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A Reasoning with Additional Supervision

In this section, we detail the additional supervisions and taxonomize previous studies on visual
reasoning according to each additional supervision signal used.

Program A (functional) program is a set of logical functions that can be executed on an image’s
scene graph. Programs are a valuable supervision for VQA models since it enables the model
to convert a natural language question into excutable functions [Andreas et al., 2016, Hu et al.,
2017, Mascharka et al., 2018, Yi et al., 2018]. Such composition of functions provides far better
interpretability than that of models which interact with raw sensory data (i.e., natural supervisions).

However, since programs are generally disentangled from scene graphs, their supervision can keep
the model from learning to skip unnecessary steps as we discussed in the introduction. This problem
can be handled by only giving the model optimal programs. Synthetically generated dataset such as
CLEVR [Johnson et al., 2017] pruned out suboptimal programs like shown in Figure 1 by inspecting
their related scene graph. However, even such pruning requires a perfect scene graph, which is
not available in real-world datasets. Therefore the programs provided in real-world VQA datasets
such as GQA [Hudson and Manning, 2019] are inherently suboptimal since they are generated from
approximate scene graphs.

Object Mask The other thing that makes solving VQA hard is that each node in the scene graph
corresponds to a different group of pixels. Object masks help the model locate nodes (i.e., objects) of
the scene graph before the reasoning steps (i.e., program execution). Well annotated masks relieve
the model from finding objects and allow them to solely concentrate on reasoning.

Yi et al. [2018] generated object masks for the CLEVR dataset using its scene graph, and used them
as supervisory signals for inferring the scene graph. In the specific setup of CLEVR, they achieved
near perfect performance (99.8%). Such result shows that object masks and their corresponding
inference module such as Mask R-CNN [He et al., 2017] are enough to build an exact scene graph
in synthetically generated images. However, annotating object masks and their scene graphs for
real-world images is still an open problem.

B Implementation Details

To solve the initial value problem of the ODE, we used torchdiffeq [Chen et al., 2018]. For
designing and accelerating the computation graph of the model, we used pytorch 1.0.1 [Paszke et al.,
2017] with CUDA 9.2 on an Nvidia V100 GPU. Every experiment was performed with five different
initial seeds by fixing the inital seed with manual_seed() for python, pytorch, and numpy.

We used the Adam optimizer [Kingma and Ba, 2014] with learning rate 1e-4 for all experiments, and
halved the learning rate whenever the validation accuracy stopped improving for more than one epoch.
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We trained using batches of 64 training data and terminated training when the learning rate went
under 1e-7. The size of all hidden dimensions was fixed to 512 except for the word embedding layer,
which was 300. All weights for the affine transformation were initialized with xavier initialization
[Glorot and Bengio, 2010], and word embeddings were initialized to random vectors using a uniform
distribution following the settings of MAC.

C Experiments on GQA
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Figure 7: A graphical description of how attention maps change in MAC and DAFT MAC for a GQA
example. The given question is "do you see either any mirrors or benches?". Attention maps of
12-step (a) MAC and (b) DAFT MAC are shown. In both textual and visual, DAFT MAC’s attention
changes from mirrors to benches smoothly.
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Figure 8: Comparison of GQA mean TLT and its 95% confidence interval (N “ 5) between MAC
and DAFT MAC with varying reasoning steps.

The GQA [Hudson and Manning, 2019] dataset is a real-world VQA dataset where all questions are
generated compositionally by injecting scene graph information into question templates. Although
it shares most details with CLEVR dataset, its questions are far less complex than that of CLEVR.
Creating complex questions in GQA is challenging because while each of its images typically contain
objects from many different classes, the number of objects for each class is small.
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Figure 9: Comparison of overall GQA mean ac-
curacy and its 95% confidence interval (N “ 5)
between MAC and DAFT MAC with varying rea-
soning steps.

On the other hand, an image in the CLEVR
dataset contains few classes of objects, but the
number of objects per class is large; this enables
CLEVR to make compositionally complex ques-
tions. In Figure 7, we compare the attention
maps of MAC and DAFT MAC just as we did
in Figure 4.

Figure 8 shows the TLTs of the two methods on
the GQA dataset while varying reasoning steps.
Compared with Figure 5, one can see that the
TLT of GQA is far less than that of CLEVR.
This confirms that questions of GQA is indeed
less complex than that of CLEVR.

Figure 9 shows accuracies of MAC and DAFT MAC when evaulated on the GQA dataset. As shown
in the figure, there is not much difference in accuracy across step sizes for both MAC and DAFT
MAC. It tells us that 2-step is roughly enough, as 4-step MAC in CLEVR did. We would like to
note that we observed many runs that achieve over 54% validation accuracy (which matches with
the accuracy Hudson and Manning [2019] reported) for some periods. However, the accuracies
fall shortly after the peak and converged in reported accuracies. Since we reported all accuracies
and TLTs with the model which passed through full training session as mentioned in Appendix B
throughout the paper, we report the results of GQA in the same manner.

D Additional Figures
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Figure 10: Growth of the Number of Function Evaluation (NFE) for 4-step DAFT MAC as training
progresses. Mean value and 95% confidence interval (N “ 5) are denoted as line and gradation.

3



3 4 5 6 8 12 16 20 30

0.2

0.4

0.6

M
ea

n
gr

ow
th

of
T

LT
MAC*

DAFT MAC

Figure 11: Mean growth of TLT that starts from 2-step. Bars denote arithmetic mean value of given
interval. For example, the bar at 12 represents TLT12´TLT2

10 . The figure is linked with Figure 5.
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Figure 12: Attention maps from the other four 12-step MACs initialized with different seeds,
distributed over question "Are there more green blocks than shiny cubes?". All of them perform
similiarly to the model used in Figure 4 in terms of CLEVR validation accuracy.
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Figure 13: Attention maps from the other four 12-step DAFT MACs initialized with different seeds,
distributed over question "Are there more green blocks than shiny cubes?". All of them perform
similiarly to the model used in Figure 4 in terms of CLEVR validation accuracy.
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Figure 14: Interpolation in-between steps. Since the solution of IVP is a continuous function of
time, we can get a attention map for any given intermediate time value. This fact enables infinitely
fine-grained interpolation. Also note that this is not a linear interpolation, see how the attention on
many reaches a maximum around 5.2 instead of on either end.
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Figure 15: Attention maps of 8-step MAC, distributed over question "How many objects are balls
behind the big brown object or blue matte balls behind the cyan matte ball?". This model achieves
99% CLEVR validation accuracy.
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Figure 16: Attention maps of 8-step DAFT MAC, distributed over question "How many objects are
balls behind the big brown object or blue matte balls behind the cyan matte ball?". This model
achieves 99% CLEVR validation accuracy.
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Figure 17: Attention maps of DAFT MAC with 2 to 6 steps, distributed over the very long question
"How many objects are either big things that are on the left side of the small brown metallic cube or
rubber things that are on the right side of the tiny blue rubber thing?". Note that these five models are
seperately initialized and thus have totally different parameters. The order of transition is unchanged
among these completely separate models with different expressive power.
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Figure 18: Accompanying image attention maps for Figure 17.
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