S Supplementary Material

5.1 Auxiliary Lemmas

The next lemma shows smoothness properties of the softmax function.
Lemma 2. Let h; (¢) = < and h(x) = (hy (), ..., hi (x)). Then for any © € R¥ and
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where (a) follows since Z]K=1 e %A < ZJK=1 e % and (b) since 1 —xz < e " forall z > 0.
We also have for all z € R¥ and A € Rf that
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where (a) follows since e % > e~ %i~2J and (b) since 1 — z < e~ * for all z > 0. Combining the
two inequalities we conclude that
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where (a) follows since (30) and (31) show that for all %
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and (b) follows since Zfil h; (x + A) = 1 by definition. O
The next lemma analyzes the contribution of the “no-delay” term to the expected regret.

Lemma 3. Let 1, be a non-increasing a sequence of step sizes. Let {lgl) } be a cost sequence such

that lii) € [0,1] for every t,i. Let {d:} be a delay sequence such that the reward from round t is
received at round t + dy. Let Sy be the set of costs (feedback samples) received at round t. Then
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Proof. Define s_, s, as the steps a moment before and after using the feedback from round s,
respectively. These steps are taking place in round ¢ if s € S, and p, _is the computed probability

~ (i ~ (at)
vector at s_. Define ® (t) = —In (Zfil e Lt )) and [, = (O, ., l(af) , ...,O>. We have

ZK e—ifjj ol K .
D(sy)—P(s-)=—In i=1 — =—In (Zpgl)e—nsl; ) >
i=1

(4)
Zf:l et (a)

K N 1 ~ 2
~In (gp“ (1 —nd + 5z (I87) )) )
Koo 2 ) (i)
n (1 7Zp§7) <nsl§ 2,}3 (ls ) )) > quzm Zp.(f,) (zgn) (35)
i=1 '

where (a) follows since e™" < 1 — x + x and (b) since In (1 — z) < —z. Taking the expectation
on both sides of (35) yields
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where (a) uses p ) e Fs_ and (b) uses pg ) e F,_ (since s < s_) together with the fact that [’ 10N

()
l( 5 with probability pg ") and zero otherwise. Note that as is independent of F_ since by definition

the feedback from a, was not received until round s_. Hence, by iterating (36) over s we obtain
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where s € St is the last feedback to be updated at round 7. Now we upper bound ¢ (S;) - (1).
We have for every ¢

_i@
E®(sf) - @ (1)} = -E*{In Ze I (g)
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where (a) follows by omitting positive terms from ZZK:1 e and (b) since we are adding ntlgi)
(positive) terms of rounds whose feedback was not received before round 7. Combining (37) and

(38), we obtain for all i =1, ..., K
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The next lemma is necessary to analyze the contribution of the “delay term” to the expected regret.

Lemma 4. Let {1} be a non-increasing positive sequence. Let d; be the delay of the cost of the
action at round t. Let S, be the set of feedback samples received at round t, and define Sy ; =
{r € 8;r < s}, which is the set of feedback samples that the algorithm uses before the feedback
Sfrom round s is used. Define the set M of all samples that have not been received by round T'. Then

T t—1
DD | Do DY ma | <23 nide (40)

t=1 seS; qESt s r=s q€S; tgM

Proof. The quantity Qs; = Y ges, Mg+ Zi;ls >_qes, Tq is @ weighted count of the number of
feedback samples received and used between round s and round ¢, before the feedback from round

s is used. We want to upper bound ZtT:I > ses, NMs@s,¢ for all possible delay sequences {d;}. We
do so by (over) counting the number of appearances of each feedback from the T" feedback samples,
in the different Q5 ; “buckets”. There are two possible cases of feedback samples being counted, so

: _ 0l 2
we write Qs ¢ = Q5 + Q5 -

e A feedback from g > s is received and used before s is used: there are a maximum of
d feedback samples of this type that can each contribute 1, < ny with ¢ > s to Q;t for

s € & (since 7 is non-increasing). We over count them by giving each Q;,t term all of its
ds possible samples of this type. So

T T
SN 0@l <> nZde =" nidi. 1)

t=1 s€S; t=1 s€S; t¢g M

e A feedback from ¢ < s is received and used before s is used: the samples from round ¢ can
contribute to a maximum of d, different Q?yt terms, all with s > ¢. This follows simply
because the feedback from ¢ is not received before ¢ 4 d,. Denote by I, the set of rounds
s such that the samples from round ¢ contribute to szt. Then

T
ZZnsQif—ZZnnqé PR ALV A (42)

t=1 seS; qé./\/l sel’y q¢M q¢EM

where (a) follows since only rounds ¢ whose feedback is received sometime before 1" are
counted in Qit for some s, t. Inequality (b) uses n? < 773 since 7); is non-increasing and
s> qforall s € T,

Adding (41) and (42) we obtain (40). ]

5.2 Proof of Theorem 2

Proof. Define M. as the set of feedback samples for costs in epoch e that are not received within
epoch e. Denote by T, = max 7 the last round in 7. Note that 7 is the set of consecutive rounds

fromT,_1+1toT.. Every round ¢t € T, suchthatt ¢ M, contributes exactly d; to ZZ;Tkl 1My
since the ¢-th feedback is missing for d; rounds some time between 7,1 + 1 and 7,. Therefore

Te
Yoo Y omp <2 (43)

teTo tEM, T=Te_1+1 (@)

where (a) uses that if Zfe:Te_lJrl my > 2¢" L then 327 m, > 2671 42671 = 2¢ 50 epoch e 4 1
should have been already started. We apply Theorem 1 separately on every epoch, which yields

az) () In K K
{Zl manl }<+77@ E\Te‘-i—‘l Z di | +|Me|. (44)

teT. teTe teTe t¢Me
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Now we want to find the maximal |M.| such that ZZ;TE_l 41my < 2¢71 s still possible. The
“cheapest” way to increase |M.| is when the feedback from round T is delayed by one (con-
tributes 1 to ZZ;THI 11 m.), the feedback from round 7. — 1 is delayed by two (contributes 2 to

ZZ;THI 41 M) and so on, which gives
[Me|
M| (IM, 1 _ e
3 im MM e gy <08 (45)
i=1
so by choosing 1. = ng we obtain

e e K e
Re < VInK | 22 4275 | o [Te| +4 >oodi| | +27 <
teT. tdM. (a)

3-25VInK + 275 YT | KVIn K + 25 (46)

where (a) follows from (43). Denote the last epoch by E. Hence, we conclude that

E B E
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where in (a) we used that
T T T Tg
ZdtZZmin{th—t—i-l]»:thZthEQE_l (48)
t=1 t=1 t=1 t=1

and also that Zle |7e| 27 % subject to ZeEzl |7c| = T is maximized when there are only [log, T']
epochs with length 2¢ to epoch e (maximal length possible), so

E
D oITel 2™
e=1

[log, T [logay T']
22

1
< 25 <V2T————— <5VT (49)
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5.3 Proof of Theorem 3

Proof. We need to show that (P, §r) converges in L' to the set of NE of the game as 7' — oc. Let
€ > 0. Define the ergodic average of the value of the game by

T
T — o= U (P ay)
T= T
Zt:1 Tt
By using EXP3 with cost sequence lff% = U (i,q,) we know from Lemma 1 that the row player

guarantees that for any column strategy, in particular g,, and any row strategy p, possibly random,
we have

T T T
K
E“{Zm (U(pt,qt)U(p,qt))} SWEK Y g +4Y nidy+ Yy w51
t=1 t=1 t=1

teMr

: (50)
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where the set of missing samples is M" = {t |t + d] > T'}. Define t* (') = min M", and note
thatt* (T)) — oo as T — oo since t +dj > t, and f () = ¢ is increasing. Since 7; is non-increasing
then
Z ne < M ne=ry < (T = (T) + 1) o= () < di ()N (1) - (52)
temMr
Therefore there exists a 77 > 0 such that for all 7" > T}

T
Ee {UT—U(p qT)} . Zt:l Mt (U (ptaqt) 7U(p7qt)) <
POHRL (a)
d:*(T)nt*(T) +In K + % ZtT:1 n + 42?:1 npdy

<
b

13
5 (83)
23121 ui 2

where (a) is (51) and (b) follows since djn; — 0 ast — 0o, Yo mr = oo and Y2, din? < .

By also using EXP3 with cost sequence ZSQ =1-"U(p,,J), we know from Lemma 1 that the
column player guarantees that for any row strategy, in particular p, and any column strategy g,
possibly random, we have

T T T
K
E“{Zm (U (ps,q) —U(pt,qt))} SIK -+ g +4Y nidi+ Y me (59
t=1 t=1 t=1

teMe

—~
=

Therefore there exists a To > 0 such that for all T' > T

E° {23:1 0t (U (P, q) — U (py, Qt))}

E® {U (Pr,q) — UT} = ZT p (S)
t=1"It @
df*(T)nt*(T) +In K+ % 23:1 i+ 42;11:1 nids < € (55)
23:1 Tt (E) 2

where (a) is (54) and (b) follows since d;n; — 0 as t — oo, Zfil 7y = 00 and Ztoil dsn? < oo.

Now, define pr as the best-response to g, which is a random vector that is a function of the random

vector g
b

pr = argminU (p', gr) (56)
p/
together with qu, the best-response to pr, which is a random vector that is a function of the random
vector pp:
qr = argmaxU (pr,q). (57)
q/
Hence, by choosing p = p%., ¢ = @ in (53) and (55) and adding them together we conclude that
forall T > max {T1,T>}

b = B (U~ U (@) 5 (U rar) - T} <

(58)
where (a) follows since U (P, @) > U (P, @r). By choosing instead p = pp, ¢ = ¢’ in (53)
and (55) and adding them together we conclude that for all T > max {77, T2}

E* {‘U (Pr.ar) — HEHU (p',dr)

} = B {Ur~ U prap)}+E {U (pr.dy) - Ur} < ¢

(59)
where (a) follows since U (py, @r) < U (Pr,q%). Equations (58) and (59) show that (pp, @r)
is in V. in the L' sense. Since ¢ > 0 is arbitrary, and . is monotonically decreasing to Ny as
e — 0, we conclude that (P, @) converges in L' to N, which is the set of NE of the game. By
Markov’s inequality, it follows that (P, §;) converges in probability to the set of NE. Since U is
linear, U (P, @) converges to the value of the game O

E* {‘U (Pr.dr) — H;%XU (Pr,q')
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