution. The step size is set190

as k/(k + 2), where k is the index of the current iteration. We set a stringent stopping criterion and191

with max iteration number as 400.192

5

Table 2: Details of KITTI-Car dataset
Datasets KITTI(DPM) KITTI(reglets)

seq00 seq10 seq11 seq14 seq00 seq10 seq11 seq14
#frames 465 1176 774 850 465 1176 774 850
#detections 51100 181132 104748 96974 19885 22189 24524 35198
(a) graph design from [7]
#vertices 102202 362266 209498 193950 39772 44380 49050 70398
#arcs 171135 608881 349869 325256 71730 78273 86864 123008
(b) graph design from [6]
#vertices 102202 362266 209498 193950 39772 44380 49050 70398
#arcs 173242 609576 352140 328352 71977 78524 87048 122875
(c) graph design from [8]
#vertices 102202 362266 209498 193950 39772 44380 49050 70398
#arcs 172317 607035 350276 326635 71592 78477 86830 122763

Table 3: Details of CVPR19, EHTZ and PTC datasets
Datasets CVPR19 ETHZ PTC

seq04 seq06 seq07 seq08 seq03 seq04 High Mid Low
#frames 2080 1008 585 806 1000 936 101 101 101
#detections 208000 70189 20220 43444 101180 94054 77352 39215 7438
(a) graph design from [7] probability principled
#vertices 416002 140380 40442 86890 202362 188110 154706 78432 14878
#arcs 1007552 334881 98255 206836 358546 365461 462213 234438 44448
(b) graph design from [6]
#vertices 416002 140380 40442 86890 202362 188110
#arcs 1007436 334513 98256 206557 411170 368080

3.4 Graph design193

We use three existing methods [7, 6, 8] to build the graph. Details can be found in their paper and194

published software packages. [7, 6] are purposely designed with the min-cost flow framework. For195

[8], in their package, they design similarity between detections and use Hungarian algorithm [5] to196

solve the association problem in every two consecutive frames. The cost they used is just the negative197

values of the similarities. We use the same way for linking cost between detections. In [8], they198

believe in detection results and majority of the detections have links in adjacent frames. Following199

the same thinking, we set the transition edge between the pre-node and the post-node of one detection200

as zero. The enter/exit costs are set as a small value to avoid trivial solutions. To tackle the problem201

of occlusion or missed detection, for all these datasets, we allow the objects to have one "jump",202

which means we allow the objects in frame k to be linked to objects in frames k + 1 and k + 2.203

For PTC dataset, we use the ground truth as input. Because particles can suddenly appear or disappear204

in the filed of view, we set the cost of C(s, v) = − log(penter) and C(u, t) = − log(pexit) for205

any pre-node v and post-node u. The probabilities penter and pexit are learned from another data206

provided in the challenge (the data "RECEPTOR snr 4"). Because we are using the groundtruth207

as input, we set the linkage cost between the pre-node vi and post-node ui of the same object208

as C(vi, ui) = −(C(s, vi) + C(ui, t)) to make sure the final results will not miss any detection.209

The linkage costs between different objects are decided by their distance as we do not have much210

appearance features to use as in natural image data. We firstly learn an empirical distribution of the211

real distance distribution from training data (the data "RECEPTOR snr 4"). Thus, for each distance212

value, we can have its p-value p based on this distribution. Similarly, we set the linkage cost as the213

− log(p). As in [9], each detection is linked to its 3 nearest neighbors in the next frame.214

3.5 Details of the data215

The details of the data we experimented on can be found in Table 2 and 3. It includes the numbers216

of frames and detections in each video. After combined with different graph design methods, the217

out-coming graph sizes are also listed.218

6

References219

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: Theory, algorithms,220

and applications. 2008.221

[2] Visesh Chari, Simon Lacoste-Julien, Ivan Laptev, and Josef Sivic. On pairwise costs for network222

flow multi-object tracking. In Proceedings of the IEEE Conference on Computer Vision and223

Pattern Recognition, pages 5537–5545, 2015.224

[3] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection225

with discriminatively trained part-based models. IEEE transactions on pattern analysis and226

machine intelligence, 32(9):1627–1645, 2009.227

[4] Andrew V Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm.228

Journal of algorithms, 22(1):1–29, 1997.229

[5] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics230

quarterly, 2(1-2):83–97, 1955.231

[6] Philip Lenz, Andreas Geiger, and Raquel Urtasun. Followme: Efficient online min-cost flow232

tracking with bounded memory and computation. In Proceedings of the IEEE International233

Conference on Computer Vision, pages 4364–4372, 2015.234

[7] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes. Globally-optimal greedy algorithms235

for tracking a variable number of objects. In CVPR 2011, pages 1201–1208. IEEE, 2011.236

[8] Sarthak Sharma, Junaid Ahmed Ansari, J Krishna Murthy, and K Madhava Krishna. Beyond237

pixels: Leveraging geometry and shape cues for online multi-object tracking. In 2018 IEEE238

International Conference on Robotics and Automation (ICRA), pages 3508–3515. IEEE, 2018.239

[9] Shaofei Wang, Steffen Wolf, Charless Fowlkes, and Julian Yarkony. Tracking objects with240

higher order interactions via delayed column generation. In Artificial Intelligence and Statistics,241

pages 1132–1140, 2017.242

[10] Xiaoyu Wang, Ming Yang, Shenghuo Zhu, and Yuanqing Lin. Regionlets for generic object243

detection. In Proceedings of the IEEE international conference on computer vision, pages244

17–24, 2013.245

[11] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data association for multi-object tracking246

using network flows. In 2008 IEEE Conference on Computer Vision and Pattern Recognition,247

pages 1–8. IEEE, 2008.248

7

	Proofs of theorems and lemmas in the methods section
	Independent flipping lemma
	Dummy edge clipping
	Permanent edge clipping
	Multi-path finding
	Batch updating and heap shrinking

	Complexity analysis
	Time complexity analysis
	Space complexity analysis

	Experiments
	Effectiveness of each individual strategy
	Implementation details
	Detection results used for graph building
	Graph design
	Details of the data

