Comparison to existing literature ($\mathbf{R 1} 1, \mathbf{R 3}$): As for $\mathbf{R 3}$'s major comment, our setting is fundamentally more general than [3], which assumes stochastic and i.i.d. delays, while our delays can be arbitrary. For other literature, [1] assumes a constant delay parameter d. [10] considers stochastic rewards and delays. [11] considers the full information case and not the bandit feedback case. It also assumes that all feedback is received before T, and that $\sum_{t=1}^{T} d_{t}$ is known which we do not assume. Our paper is the first to address adversarial (arbitrary) delays and costs with bandit feedback. Additionally, none of them consider zero-sum games with delays, that we show are surprisingly more robust against delays than the single-agent setting. We now include this discussion, with more details.
Choosing the step size η_{t} when $\sum_{t=1}^{T} d_{t}$ is unknown (R1,R3): We provide Algorithm 2 as an adaptive algorithm that does not require prior knowledge of $\sum_{t=1}^{T} d_{t}$ and T. As shown by the counterexample of $\mathbf{R 3}$, standard doubling trick epochs are not enough. We now address this issue in detail, fixing Algorithm 2 and providing a full proof that a regret of $O\left(\sqrt{\ln K\left(K^{2} T+\sum_{t=1}^{T} d_{t}\right)}\right)$ is achievable even when $\sum_{t=1}^{T} d_{t}$ (and $\left.T\right)$ is unknown, using a novel doubling trick. Let m_{t} be the number of missing feedback samples at time t, (including the t-th feedback). The idea is to start a new epoch every time $\sum_{\tau=1}^{t} m_{\tau}$, that tracks $\sum_{\tau=1}^{t} d_{\tau}$, doubles. Define the e-th epoch as $\mathcal{T}_{e}=$ $\left\{t \mid 2^{e-1} \leq \sum_{\tau=1}^{t} m_{\tau}<2^{e}\right\}$, with step size $\eta_{e}=\sqrt{\frac{\ln K}{2^{e}}}$. Define by \mathcal{M}_{e} the set of feedback samples for costs in epoch e that are not received within epoch e. These feedback samples are discarded once received, and the strategy \boldsymbol{p}_{t} is initialized at the beginning of every epoch. A compact version of the proof is provided next. The K^{2} replacing K, which has no affect when $d_{t} \geq K$, can be improved with a more careful computation. To answer R3, Lemma 3 is a general version of Theorem 1 for any arbitrary non-increasing η_{t}, in particular for any constant η.
Define $T_{e}=\max \mathcal{T}_{e}$, and note that $\mathcal{T}_{e}=\left[T_{e-1}+1, T_{e}\right]$. Applying Lemma 3 on epoch e yields

$$
\begin{equation*}
R_{e} \triangleq E^{a}\left\{\sum_{t \in \mathcal{T}_{e}}\left\langle\boldsymbol{l}_{t}, \boldsymbol{p}_{t}\right\rangle-\min _{i} \sum_{t \in \mathcal{T}_{e}} l_{t}^{(i)}\right\} \leq \frac{\ln K}{\eta_{e}}+\eta_{e}\left(\frac{K}{2}\left|\mathcal{T}_{e}\right|+2 \sum_{t \in \mathcal{T}_{e}, t \notin \mathcal{M}_{e}} d_{t}\right)+2\left|\mathcal{M}_{e}\right| . \tag{1}
\end{equation*}
$$

Now we want to find the maximal $\left|\mathcal{M}_{e}\right|$ such that $\sum_{\tau=T_{e-1}+1}^{T_{e}} m_{\tau} \leq 2^{e-1}$ is still possible. The "cheapest" way to increase $\left|\mathcal{M}_{e}\right|$ is when the feedback from round T_{e} is delayed by one (contributes 1 to $\sum_{\tau=T_{e-1}+1}^{T_{e}} m_{\tau}$), the feedback from round $T_{e}-1$ is delayed by two (contributes 2 to $\sum_{\tau=T_{e-1}+1}^{T_{e}} m_{\tau}$) and so on, which gives $\sum_{i=1}^{\left|\mathcal{M}_{e}\right|} i=\frac{\left|\mathcal{M}_{e}\right|\left(\left|\mathcal{M}_{e}\right|+1\right)}{2} \leq 2^{e-1} \Longrightarrow\left|\mathcal{M}_{e}\right| \leq 2^{\frac{e}{2}}$. Hence, by choosing $\eta_{e}=\sqrt{\frac{\ln K}{2^{e}}}$ we obtain

$$
\begin{equation*}
R_{e} \leq \sqrt{\ln K}\left(2^{\frac{e}{2}}+2^{-\frac{e}{2}}\left(\frac{K}{2}\left|\mathcal{T}_{e}\right|+2 \sum_{t \in \mathcal{T}_{e}, t \notin \mathcal{M}_{e}} d_{t}\right)\right)+2^{\frac{e}{2}+1} \leq 2_{(a)}^{\frac{e}{2}+1} \sqrt{\ln K}+2^{-\frac{e}{2}-1}\left|\mathcal{T}_{e}\right| K \sqrt{\ln K}+2^{\frac{e}{2}+1} \tag{2}
\end{equation*}
$$

where (a) follows since every $t \in \mathcal{T}_{e}$ s.t. $t \notin \mathcal{M}_{e}$ contributes d_{t} to $\sum_{\tau=T_{e-1}+1}^{T_{e}} m_{\tau}$ (the t-th feedback is missing for d_{t} rounds between $T_{e-1}+1$ and T_{e}. Therefore $\sum_{t \in \mathcal{T}_{e}, t \notin \mathcal{M}_{e}} d_{t} \leq \sum_{\tau=T_{e-1}+1}^{T_{e}} m_{\tau} \leq 2^{e-1}$. We conclude that

$$
\begin{align*}
& E\{R(T)\}=\sum_{e=1}^{E} R_{e} \leq 2(\sqrt{\ln K}+1) \sum_{e=1}^{E} 2^{\frac{e}{2}}+\frac{K}{2} \sqrt{\ln K} \sum_{e=1}^{E}\left|\mathcal{T}_{e}\right| 2^{-\frac{e}{2}} \leq 2 \sqrt{2}(\sqrt{\ln K}+1) \frac{2^{\frac{E}{2}}-1}{\sqrt{2}-1}+ \\
& K \sqrt{\ln K} \sum_{e=1}^{E}\left|\mathcal{T}_{e}\right| 2^{-\frac{e}{2}} \leq 10(\sqrt{\ln K}+1) \sqrt{\sum_{t=1}^{T} d_{t}}+5 K \sqrt{T \ln K}=O\left(\sqrt{\ln K\left(K^{2} T+\sum_{t=1}^{T} d_{t}\right)}\right) \tag{3}
\end{align*}
$$

where E is the last epoch and in (a) we used that $\sum_{t=1}^{T} d_{t} \geq \sum_{t=1}^{T} \min \left\{d_{t}, T-t+1\right\}=\sum_{t=1}^{T} m_{t} \geq \sum_{\tau=1}^{T_{E}} m_{\tau} \geq$ 2^{E-1}, and also that $\sum_{e=1}^{E}\left|\mathcal{T}_{e}\right| 2^{-\frac{e}{2}}$ subject to $\sum_{e=1}^{E}\left|\mathcal{T}_{e}\right|=T$ is maximized when $E=\left\lceil\log _{2} T\right\rceil$, with maximal length 2^{e} for epoch e, so $\sum_{e=1}^{E}\left|\mathcal{T}_{e}\right| 2^{-\frac{e}{2}} \leq \sum_{e=1}^{\left\lceil\log _{2} T\right\rceil} 2^{\frac{e}{2}} \leq \sqrt{2} \frac{2^{\frac{\left\lceil\log _{2} T\right\rceil}{2}}-1}{\sqrt{2}-1} \leq 5 \sqrt{T}$.
Unbounded delays (R1): We mean that Theorem 2 holds even for some unbounded delays s.t. $d_{t} \leq f(t)$ for increasing $f(t)$ (e.g., $f(t)=t \log t) . f(t)=e^{t}$, or even $f(t)=t^{2}$ grow too fast. This is better explained now.
Ergodic Average (R1): This is a weighted average that coincides with the standard average for $\eta_{t}=\frac{1}{T}$. Its importance is mostly just being computable, so a computation of a NE is still possible by sampling/simulating the game even with superlinear delays. When $d_{t}=0, \eta_{t}=\frac{1}{T}$ is a valid choice for Theorem 2 which gives the classical result.
No Exploration Term (R1): It was shown that the exploration term of the original EXP3 is not necessary (see "Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems" by Bubeck \& Cesa-Bianchi). In any case, our self sufficient proof independently shows that no exploration term is needed. We have now clarified this issue.
Minor Comments (R1,R3): We have fixed all minor issues (a-e for R1, reorganization and line 118 for R3). With some effort, the results are extendable to the continuous case, which is exactly the subject of our current work.

