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Abstract

Consider a player that in each of T rounds chooses one of K arms. An ad-
versary chooses the cost of each arm in a bounded interval, and a sequence
of feedback delays {dt} that are unknown to the player. After picking arm
at at round t, the player receives the cost of playing this arm dt rounds
later. In cases where t + dt > T , this feedback is simply missing. We
prove that the EXP3 algorithm (that uses the delayed feedback upon its ar-

rival) achieves a regret of O
(√

lnK
(
KT +

∑T
t=1 dt

))
. For the case where∑T

t=1 dt and T are unknown, we propose a novel doubling trick for online
learning with delays and prove that this adaptive EXP3 achieves a regret of

O

(√
lnK

(
K2T +

∑T
t=1 dt

))
. We then consider a two player zero-sum game

where players experience asynchronous delays. We show that even when the de-
lays are large enough such that players no longer enjoy the “no-regret property”,
(e.g., where dt = O (t log t)) the ergodic average of the strategy profile still con-
verges to the set of Nash equilibria of the game. The result is made possible by
choosing an adaptive step size ηt that is not summable but is square summable,
and proving a “weighted regret bound” for this general case.

1 Introduction

Consider an agent that makes T sequential decisions from a set ofK options (i.e., arms), where each
decision incurs some cost. The cost sequences are chosen by an adversary that knows the agent’s
strategy. The agent’s goal is to minimize this cost over time. In the full information case the agent
gets to know the cost of all arms after choosing a single arm. A more challenging case is the bandit
feedback one, where the agent only observes the cost of the chosen arm. In this paper, we consider
the bandit feedback case. The question of what the agent learns about the costs (i.e., full information
or bandit) naturally influences the best performance the agent can guarantee. Another fundamental
question is when the agent gets to know the cost.

An online learning scenario with no delays means that the agent always knows how beneficial all
the past actions were when making the current decision. This is rarely the case in practice, where
many decisions have to be made before all the feedback from past choices is received. Determining
the feedback in practice is not always straightforward and might involve some computations and es-
timations. Furthermore, the time it takes to receive the feedback varies between different decisions
and times. All of these effects are accentuated when an adversary has control over the feedback
mechanism. Following this reasoning, online learning with delayed feedback has attracted consid-
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erable attention [1–12]. The concept of adversarial delays (i.e., arbitrary delay sequences) was first
introduced in [13], for the full information case and under the assumption that all feedback is re-
ceived before round T (which we do not make here). The first goal of this paper is to address the
more challenging bandit cost scenario.

When there is no delayed feedback, EXP3 [14–16] is the state-of-the-art algorithm for adversarial
online learning with bandit feedback. In EXP3, the agent keeps a weight for each arm, and picks
an arm at random with a probability that is proportional to the exponents of the weights. When a
cost l(i) is incurred for choosing arm i, which was picked with probability p(i), l

(i)

p(i)
is added to the

weight of this arm. The idea is that on average over the randomness of the decisions, the weights
are adjusted with the vector of costs

(
l(1), ..., l(K)

)
. With no delays, the expected regret of EXP3 is

O
(√

TK lnK
)

. Having a sublinear regret, the average regret per round goes to zero as T → ∞,
which is known as the “no-regret property” [17].

Our first main contribution in this paper is to show that with an arbitrary sequence of delays dt,

EXP3 achieves an expected regret of O
(√

lnK
(
KT +

∑
t/∈M dt

)
+ |M|

)
, where M is the set

of rounds whose feedback is not received before round T . This expression makes clear which delay
sequences will maintain the no-regret property and which will lead to linear regret in T .

An omnipotent adversary represents the embodiment of the agent’s worst fears when learning to
optimize its decisions in an unknown environment. An algorithm with performance guarantees in
this worst case scenario is an appealing choice from a designer’s point of view. As such, it is more
likely that the opponents that the agent will face are online learning agents like itself, which have
limited knowledge and power. These agents have interests of their own, but in the worst case these
interests are in a direct conflict with those of our agent. Therefore, zero-sum games are the natural
framework to analyze the outcome of an interaction against another agent instead of against an all
powerful adversary. Interestingly enough, it turns out that with delayed feedback, the outcome of
playing against another agent can be essentially different from playing against an adversary.

It is well known that when two agents use a no-regret learning algorithm against each other in a
zero-sum game, the dynamics will result in a Nash equilibrium (NE) [18]. To be precise, the ergodic
average strategy converges to the set of NE strategies and the ergodic average cost to the value of
the zero-sum game. The last iterate does not converge in general to a NE, and even moves away
from it [19]. However, the emergence of a NE in a game where such an agent finds itself against
another agent using a no-regret algorithm provides yet another strong evidence for the importance of
the concept of NE. From a more practical point of view, convergence of the ergodic average to a NE
makes no-regret algorithms an appealing way to compute a NE when the game matrix is unknown
and only simulating the game is possible. In such a simulation of an unknown game, bandit feedback
is a more realistic assumption than full information.

With no delays, the only purpose of the step size of the EXP3 algorithm is to minimize the regret.
If the horizon of the game T is unknown, one can use the doubling trick and choose the step sizes
accordingly. With delayed feedback, a varying step-size plays a much more central role. With
delayed feedback, it is not surprising that convergence of the ergodic average to the set of NE is
maintained if the algorithm still has a sublinear regret (asymptotically zero average regret). When
the delays become larger, for example super-linear delays that grow like O (t log t), this is no longer
true and the regret of EXP3 (or any other algorithm) becomes linear in the horizon T .

Our second main contribution in this paper is to show that even with delays that cause a linear regret,
the ergodic average may still converge to the set of NE by using a time-varying step size ηt. This
means that computing a NE using EXP3 is still possible even in scenarios where EXP3 does not
enjoy a sublinear regret (i.e., the no-regret). Since delays are a prominent feature of almost every
computational environment, this is an encouraging finding.

2 EXP3 in Adversarial Bandits under Feedback Delays

Consider a player that at each round t has to pick one out of K arms. Denote the arm the player
chooses at round t by at. The cost at round t from arm i is l(i)t ∈ [0, 1], and let lt =

(
l
(1)
t , ..., l

(K)
t

)
be the cost vector. These costs are arbitrarily chosen by an adversary that knows the player’s strategy
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Algorithm 1 EXP3 with delays

Initialization: Let {ηt} be a positive non-increasing sequence, and set L̃(i)
1 = 0 and p(i)

1 = 1
K for

i = 1, ...,K.
For t = 1, ..., T do

1. Choose an arm at at random according to the distribution pt.

2. Obtain a set of delayed costs l(as)
s for all s ∈ St, where as is the arm played at round s.

3. Update the weights of arm as for all s ∈ St, using

L̃
(as)
t = L̃

(as)
t−1 + ηs

l
(as)
s

p
(as)
s

. (3)

4. Update the mixed strategy

p
(i)
t+1 =

e−L̃
(i)
t∑n

j=1 e
−L̃(j)

t

. (4)

End

in advance. Hence, we can assume that the adversary chooses
{
l
(i)
t

}
t

for each i in advance, knowing
exactly how the player is going to react. The player gets to know the cost of playing at at round t at
the end of the t+ dt − 1 round (i.e., after a delay of dt ≥ 1 rounds), so the feedback is available at
the beginning of round t+dt. The set of costs (feedback samples) received at round t is denoted St,
so s ∈ St means that the cost of as from round s is received at round t. Since the game lasts for T
rounds, all costs for which t+ dt > T are never received. Of course, the value of dt does not matter
as long as t+ dt > T , and these are just samples that the adversary chose to prevent the player from
receiving. We name these costs the missing samples, and denote their set byM.

The player wants to have a learning algorithm that uses the past observations to make good decisions
over time. Denote the vector of probabilities of the player for choosing arms at round t by pt ∈ ∆K ,
where ∆K denotes the K-simplex. This is also known as the mixed strategy of the player. The
performance of the player’s algorithm, or strategy, is measured using the regret. The expected regret
is the total expected cost over an horizon of T rounds, compared to the total cost that would result
from playing the best fixed mixed strategy in all rounds:
Definition 1. The expected regret is defined as:

Ea {R (T )} = Ea

{
T∑
t=1

l
(at)
t −min

i

T∑
t=1

l
(i)
t

}
(1)

where Ea is the expectation over the random actions a1, ..., aT the agent chooses at each round.

At round t, EXP3 (detailed in Algorithm 1) chooses an arm at random according to the distribution
pt that depends on the history of the game. Define the following filtration

Ft = σ ({as | s+ ds ≤ t}) (2)

which is generated from all the actions for which the feedback was received up to round t. Note that
the mixed strategy of the player pt is a Ft-measurable random variable, since pt is a function of all
feedback received up to round t.

Our main result of this section establishes the expected regret bound for EXP3 with delays. Note
that Algorithm 1 is nothing but the obvious variant of EXP3 for the case of delayed feedback.
Therefore, the importance of the following result is in the novel analysis of how delays, which are a
part of every practical system, affect a well-known and widely used algorithm such as EXP3. While
waiting for the delayed feedback, the agent is making decisions that incur a larger regret than in
the usual no-delay case where all the past feedback has been received. The proof of Theorem 1
bounds this addition to the regret. The proof analyzes the novel notion of weighted-regret, given in
the following Lemma. The goal of this more general result is to be both used here and for the proof
of Theorem 3 in the next section.
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Lemma 1. Let {ηt} be a non-increasing step size sequence. Let
{
l
(i)
t

}
be a cost sequence such that

l
(i)
t ∈ [0, 1] for every t, i. Let {dt} be a delay sequence such that the cost from round t is received

at round t + dt. DefineM to be the set of all samples that are not received before round T . Then
using EXP3 (Algorithm 1) guarantees

Ea

{
T∑
t=1

ηtl
(at)
t −min

i

T∑
t=1

ηtl
(i)
t

}
≤ lnK +

K

2

T∑
t=1

η2
t + 4

∑
t/∈M

η2
t dt +

∑
t∈M

ηt. (5)

Proof. Let ei be the pure strategy that picks arm i with probability 1. Then for each i

Ea

{
T∑
t=1

ηtl
(at)
t −

T∑
t=1

ηtl
(i)
t

}
= Ea

{
T∑
t=1

Ea
{
ηtl

(at)
t | Ft

}
−

T∑
t=1

ηtl
(i)
t

}
=

Ea

{
T∑
t=1

ηt 〈lt,pt〉 −
T∑
t=1

ηtl
(i)
t

}
= Ea

{
T∑
t=1

ηt 〈lt,pt − ei〉

}
=

Ea

{
T∑
t=1

∑
s∈St

ηs 〈ls,ps − ei〉

}
+ Ea

{∑
t∈M

ηt 〈lt,pt − ei〉

}
≤
(a)

Ea

{
T∑
t=1

∑
s∈St

ηs 〈ls,ps − ei〉

}
+
∑
t∈M

ηt (6)

where (a) follows from 〈lt,pt − ei〉 ≤ 1, since 0 ≤ l(i)t ≤ 1 for every i.

Define St,s = {r ∈ St; r < s}. This is the set of feedback samples arriving at round t that the
algorithm uses before s. Define s− as the step a moment before using the feedback from round s, so
ps− is the mixed strategy at this moment. Define s+ as the step a moment after using the feedback
from round s. This step is taking place in round t if s ∈ St. We analyze the first term in (6) by
splitting it as follows

Ea

{
T∑
t=1

∑
s∈St

ηs 〈ls,ps − ei〉

}
= Ea

{
T∑
t=1

∑
s∈St

ηs

〈
ls,ps− − ei

〉
+

T∑
t=1

∑
s∈St

ηs

〈
ls,ps − ps−

〉}
(7)

where the first part is interpreted as the regret with no delays, and the second as the regret penalty
the delays incur. From Lemma 3 we have

Ea

{
T∑
t=1

∑
s∈St

ηs

〈
ls,ps−

〉
−

T∑
t=1

ηtl
(i)
t

}
≤ lnK +

K

2

T∑
t=1

η2
t . (8)

Next we analyze the delay term. Let l̃t =

(
0, ...,

l
(at)
t

p
(at)
t

, ..., 0

)
. First note that for all i we have

p
(i)
q− =

e
−L̃(i)

q−∑K
j=1 e

−L̃(j)

q−

, hi

(
L̃q

)
(9)

and p(i)
q+ = hi

(
L̃q− + ηq l̃q

)
, so from Lemma 2 using x = L̃q− and ∆ = ηq l̃q , so h (x) = pq− we

obtain

Ea
{∥∥pq+ − pq−

∥∥
1
| Fq−

}
≤ 2ηqE

a

{
K∑
i=1

p(i)
q− l̃

(i)
q | Fq−

}
=
(a)

2ηq

K∑
i=1

p(i)
q−E

a
{
l̃(i)q | Fq−

}
=
(b)

2ηq

K∑
i=1

p(i)
q− l

(i)
q ≤ 2ηq

K∑
i=1

p(i)
q− = 2ηq (10)
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where (a) uses p(i)
q− ∈ Fq− and (b) uses p(i)

q ∈ Fq− (since q < q−) together with the fact that l̃(i)q is
l(i)q

p
(i)
q

with probability p(i)
q and zero otherwise. Note that aq is independent of Fq− since by definition

the feedback from aq was not received until round q−. Therefore

Ea

{
T∑
t=1

∑
s∈St

ηs

〈
ls,ps − ps−

〉}
=

Ea

{
T∑
t=1

∑
s∈St

ηs

(〈
ls,pt − ps−

〉
+

t−1∑
r=s

〈
ls,pr − pr+1

〉)}
=

Ea


T∑
t=1

∑
s∈St

ηs

〈ls, ∑
q∈St,s

(
pq− − pq+

)〉
+

t−1∑
r=s

〈
ls,
∑
q∈Sr

(
pq− − pq+

)〉 ≤(a)

Ea


T∑
t=1

∑
s∈St

ηs

‖ls‖∞
∥∥∥∥∥∥
∑
q∈St,s

(
pq+ − pq−

)∥∥∥∥∥∥
1

+

t−1∑
r=s

‖ls‖∞

∥∥∥∥∥∥
∑
q∈Sr

(
pq+ − pq−

)∥∥∥∥∥∥
1

 ≤(b)
Ea


T∑
t=1

∑
s∈St

ηs

 ∑
q∈St,s

∥∥pq+ − pq−
∥∥

1
+

t−1∑
r=s

∑
q∈Sr

∥∥pq+ − pq−
∥∥

1

 =

Ea


T∑
t=1

∑
s∈St

ηs
∑
q∈St,s

E
{∥∥pq+ − pq−

∥∥
1
| Fq−

}+

Ea


T∑
t=1

∑
s∈St

ηs

t−1∑
r=s

∑
q∈Sr

E
{∥∥pq+ − pq−

∥∥
1
| Fq−

} ≤(c)
2Ea


T∑
t=1

∑
s∈St

ηs

 ∑
q∈St,s

ηq +

t−1∑
r=s

∑
q∈Sr

ηq

 ≤(d)
4
∑
t/∈M

η2
t dt (11)

where (a) follows from Hölder’s inequality, (b) since
∣∣∣l(i)t ∣∣∣ ≤ 1 for every i and using the triangle

inequality, (c) from (10) and (d) follows from Lemma 4.

Combining (6), (8) and (11) yields, for all i = 1, ...,K

Ea

{
T∑
t=1

ηtl
(at)
t −

T∑
t=1

ηtl
(i)
t

}
≤ lnK +

K

2

T∑
t=1

η2
t + 4

∑
t/∈M

η2
t dt +

∑
t∈M

ηt. (12)

Theorem 1. DefineM to be the set of all samples that are not received before round T . Choose the
fixed step size η =

√
lnK

KT+
∑

t/∈M dt
. Let

{
l
(i)
t

}
be a cost sequence such that l(i)t ∈ [0, 1] for every

t, i. Let {dt} be a delay sequence such that the cost from round t is received at round t+ dt. Then

Ea (R (T )) = E

{
T∑
t=1

l
(at)
t −min

i

T∑
t=1

l
(i)
t

}
≤ O

√√√√lnK

(
KT +

∑
t/∈M

dt

)
+ |M|

 . (13)

Proof of Theorem 1. To obtain Theorem 1, substitute ηt = η in (5) of Lemma 1, and divide both
sides by η:

Ea

{
T∑
t=1

l
(at)
t −min

i

T∑
t=1

l
(i)
t

}
≤ O

(
lnK

η
+ η

(
KT +

∑
t/∈M

dt

)
+ |M|

)
(14)

Then, choosing η =
√

lnK
KT+

∑
t/∈M dt

yields (13).
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It is worthwhile noting that our bound is tighter than O
(√

lnK
(
KT +

∑T
t=1 dt

))
that does not

takeM into account, since counting delays that go beyond round T is redundant. For example, if

dt = t2 then
√∑T

t=1 dt = O
(
T

3
2

)
. Our subsequent Corollary formalizes this intuition.

Corollary 1. Let η =
√

lnK
KT+

∑
t/∈M dt

. Let
{
l
(i)
t

}
be a cost sequence such that l(i)t ∈ [0, 1] for

every t, i. Let {dt} be a delay sequence such that the cost from round t is received at round t + dt.
Then

Ea (R (T )) = Ea

{
T∑
t=1

l
(at)
t −min

i

T∑
t=1

l
(i)
t

}
≤ O


√√√√lnK

(
KT +

T∑
t=1

dt

) (15)

Proof. The m = |M| missing samples (received after T ) contribute at least m(m+1)
2 to the sum of

delays
∑T
t=1 dt (since the best case is when the feedback of T is delayed by one and arrives after T ,

the feedback of T − 1 now has to be delayed by at least 2 to be received after T and so on m times).
Hence√√√√lnK

(
KT +

T∑
t=1

dt

)
≥

√√√√lnK

(
KT +

∑
t/∈M

dt +
m (m+ 1)

2

)
≥
(a)

1

2

√√√√lnK

(
KT +

∑
t/∈M

dt

)
+

1

2

√
lnK

m (m+ 1)

2
≥ O

√√√√lnK

(
KT +

∑
t/∈M

dt

)
+ |M|


(16)

where (a) follows from the concavity of f (x) =
√
x.

The expression in (15) reveals a robustness property of the regret bound of EXP3 under delays.
While the first term in the regret, KT lnK, has a factor of K, the delay term

∑T
t=1 dt does not have

a factor of K. Consider bounded delays of the form dt = K. Then, the order of magnitude of the
regret as a function of T andK isO

(√
TK lnK

)
, exactly as that of EXP3 without delays [14]. For

comparison, consider the full information case where at each round the cost of all arms is received.
Assume that the player uses the exponential weights algorithm, which is the equivalent of EXP3
for the full information case. For the same delay sequence dt = K, exponential weights achieves
a regret bound of O

(√
TK lnK

)
[13],

√
K times worse than the O

(√
T lnK

)
that exponential

weights with no delays achieves. The intuition for this result is that EXP3 already “paid the price”
for using K times less feedback than in the full information case. Depending on less feedback,
EXP3 is inherently more robust to feedback delays.

2.1 Adaptive Algorithm: Doubling Trick with Delays

The step size η =
√

lnK
KT+

∑
t/∈M dt

used in Algorithm 1 requires knowledge of T and
∑T
t=1 dt. With

no delays, the standard doubling trick (see [20]) can be used if T is unknown. However, the same
doubling trick does not work with delayed feedback.We now present a novel doubling trick for the
delayed feedback case, where T and

∑T
t=1 dt are unknown. Define mt as the number of missing

feedback samples at round t, starting from the t-th feedback. The idea is to start a new epoch every
time

∑t
τ=1mτ , that tracks

∑t
τ=1 dτ , doubles. Define the e-th epoch as

Te =

{
t |2e−1 ≤

t∑
τ=1

mτ < 2e

}
. (17)

which is a set of consecutive rounds when the sum of delays is within a given interval. During

the e-th epoch, the EXP3 algorithm using our doubling trick uses step size ηe =
√

lnK
2e . Feedback

6



Algorithm 2 Adaptive EXP3 with delays for unknown T and
∑T
t=1 dt

Initialization: Set L̃(i)
1 = 0 and p(i)

1 = 1
K for i = 1, ...,K. Set the epoch index e = 0 and η0 = 1.

For t = 1, ..., T do
1. Choose an arm at at random according to the distribution pt.

2. Obtain a set of delayed costs l(as)
s for all s ∈ St, where as is the arm played at round s.

3. Update the number of missing samples so far

mt = t−
t∑

τ=1

|Sτ | . (19)

4. If
∑t
τ=1mτ ≥ 2e, then update e = e+ 1 and initialize L̃(i)

t = 0 for i = 1, ...,K.

5. Update the weights of arm as for all s ∈ St such that s ∈ Te using step size ηe =
√

lnK
2e :

L̃
(as)
t = L̃

(as)
t−1 + ηe

l
(as)
s

p
(as)
s

. (20)

6. Update the mixed strategy

p
(i)
t+1 =

e−L̃
(i)
t∑n

j=1 e
−L̃(j)

t

. (21)

End

samples originated in previous epoch are discarded once received. The resulting algorithm is detailed
in Algorithm 2.

The next Theorem shows that thanks to our novel doubling trick, Algorithm 2 achieves the same
regret guarantee (up to a constant) as in Theorem 1, despite the fact that T and

∑T
t=1 dt are un-

known. We conjecture that theK2 factor replacingK can be improved with a more careful analysis.
However, this factor has no effect on the order of the regret when the average delay is larger than
K2.

Theorem 2. Let
{
l
(i)
t

}
be a cost sequence such that l(i)t ∈ [0, 1] for every t, i. Let {dt} be a delay

sequence such that the cost from round t is received at round t+ dt. If player uses Algorithm 2 then

Ea (R (T )) = E

{
T∑
t=1

l
(at)
t −min

i

T∑
t=1

l
(i)
t

}
≤

O


√√√√lnK

(
KT +

T∑
t=1

min {dt, T − t+ 1}

) ≤ O

√√√√lnK

(
K2T +

T∑
t=1

dt

) . (18)

Proof. See Appendix.

3 Two Player Zero-Sum Game with Delayed Bandit Feedback

In this section we consider a two player zero-sum game where both players play according to the
EXP3 algorithm with feedback delays. It is well known that without delays, an algorithm with
sublinear regret such as EXP3, played against itself, will converge to a NE (in the ergodic average
sense) [18]. Our main result in this section, given in Theorem 3, generalizes this statement for the
case of arbitrarily (i.e., adversarially) delayed feedback, and reveals that with delays, convergence
to a NE can occur even without sublinear regret.

7



Let U be the cost matrix, such that when the row player plays i and the column player plays j, the
first pays a cost of U (i, j) and the second gains a reward of U (i, j) (i.e., a cost of −U (i, j)). We
assume without loss of generality that 0 ≤ U (i, j) ≤ 1 for any i, j. Note that if pt, qt ∈ ∆K are
mixed strategies, then we use the convention that

U (pt, j) ,
K∑
i=1

p
(i)
t U (i, j) (22)

and

U (pt, qt) ,
K∑
i=1

K∑
j=1

p
(i)
t q

(j)
t U (i, j) . (23)

Nash Equilibrium (NE) is a key concept in game theory for predicting the outcome of a game. A
NE is a strategy profile (p∗t , q

∗
t ) such that no player wants to switch a strategy given that the other

player keeps his strategy. For our result, we need to define the set of all approximate (and pure) NE:
Definition 2. The set of all ε-NE points is

Nε =

{
(p∗, q∗) |U (p∗, q∗) ≤ min

p
U (p, q) + ε , U (p∗, q∗) ≥ max

q
U (p, q)− ε

}
(24)

and the set of NE points is N0.

The entity that converges to the set of NE in our case is the ergodic average of (pt, qt). For the
special case of ητ = 1

t , the ergodic average of pt is simply the running average of the sequence pt.
Definition 3. The ergodic average of a sequence of distributions pt is defined as:

p̄t ,

∑t
τ=1 ητpτ∑t
τ=1 ητ

. (25)

We say that (p̄T , q̄T ) converges in L1 to the set of NE if

lim
T→∞

arg min
(p∗T ,q∗T )∈N0

E {‖(p̄T , q̄T )− (p∗T , q
∗
T )‖1} = 0 (26)

which also implies that for every ε > 0

lim
T→∞

arg min
(p∗T ,q∗T )∈N0

P (‖(p̄T , q̄T )− (p∗T , q
∗
T )‖1 ≥ ε) = 0. (27)

Our theorem below establishes the convergence of EXP3 versus itself to a NE, even under significant
delays. Note that the convergence of the ergodic mean to the set of NE is in the L1 sense (so also in
probability), which is much stronger than convergence of the expected ergodic mean.
Theorem 3. Let two players play a zero-sum game with a cost matrix U such that 0 ≤ U (i, j) ≤ 1
for each i, j, using EXP3. The step size sequence of both players is {ηt}∞t=1. Let the delay sequences
of the row player and the column player be {drt} , {dct}, respectively. Let the mixed strategies of the
row and column players at round t be pt and qt, respectively. If

1.
∑∞
t=1 ηt =∞.

2. lim
t→∞

ηtd
r
t <∞ and lim

t→∞
ηtd

c
t <∞.

3.
∑∞
t=1 d

r
tη

2
t <∞ and

∑∞
t=1 d

c
tη

2
t <∞.

Then, as T →∞:

1.
(∑T

t=1 ηtpt∑T
t=1 ηt

,
∑T

t=1 ηtqt∑T
t=1 ηt

)
converges in L1 to the set of NE of the zero-sum game.

2. U
(∑T

t=1 ηtpt∑T
t=1 ηt

,
∑T

t=1 ηtqt∑T
t=1 ηt

)
converges in L1 to min

p
max
j
U (p, j) = max

q
min
i
U (i, q), which

is the value of the game.
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Somewhat surprisingly, the delays do not have to be bounded (in t) for the convergence to NE to
hold. Key examples of application of Theorem 3 are:

• For bounded delays drt ≤ D and dct ≤ D for all t:
– For a finite horizon T one can choose ηt = 1√

T
for all t.

– For the infinite horizon case one can choose any ηt such that
∑∞
t=1 η

2
t < ∞ and∑∞

t=1 ηt =∞.

• For unbounded sublinear delays such as drt ≤
√
t and dct ≤

√
t for all t, one can choose

ηt = 1
t2/3

.
• For unbounded superlinear delays such as drt ≤ t log t and dct ≤ t log t, one can choose
ηt = 1

t(log t)(log log t) .

In general, the feedback of the players does not need to be synchronized, and they may have a
completely different sequence of delays.

Next we show that the ergodic average of the EXP3 strategies converges to the set of NE even in a
delayed feedback scenario where EXP3 has linear regret, so the “no-regret” property does not hold.
Proposition 1. Let the mixed strategies of the row and column players at round t be pt and qt,

respectively. There exist {drt , dct}t and a cost sequence
{
l
(1)
t , ..., l

(K)
t

}
t

such that

Ea

{
T∑
t=1

l
(at)
t −min

p

T∑
t=1

p(i)l
(i)
t

}
≥
(

1− 1

K

)
T

2
(28)

but still the step sizes {ηt} for Algorithm 1 can be chosen such that the conclusion of Theorem 3 still
holds (“convergence to NE”).

Proof. Let drt = dct = dt = t and ηt = 1
t log t for all t, for which dtη2

t = 1
t log2 t

so
∑T
t=1 ηt = ∞

,
∑T
t=1 η

2
t < ∞,

∑T
t=1 dtη

2
t < ∞ and lim

t→∞
ηtdt = 0. Hence, Theorem 3 applies and (p̄T , q̄T )

converges in L1 to the set of NE of the game. However, the feedback for the last T
2 rounds is

never received. Therefore, the mixed strategies pt and qt stay constant for all t ≥ T
2 . Consider the

sequence of costs l(i)t = 0 for all i and all t ≤ T
2 and l(1)

t = 0, l(j)t = 1 for all j > 1 and all t > T
2 .

This sequence yields an expected regret of exactly
(
1− 1

K

)
T
2 .

4 Conclusions

In this paper, we analyzed the regret of the EXP3 algorithm subjected to an arbitrary (i.e.,
adversarial) sequence dt of feedback delays. We have shown that the expected regret is

O

(√
lnK

(
KT +

∑T
t=1 dt

))
. This shows that the EXP3 algorithm is inherently robust to de-

lays, since for dt ≤ K the order of magnitude of the regret does not change (as a function of T
and K) from the famous O

(√
K lnKT

)
. We have also proved that the convergence of the ergodic

average to a Nash equilibrium under delays is a more robust property than the no-regret property of
EXP3. The ergodic average converges to the set of Nash equilibria even under super-linear delays
where EXP3 has a linear regret in T . This serves as a concrete example where competing versus
another agent is essentially easier than competing versus an omnipotent adversary, even if the other
agent is not subject to any delays.
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[15] G. Stoltz, “Information incompléte et regret interne en prédiction de suites individuelles,”
Ph.D. dissertation, Université Paris-XI Orsay, Orsay, France, 2005.

[16] S. Bubeck, N. Cesa-Bianchi et al., “Regret analysis of stochastic and nonstochastic multi-
armed bandit problems,” Foundations and Trends R© in Machine Learning, vol. 5, no. 1, pp.
1–122, 2012.

[17] M. Bowling, “Convergence and no-regret in multiagent learning,” in Advances in neural infor-
mation processing systems, 2005, pp. 209–216.

[18] Y. Cai and C. Daskalakis, “On minmax theorems for multiplayer games,” in Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete Algorithms. Society for Industrial
and Applied Mathematics, 2011, pp. 217–234.

[19] J. P. Bailey and G. Piliouras, “Multiplicative weights update in zero-sum games,” in Proceed-
ings of the 2018 ACM Conference on Economics and Computation. ACM, 2018, pp. 321–338.

[20] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K. Warmuth,
“How to use expert advice,” Journal of the ACM (JACM), vol. 44, no. 3, pp. 427–485, 1997.

10


