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Abstract

This paper focuses on the problem of computing an ε-optimal policy in a discounted
Markov Decision Process (MDP) provided that we can access the reward and
transition function through a generative model. We propose an algorithm that is
initially agnostic to the MDP but that can leverage the specific MDP structure,
expressed in terms of variances of the rewards and next-state value function, and
gaps in the optimal action-value function to reduce the sample complexity needed
to find a good policy, precisely highlighting the contribution of each state-action
pair to the final sample complexity. A key feature of our analysis is that it removes
all horizon dependencies in the sample complexity of suboptimal actions except
for the intrinsic scaling of the value function and a constant additive term.

1 Introduction

A key goal is to design reinforcement learning (RL) agents that can leverage problem structure to
efficiently learn a good policy, especially in problems with very long time horizons. Ideally the RL
algorithm should be able to adjust without apriori information about the problem structure. Formal
analyses that characterize the performance of such algorithms yielding instance-dependent bound
help to advance our core understanding of the characteristics that govern the hardness of learning to
make good decisions under uncertainty.

Though there is relatively limited work in reinforcement learning, strong problem-dependent guar-
antees are available for multi-armed bandits. In particular, well known bounds for online learning
scale as a function of the gap between the expected reward of a particular action and the optimal
action [ABF02] and also on the variance of the rewards [AMS09]. In the pure exploration setting
in bandits, which is related to the setting we consider in this paper, there exist multiple algorithms
with problem-dependent bounds [EMM06; MM94; MSA08; Jam+14; BMS09; ABM10; GGL12;
KKS13] of this form. Ideally the complexity of learning to make good decisions in reinforcement
learning tasks would scale with previously identified quantities of gap and variance over the next
value function. As a step towards this, in this paper we introduce an algorithm for an RL agent
operating in a discrete state and action space that has access to a generative model and can leverage
problem-dependent structure to have strong instance-dependent PAC sample complexity bounds
that are a function of the variance of the rewards and next state value functions, as well as the gaps
between the optimal and suboptimal state-action values. While the sequential setting brings additional
difficulties due to possibly long horizon, our bounds also show that in the dominant terms, our
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approach avoids suffering any horizon dependence for suboptimal actions beyond the scaling of the
value function. This significantly improves in statistical efficiency over prior worst-case bounds for
the generative model case [GMK13; Sid+18] and matches existing worst-case bounds in worst-case
settings.

To do so we introduce a novel algorithm structure that acquires samples of state-action pairs in
iterative rounds. A slight variant of the well known simulation lemma (see e.g. [KMN02]) suggests
that in order to improve our estimate of the optimal value function and policy, it is sufficient to ensure
that after each round of sampling, the confidence intervals shrink over the MDP parameter estimates
of both the state–action pairs visited by the optimal policy and the state–action pairs visited by the
empirically-optimal policy. While of course both are unknown, we show that we can implicitly
maintain a set of candidate policies that are ε-accurate, and by ensuring that we shrink the confidence
sets of all state–action pairs likely to be visited by any such policy, we are also guaranteed (with
high probability) to shrink the confidence intervals of the optimal policy. Interestingly we can show
that by focusing on such state–action pairs, we can avoid the horizon dependence on suboptimal
actions. The key idea is to take into account the MDP learned dynamics to enforce a constraint on
the suboptimality of the candidate policies. The sampling strategy is derived by solving a minimax
problem that minimizes the number of samples to guarantee that every policy in the set of candidate
policies is accurately estimated. Importantly, this minimax problem can be reformulated as a convex
minimization problem that can be solved with any standard solver for convex optimization.

Our algorithmic approach is quite different from many prior approaches, both in the generative
model setting and the online setting. When a generative model is available, the available worst-case
optimal algorithms [AMK12; Sid+18] allocate samples uniformly to all state and action pairs. We
show our approach can be substantialy more effective for general case of MDPs with heterogeneous
structure, and even for the pathologically hard instances because of the reduced horizon dependence
on suboptimal actions. Note too that our approach is quite different from online RL algorithms that
often (implicitly) allocate exploration budget to state-action pairs encountered by the policy with
the most optimistic upper bound [JOA10; AOM17; OVR13; DB15; DLB17; SLL09; LH14], since
here we explicitly reason about the reduction in the confidence intervals across a large set of policies
whose value is near the empirical optimal value at this round.

2 Notation and Preliminaries

We consider discounted infinite horizon MDPs [SB18], which are defined by a tuple M =
〈S,A, p, r, γ〉, where S and A are the state and action spaces with cardinality S and A, respec-
tively. We denote by p(s′ | s, a) the probability of transitioning to state s′ after taking action a in
state s while r(s, a) ∈ [0, 1] is the average instantaneous reward collected and R(s, a) ∈ [0, 1] the
corresponding random variable. The vector value function of policy π is denoted with V π . If ρ is the
initial starting distribution then V (ρ) =

∑
s ρsV (s). The value function of the optimal policy π? is

denoted with V ? = V π
?

. We call VarR(s, a) and Varp(s,a) V
? the variance ofR(s, a) and of V ?(s′)

where s′ ∼ p(s, a). The agent interacts with the MDP via a generative model that takes as input a
(s, a) pair and returns a random sample of the reward R(s, a) and a random next state s+ according
to the transition model s+ ∼ p(s, a). The reinforcement learning agent maintains an empirical MDP
M̂k = 〈S,A, p̂k, r̂k, γ〉 for every iteration/episode k, and the maximum likelihood transition p̂k(s, a)

and rewards r̂k(s, a) have received nksa samples. The V̂ ?k is the empirical estimate using MDP M̂k

of the empirical optimal policy π̂?k. Variables with a hat refer to the empirical MDP M̂k and the
subscript indicates what iteration/episode they refer to. We denote with wπ,ρsa =

∑∞
t=0 γ

t Pr(s, a, t, ρ)
the discounted sum of visit probabilities Pr(s, a, t, ρ) to the (s, a) pair in timestep t if the starting

state is drawn uniformly from ρ and ŵ
π,k,ρ

sa is its analogous on M̂k. We use the Õ(·) notation to
indicate a quantity that depends on (·) up to a polylog expression of a quantity at most polynomial
in S,A, 1

1−γ
1
δ , where δ is the “failure probability”. Before proceeding, we first recall the following

lemma from [GMK13]:
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Lemma 2 (Simulation Lemma for Optimal Value Function Estimate [GMK13]). With probability at
least 1− δ, outside the failure event for any starting distribution ρ it holds that:

(V ? − V̂ ?k )(ρ) ≤
∑
(s,a)

ŵ
π?,k,ρ

sa

(
(r − r̂k)(s, a) + γ(p− p̂k)(s, a)>V ?

)
≤
∑
(s,a)

ŵ
π?,k,ρ

sa CIsa(nksa)

(V ? − V̂ ?k )(ρ) ≥
∑
(s,a)

ŵ
π̂?k,k,ρ

sa

(
(r − r̂k)(s, a) + γ(p− p̂k)(s, a)>V ?

)
≥ −

∑
(s,a)

ŵ
π̂?k,k,ρ

sa CIsa(nksa)

The CIsa(nksa) are Bernstein’s confidence intervals (defined in more details in appendix A) after nksa
samples over the rewards and transitions and are function of the unknown rewards and transition
variances. The proof (see appendix) is a slight variation of lemma 3 in [GMK13].

3 Sampling Strategy Given an Empirical MDP

We first describe how our approach will allocate samples to state–action pairs given a current empirical
MDP, before presenting in the next section our full algorithm.

Lemma 1 suggests that to estimate the optimal value function it suffices to accurately estimate the
(s, a) pairs in the trajectories identified by two policies, namely the optimal policy π? (optimal onM)
and the empirical optimal policy π̂?k (optimal on M̂k). Since π? and π̂?k are unknown (in particular,
π̂?k is a random variable prior to sampling), a common strategy is to allocate an identical number
of samples uniformly [GMK13; Sid+18] so that the confidence intervals CIsa(nksa) are sufficiently
small for all state–action pairs leading to a small |(V ? − V̂ ?k )(ρ)|; from here it is possible to show
that the empirical optimal policy π̂?k can be extracted and that |(V ?− V π̂?k)(ρ)| is also small (so π̂?k is
near-optimal). Therefore, in the main text we mostly focus on showing that |(V ? − V̂ ?k )(ρ)| is small,
and defer additional details to the appendix. The proposed approach is to proceed in iterations or
episodes. In each episode our algorithm implicitly maintains a set of candidate policies, which are
near-optimal, and allocates more samples to the (s, a) pairs visited by these policies to refine their
estimated value. On the next episode those policies that are too suboptimal relative to their estimation
accuracy are implicitly discarded. In particular, the samples are placed in a way that is related to the
visit probabilities of the near-optimal empirical policies in addition to the variances of the reward and
transitions of state–action pairs encountered in potentially good policies.

3.1 Oracle Minimax Program

Suppose we have already allocated some samples and have computed the maximum likelihood
MDP M̂k with empirical optimal policy π̂?k and know that the optimal value function estimate is at
least εk-accurate, i.e., ‖V ? − V̂ ?k ‖∞ ≤ εk. How should we allocate further sampling resources to
improve the accuracy in the optimal value function estimate? The idea is given by the simulation
lemma (lemma 2): in order to see an improvement after sampling (i.e., in the next episode k + 1)
the maximum likelihood MDP M̂k+1 must have smaller confidence intervals CIsa(nk+1

sa ) in the
(s, a) pairs visited by π? and the empirical optimal policy π̂?k+1 on M̂k+1. Both are of course
unknown. However, we introduce the constraint (V̂ ?k − V̂ πk )(ρ) ≤ Cεk that restricts sampling to
Cεk-optimal policies (and starting distributions) on M̂k. Here, C is a numerical constant that will
ensure that π? and π̂?k+1 satisfy this condition and are therefore allocated enough samples. Given C
and εk, the idea is that we should choose a sampling strategy {nsa}sa with high enough samples to

ensure
∑

(s,a) ŵ
π,k+1,ρ

CIsa(nk+1
sa ) ≤ εk+1 for all policies that satisfy (V̂ ?k − V̂ πk )(ρ) ≤ Cεk so that

Lemma 2 ensures |(V ? − V̂ ?k+1)(ρ)| ≤ εk+1 = εk/2. This is equivalent to solving the following1:

Definition 1 (Oracle Minimax Problem).

min
n

max
π,ρ

∑
(s,a)

ŵ
π,k+1,ρ

sa CIsa(nk+1
sa ), s.t. (V̂ ?k − V̂ πk )(ρ) ≤ Cεk,

∑
(s,a)

nsa ≤ nmax. (1)

1For space, we omit the constraint ρs ≥ 0 and ‖ρ‖1 = 1 on the starting distribution.
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Here the vector of the discounted sum of visit probabilities ŵ
π,k+1,ρ

is computable from the linear
system (I−γ(P̂πk+1)>)ŵ

π,k+1,ρ
= ρ and nmax is a guess on the number of samples needed to ensure

that the objective function is ≤ εk/2. We call this problem the oracle minimax problem because it

uses the next-episode empirical visit probabilities ŵ
π,k+1,ρ

which are not known. In addition, it uses
the true variance of the next state value function (embedded in the definition of confidence intervals
CIsa(nksa)). As these quantities are unknown in episode k, the program cannot be solved.

3.2 Algorithm Minimax Program

This section shows how to construct a minimax program that is ‘close’ enough to the Oracle minimax
problem (Equation 1) but is function of only empirical quantities computable from M̂k. The idea
is 1) to avoid using the next-episode empirical distribution ŵ

π,k+1,ρ
and instead use the currently-

computable ŵ
π,k,ρ

and 2) use the empirical variance of the next state value function Varp̂k(s,a) V̂
?
k

instead of the real, unknown variance Varp(s,a) V
?. Estimating the visit distribution ŵ

π,k+1,ρ

accurately leads to a high sample complexity; fortunately we are able to claim that the product
between the visit distribution shift ŵ

π,k+1,ρ − ŵ
π,k,ρ

and the confidence interval vector CIk+1

on the rewards and transitions is already small if policy π has received enough samples along its
trajectories before the current episode. Let us rewrite the objective function of equation 1 as a function
of the visit distribution on M̂k plus a term that takes into account the shift in the distribution from
M̂k to M̂k+1:∑
(s,a)

ŵ
π,k+1,ρ

sa CIsa(nk+1
sa ) =

∑
(s,a)

ŵ
π,k,ρ

sa︸ ︷︷ ︸
Computable

CIsa(nk+1
sa ) +

∑
(s,a)

(ŵ
π,k+1,ρ

sa − ŵπ,k,ρsa )︸ ︷︷ ︸
Shift of Empirical Distributions

CIsa(nk+1
sa )

Lemma 9 in appendix allows us to claim that the rightmost summation above is less than 2Cp(nmin)εk
for both2 π = π? and π̂?k+1. Here Cp(nmin) is defined in appendix A and can be made (see lemma
16) for example < 1/100 by allocating a small constant number of samples Õ(S/(1− γ)2) to each

(s, a) pair3, independent of the desired accuracy εk+1. This way we can ensure that we can use ŵ
π,k,ρ

instead of ŵ
π,k+1,ρ

plus a small correction term� εk.

Now the only quantities that are not known by the algorithm are the variance of the transitions and
rewards that appear in the confidence intervals CIsa(nk+1

sa ). Precisely, to estimate the variance of the
transitions Varp(s,a) V

? in the (s, a) pair, we need to known both the transition probability p(s, a)
and the true value function V ?, both of which are unknown. Fortunately it is possible to use the
empirical transitions p̂k(s, a) and the empirical value function V̂ ?k plus a fast-shrinking (as a function
of the number of samples) correction term. Since this analysis was similarly performed in prior
papers for this setting [GMK13; Sid+18], we defer its discussion to Lemma 11 in the appendix. With
these corrections (Bksa, defined in appendix A, is the variance correction and 2εk/625 accounts for
the distribution shift) we can write the following minimax problem:
Definition 2 (Algorithm Minimax Problem).

min
n

max
π,ρ

∑
(s,a)

ŵ
π,k,ρ

sa (ĈIsa(nk+1
sa ) +Bksa) + 2εk/625

s.t.: (V̂ ?k − V̂ πk )(ρ) ≤ Cεk;
∑
(s,a)

nsa ≤ nmax; (I − γ(P̂πk )>)ŵ
π,k,ρ

= ρ. (2)

Here ĈIsa(nk+1
sa ) are the confidence intervals evaluated with the empirical variances defined in

Appendix A. This program is fully expressed in terms of empirical quantities that depends on M̂k.
As long as a solution to the above minimax program is ≤ εk/2 the oracle objective function will also

2Lemma 9 bounds this term as 2Cp(nmin)επk for π = π?, π = π̂?k+1, respectively; επk is defined in appendix
A and represents the “accuracy” of policy π in episode k. To ensure επk ≤ εk we need an inductive argument
which is sketched out in the main theorem (Theorem 1).

3As we will shortly see, this will contribute only a constant term to the final sample complexity.
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be ≤ εk/2 at the solution of the program (for more details see Lemma 6 in the Appendix). In other
words, by solving the minimax program (def 2) we put enough samples to satisfy the oracle program
1, which ensures accuracy in the value function estimate through Lemma 2.

4 Algorithm

Algorithm 1 BESPOKE

Input: Failure probability δ > 0, accuracy εInput > 0
Set ε1 = 1

1−γ and allocate nmin samples to each (s, a) pair
for k = 1, 2, . . .

for nmax = 20, 21, 22, . . .
Solve the optimization program of definition 7 (appendix)
if the optimal value of the program of definition 7 is ≤ εk

2

Break and return sampling strategy {nk+1
sa }sa

Query the generative model up to nk+1
sa , ∀(s, a)

Compute, π̂?k+1 and V̂ ?k+1

Set εk+1 = εk
2

if εk+1 ≤ εInput
Break and return the policy π̂?k+1

We now take the sampling approach
described in the previous section and
use it to construct an iterative al-
gorithm for quickly learning a near-
optimal or optimal policy given access
to a generative model. Specifically
we present BESt POlicy identification
with no Knowledge of the Environ-
ment (BESPOKE) in Algorithm 1. The
algorithm proceeds in episodes. Each
episode starts with an empirical MDP
M̂k whose optimal value function V̂ ?k
is εk accurate ‖V ? − V̂ ?k ‖∞ ≤ εk un-
der an inductive assumption. The sam-
ples are allocated at each episode k by solving an optimization program equivalent to that in definition
2 to halve the accuracy in the value function estimate, i.e., ‖V ? − V̂ ?k+1‖∞ ≤ εk+1 = εk/2. In the
innermost loop of the algorithm the required number of samples for the next episode is guessed
nmax = 1, 2, 4, 8, . . . , until nmax is sufficient to ensure that the objective function of the minimax
problem of definition 2 will be≤ εk/2; the purpose of the inner loop is to avoid putting more samples
than needed and allows us to obtain the sample complexity result of Theorem 2. In Appendix G we
reformulate the optimization program 2 (described more precisely in Definition 5 in the appendix)
obtaining a convex minimization program that avoids optimizing over the policy and instead works
directly with the distribution ŵ

π,k,ρ
; this can be efficiently solved with standard techniques from

convex optimization [BV04].

Theorem 1 (BESPOKE Works as Intended). With probability at least 1 − δ, in every episode k
BESPOKE maintains an empirical MDP M̂k such that its optimal value function V̂ ?k and its optimal
policy π̂?k satisfy:

‖V ? − V̂ ?k ‖∞ ≤ εk, ‖V ? − V π̂
?
k‖∞ ≤ 2εk

where εk+1
def
= εk

2 , ∀k. In particular, when BESPOKE terminates in episode kFinal it holds that
εInput

2 ≤ εkFinal ≤ εInput.

The proof is reported in the appendix, and shows by induction that for every episode k, π? and
π̂?k+1 are in the set of ‘candidate’ policies because they are near-optimal on M̂k, satisfying (V̂ ?k −
V̂ π

?

k )(ρ) ≤ Cεk and (V̂ ?k − V̂
π̂?k+1

k )(ρ) ≤ Cεk for all ρ and are therefore allocated enough samples;
this guarantees accuracy in V̂ ?k+1 by Lemma 2.

5 Sample Complexity Analysis

To analyze the sample complexity of BESPOKE we derive another optimization program function
of only problem dependent quantities. We 1) shift from the empirical visit distribution ŵ

π,k,ρ
on

M̂k to the “real” visit distribution wπ,ρ onM; 2) move from empirical confidence intervals to those
evaluated with the true variances; and finally 3) relax the near-optimality constraint on the policies by
using Lemma 7 in the appendix (for an appropriate numerical constant C? > C) in order to be able
to use the value functions onM:

(V̂ ?k − V̂ πk )(ρ) ≤ Cεk → (V ? − V π)(ρ) ≤ C?εk, ∀ρ. (3)
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In the end, we have enlarged the feasible set of the algorithm minimax problem while upper bounding
its objective function obtaining:4

Definition 3 (?-Minimax Program).

min
n

max
wπ,ρ

∑
(s,a)

wπ,ρsa (CIsa(nk+1
sa ) + 2Bksa) + εk/25 (4)

subject to the constraints (r ∈ RSA is the reward vector):

(V ? − V π)(ρ)︸ ︷︷ ︸
V ?(ρ)−(wπ,ρ)>r

≤ C?εk;
∑
(s,a)

nsa ≤ nmax; (I − γ(Pπ)>)wπ,ρ = ρ. (5)

This is made rigorous in Lemma 6, but essentially we have obtained a minimax program whose
solution can be studied in terms of problem dependent quantities; in particular, its solution in terms
of number of samples nsa upper bounds the sample complexity of the algorithm in every episode.

Problem Dependent Analysis Due to space constraints, here we sketch the sample complexity

analysis of suboptimal actions to make the gaps ∆sa
def
= V ?(s)−Q?(s, a) appear while simultane-

ously eliminating the horizon dependence. We recall the following (e.g., Lemma 5.2.1 in [Kak+03];
see also our appendix):
Lemma 1 (Sum of Losses). It holds that:

(V ? − V π)(ρ) =
∑
(s,a)

wπ,ρsa (Q?(s, π?(s))−Q?(s, a)︸ ︷︷ ︸
def
= ∆sa

) =
∑
(s,a)

wπ,ρsa ∆sa (20)

Lemma 1 expresses the value of a suboptimal policy as a sum of per-step losses ∆sa weighted by the
discounted sum of probabilities of being in that (s, a) pair. The key step that enables us to obtain
strong problem dependent bounds and to remove the horizon dependence for suboptimal actions is
synthesized in the following short lemma, where we ignore the term (

∑
(s,a) 2wπ,ρsa Bksa + 3εk/625).

Lemma 1 (Gap-Confidence Interval Lemma). If (π, ρ) satisfies (V ?−V π)(ρ) ≤ C?εk then a sample
complexity:

nsa = Õ

VarR(s, a)

∆2
sa

+
1

∆sa︸ ︷︷ ︸
Reward Estimation

+
γ2 Varp(s,a) V

?

∆2
sa

+
γ

(1− γ)∆sa︸ ︷︷ ︸
Transition Estimation

 , ∀(s, a) (6)

suffices to ensure
max
wπ,ρ

∑
(s,a)

wπ,ρsa CIsa(nk+1
sa ) ≤ εk

2
. (7)

Proof. A direct computation shows that if nk+1
sa satisfies equation 6 with appropriate constants5 then:

CIsa(nk+1
sa ) ≤ ∆sa

2C?
. (8)

This justifies the first inequality below:∑
(s,a)

wπ,ρsa CIsa(nk+1
sa ) ≤ 1

2C?

∑
(s,a)

wπ,ρsa ∆sa =
1

2C?
(V ? − V π)(ρ) ≤ 1

2
εk. (9)

The equality follows from lemma 1 and the last inequality from the constraint on the optimality of
π.

4The relaxed optimization program is over the distribution induced by the policy. Here, Pπ is the transition
matrix identified by the policy π onM.

5Note that, in particular, C? is a constant.
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They key idea is that by having confidence intervals of the same size as the gaps is sufficient to
estimate the policy as accurately as its suboptimality gap (V ? − V π)(ρ), regardless of the horizon.
By augmenting this argument with the law of total variance [GMK13], splitting into further subcases,
and by taking into account the correction terms we obtain:

Theorem 2 (Sample Complexity of the Algorithm BESPOKE). With probability at least 1− δ, the
total sample complexity of BESPOKE up to episode k is upper bounded by

∑
(s,a) nsa where nsa is

the total number of samples allocated to the (s, a) pair:

nsa = Õ
(

min
{ 1

(1− γ)3(εk)2
,

VarR(s, a) + γ2 Varp(s,a) V
?

(1− γ)2(εk)2
+

1

(1− γ)2(εk)
, (166)

VarR(s, a) + γ2 Varp(s,a) V
?

∆2
s,a

+
1

(1− γ)∆s,a

}
+

γS

(1− γ)2

)
. (167)

Notice that the BESPOKE would suffer a worst-case sample complexity similar to [GMK13; Sid+18]
only in the initial phases of learning, i.e., whenever εk is much larger than the gaps.

6 Significance of the Bound

We motivate the importance of theorem 2 by specializing the result in two noteworthy cases.

Sample Complexity to Identify the Best Policy and the Worst-Case Lower Bound If the opti-
mal policy is unique, define the minimum gap ∆min = mins,a,a6=π?(a) ∆sa. To identify the optimal
policy we must set εInput ≤ ∆min and the sample complexity of BESPOKE at termination becomes:

Õ

(∑
s

min

{
1

(1− γ)3∆2
min

,
VarR(s, π?(s)) + γ2 Varp(s,π?(s)) V

?

(1− γ)2∆2
min

+
1

(1− γ)2∆min

}
︸ ︷︷ ︸

ESTIMATING π?

+
∑

(s,a)|a6=π?(s)

(
VarR(s, a) + γ2 Varp(s,a) V

?

∆2
sa

+
1

(1− γ)∆sa

)
︸ ︷︷ ︸

RULING-OUT SUBOPTIMAL ACTIONS

+
γS2A

(1− γ)2︸ ︷︷ ︸
CONSTANT

)
(10)

One of our core contributions is that we suffer a dependence on the horizon 1/(1 − γ) only in
estimating the optimal (s, a) pairs (first summation over the state space). The summation over
suboptimal (s, a) is independent of the horizon, although of the horizon implicitly affects the scaling
of the variance Varp(s,a) V

? and explicitly the maximum value function range (term 1/(1− γ)∆sa).

It is important to compare the above result with the established lower bound [GMK13] which
is Ω( N

(1−γ)3ε2 ) to obtain an ε-accurate policy, where N is the number of state-action pairs.
Since ∆sa = ∆min, ∀(s, a), a 6= π?(s) in the lower bound construction and the vari-
ance is maximum Varp(s,a) V

? ≤ 1/(1 − γ)2, we are able to identify the optimal policy

in Õ
(

S
(1−γ)3∆2

min
+ S(A−1)

(1−γ)2∆2
min

+ S2A
(1−γ)2

)
samples which improves6 on the worst case bound

Õ
(

SA
(1−γ)3∆2

min
+ S2A

(1−γ)2

)
of [GMK13; Sid+18] by a full horizon factor for suboptimal actions.

While our result can be surprising at first, it does not contradict the lower bound: the lower
bound makes no attempt to distinguish between optimal and suboptimal actions as it is only ex-
pressed in terms of total (s, a) pairs N , and the construction uses a number of (s, a) pairs that
is a constant multiple of the state space cardinality, i.e., one could only deduce Ω( S

(1−γ)3∆2
min

)

as a lower bound. Our result, therefore, does not violate the lower bound, but rather it shows
that while we must suffer an unavoidable worst-case 1/(1 − γ)3 factor on the state space corre-
sponding to the optimal (s, a) pairs, the dependence on the planning horizon is absent for sub-
optimal (s, a) except for the scaling of the value function implicit in the variance. Surprisingly,
excluding the constant term S2A

(1−γ)2 , suboptimal (s, a) pairs get a combined number of samples

6The paper [Sid+18] has the same bound as [GMK13] but avoids the constant term S2A
(1−γ)2 .
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Õ
(∑

(s,a)|a 6=π?(s)

(
VarR(s,a)+γ2 Varp(s,a) V

?

∆2
sa

+ 1
(1−γ)∆sa

))
which is the sample complexity (ignor-

ing log and constant factors) that a variance-aware bandit algorithm for best arm identification would
need (see e.g., [GGL12], appendix B) to ‘reject’ these suboptimal arms provided that it can obtain
samples7 of the random variable R(s, a) + γV ?(s′), s′ ∼ p(s, a). In this case, however, the V ?
vector would need to be known to the bandit algorithm. In other words, the sample complexity of
BESPOKE at termination consists of two main terms: a leading order term with a dependence on the
state space with an unavoidable (due to the lower bound) dependence on the horizon 1

1−γ , and an
horizon-free bandit-like sample complexity to rule out suboptimal actions as if the optimal value
function V ? was known.

BESPOKE applied to Bandits Finally, if γ = 0 we are in the bandit setting, and the sample
complexity of BESPOKE at step k becomes exactly (since VarR(s, a) ≤ 1):

Õ

∑
(s,a)

(
VarR(s, a)

max{ε2k,∆2
sa}

+
1

max{εk,∆sa}

) ≤ Õ
∑

(s,a)

1

max{ε2k,∆2
sa}

 (11)

This matches the best-known sample complexity bound for best arm identification for tabular bandit
with gaps and variances [ABM10; GGL12] except for constants and log terms. This is encouraging
as it suggests it may be possible to have algorithms with a smooth transition in sample complexity as
a function of the discount factor when moving from a bandit to an RL setting.

7 Related Literature and Conclusion

Related Literature In the more challenging setting of online exploration (i.e., without a generative
model) the PAC literature [DB15; DLB17; LH14; SLL09] directly provides algorithms to identify an
ε-optimal policy with high probability in the worst-case. Gap-aware analyses exists, see for example
[BK97; TB08; OPT18] for asymptotic regret bounds on ergodic MDPs with matching upper and
lower bounds and with an emphasis on the minimum gap; since these analyses look at the asymptotic
regret they are not comparable to the proposal here. Very recently [SJ19] presents a gap-based
non-asymptotic regret bound for episodic MDPs but not yet free of the horizon and dependencies on
∆min. Gaps in MDPS have also been used to justify the observed relation between the value function
accuracy and the resulting policy performance [FSM10]. In addition, [EMM06; Bru10] also propose
an algorithm and PAC bounds that depend the minimum gap, but the results do not leverage recent
advances in tighter sample complexity analysis. [JOA10] presents a regret bound based on the same
quantity. The maximum variance of the next-state optimal value function is discussed in [MMM14;
ZB19].

The closest related work in the PAC setting similarly assumes access to a generative model, and
provides near-matching worst-case sample complexity upper and lower bounds [AMK12] for tabular
MDPs even in terms of computational complexity [Sid+18]. However, this work focuses on near-
optimal worst-case performance: as these algorithms allocate samples uniformly they do not adapt to
the problem structure. Finally, [Aga+19] show how to improve on the constant sample complexity
term for model based approaches like the one we use here; it is possible that their techniques can be
applied to our setting.

Conclusion This work leverages domain structure, notably the action-value function gaps, to
eliminate the impact of the horizon when ruling out suboptimal actions to identify a near-optimal
policy for discounted-reward Markov decision processes using a generative model, except for a
constant term and the inherent value function scaling. This is achieved through a tractable algorithm.
In doing so, our finite time sample complexity analysis quantifies the sample complexity contribution
of each state-action pair as a function of the action-value function gaps and variances of the rewards
and next-state value function, and recovers the best-known bounds (excepts for logs and constants)
when deployed to bandit instances using these quantities.

Our work provides at least two important analytical tools: 1) the way we relate the suboptimality
of the policies with the gaps to reduce the dependence on the horizon is new, and could be used in

7Here, VarR(s, a) + γ2 Varp(s,a) V
? is the variance of the random variable R(s, a) + γV ?(s′) with

s′ ∼ p(s, a). Note the scaling of this random variable, which has range 1
1−γ .
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other settings to make the gap appear while simultaneously reducing the horizon dependence 2) the
way we analyze the visit distribution shift induced by the policies, weighted by the local reward and
transition confidence intervals, and show it is small, is another analytical contribution of our work
which can be extended to the settings where one is interested in obtaining a good policy from a given
starting distribution ρ as opposed to all starting states.
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A Symbols

Table 1: Notation

δ′n
def
= δ

4SAn2

cn
def
= ln(4/δ′n)

ρ
def
= starting distribution

M def
= true MDP

M̂k
def
= empirical MDP at step k

V ?
def
= optimal value function onM

V̂ ?k
def
= optimal value function on M̂k

π?
def
= optimal policy onM

π̂?k
def
= empirical optimal policy on M̂k

wπ,ρsa
def
= visit probability to (s, a) onM upon following π with starting distribu-

tion ρ

ŵ
π,k,ρ

sa
def
= visit probability to (s, a) on M̂k upon following π with starting distribu-

tion ρ

V (ρ)
def
=

∑
i ρiV (si)

∆sa
def
= Q?(s, π?(s))−Q?(s, a)

BI(σ, b, n)
def
=

√
2cnσ2

n + bcn
3(n−1) (Bernstein Inequality)

CIsa(nksa)
def
= BI(VarR(s, a), 1, nksa) + γBI(Varp(s,a) V

?, 1
(1−γ) , n

k
sa)

ĈIsa(nksa)
def
= BI(Var R̂(s, a), 1, nksa) + γBI(Varp̂k(s,a) V̂

?
k ,

1
(1−γ) , n

k
sa)

CIk
def
= Vector containing the CIsa(nksa) values

Bksa
def
= 2cn

(1−γ)(nsa−1) + γ
√

2cn
nsa

εk

Bk
def
= Vector containing the Bksa values

επk
def
= maxρ,ρ≥0,‖ρ‖1=1

∑
(s,a) ŵ

π,k,ρ

sa CIsa(nksa)

C
def
= 20

C?
def
= 2+C

1−Cp(nmin)

Cp(nmin)
def
= γ

(1−γ)

√
2Scn
nmin

n
def
= vector that contains the number of samples to each (s, a), unless it’s a

generic scalar

Ŝk
def
= {π | (V̂ ?k − V̂ πk )(ρ) ≤ Cεk, ∀ρ ≥ 0, ‖ρ‖1 = 1}

Sk
def
= {π | (V ? − V π)(ρ) ≤ C?εk, ∀ρ ≥ 0, ‖ρ‖1 = 1}

nmin
def
= 2×6252γ2Scn

(1−γ)2
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B Standard Concentration Inequalities

Proposition 1 (Bernstein’s Inequality). Let X1, · · · , Xn be i.i.d. random variables with values in
[0, C] and let δ′ > 0. Then with probability at least 1− δ′ in (X1, . . . , Xn) we have:∣∣∣∣∣EX − 1

n

n∑
i=1

Xi

∣∣∣∣∣ ≤
√

2 VarX ln (2/δ′)

n
+
C ln(2/δ′)

3n
. (12)

Proof. See [MP09], Theorem 3.

Corollary 1 (Bernstein’s inequality applied to Transition Probabilities). Let p be a k-dimensional
transition probability vector (such that ‖p‖1 = 1) and let p̂ be its maximum likelihood estimate. Let
δ′ > 0. Then with probability at least 1− δ′ we have:

∣∣∣∣∣p̂i − pi
∣∣∣∣∣ ≤

√
2pi ln (2k/δ′)

n
+

2 ln(2k/δ′)

3n
(13)

where pi is the i-th component of p.

Proof. Immediate from Bernstein’s inequality with the variance pi(1− pi) of a Bernoulli random
variable and a union bound over k.

Proposition 2 (Converge Rate of Empirical Variance). Let V ? be a fixed vector with values in [0, C]
and let δ′ > 0: ∣∣∣√ Var

p̂k(s,a)
V ? −

√
Var
p(s,a)

V ?
∣∣∣ ≤ C√2 ln (2/δ′)

n− 1
. (14)

Proof. See [MP09], Theorem 10.

Proposition 3 (Weissman et al. Inequality). Let p̂ be the maximum likelihood probability vector of
the distribution p obtained by drawing i.i.d. samples from the discrete distribution p with k point
masses, and let δ′ > 0. With probability at least 1− δ′ it holds that:

‖p̂− p‖1 ≤
√

2k log(2/δ′)

n

def
=

√
2kcn√
n

. (15)

Proof. See [Wei+03].

Lemma 2 (Good Event). With probability at least 1− δ the following events holds true for all (s, a)
pairs for all episodes of the algorithm:

|r̂k(s, a)− r(s, a)| ≤

√
2cn (VarR(s, a))

nsa
+

cn
3(nsa − 1)

(16)

| (p̂k(s, a)− p(s, a))
>
V ?| ≤

√
2cn

(
Varp(s,a) V ?

)
nsa

+
cn

3(1− γ)(nsa − 1)
(17)

∣∣∣√ Var
p̂k(s,a)

V ? −
√

Var
p(s,a)

V ?
∣∣∣ ≤ 1

1− γ

√
2cn
n− 1

(18)

‖p̂k(s, a)− p(s, a)‖1 ≤
√

2Scn√
n

(19)

Proof. Using propositions 1,2,3 and corollary 1 with a union bound over the (s, a) pairs and over the
maximum number of samples nsa.
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C Preliminaries

In this section we recall some standard results in reinforcement learning. The results have been
adapted so that they could be expressed in terms of a starting distribution ρ instead of a fixed starting
state.

C.1 Sum of Losses

The lemma below expresses the difference in values between two policies as a sum of the per-step
losses:

Lemma 1 (Sum of Losses). It holds that:

(V ? − V π)(ρ) =
∑
(s,a)

wπ,ρsa (Q?(s, π?(s))−Q?(s, a)︸ ︷︷ ︸
def
= ∆sa

) =
∑
(s,a)

wπ,ρsa ∆sa (20)

Proof. Consider a fixed starting state s. We have that:

(V ? − V π)(s) = r(s, π?(s))− r(s, π(s)) + γp(s, π?(s))>V ? − γp(s, π(s))>V π (21)

= r(s, π?(s))− r(s, π(s)) + γ(p(s, π?(s))− p(s, π(s)))>V ?+ (22)

+ γp(s, π(s))>(V ? − V π) (23)

Induction with a ρ-weighted average over the starting state and the definition of Q? values (and their
gaps ∆sa) conclude the proof.

C.2 Simulation Lemmas

The Simulation Lemma below allows to evaluate policy π on two different MDPs, with the induced
distribution evaluated on the empirical MDP and the value function for the backup on the real MDP.

Lemma 3 (Simulation Lemma). It holds that:

(V̂ πk − V π)(ρ) =
∑
(s,a)

ŵ
π,k,ρ

sa

(
r̂k(s, a)− r(s, a) + γ(p̂k(s, a)− p(s, a))>V π

)
(24)

Proof. From any starting state s:

(V̂ πk − V π)(s) = r̂k(s, a)− r(s, a) + γ(p̂k(s, a)>V̂ πk − p(s, a)>V π) (25)

= r̂k(s, a)− r(s, a) + γ(p̂k(s, a)− p(s, a))>V π + γp̂k(s, a)>(V̂ πk − V π) (26)

Induction and a re-weighting by ρ concludes the proof.

The following lemma is a consequence of a lemma in [AMK12], and explains that to properly estimate
the value function we need to estimate the rewards and transitions accurately only for the optimal
policy and the optimal policy on the empirical MDP. Importantly, the lemma uses the true optimal
value function V ?.

Lemma 2 (Simulation Lemma for Optimal Value Function Estimate [GMK13]). With probability at
least 1− δ, outside the failure event for any starting distribution ρ it holds that:

(V ? − V̂ ?k )(ρ) ≤
∑
(s,a)

ŵ
π?,k,ρ

sa

(
(r − r̂k)(s, a) + γ(p− p̂k)(s, a)>V ?

)
≤
∑
(s,a)

ŵ
π?,k,ρ

sa CIsa(nksa)

(V ? − V̂ ?k )(ρ) ≥
∑
(s,a)

ŵ
π̂?k,k,ρ

sa

(
(r − r̂k)(s, a) + γ(p− p̂k)(s, a)>V ?

)
≥ −

∑
(s,a)

ŵ
π̂?k,k,ρ

sa CIsa(nksa)
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Proof. Lemma 2 in [AMK12] gives (here ŵ
π,k,s0
sa is the discounted sum of visit probabilities upon

starting from s0 and following policy π on the empirical MDP M̂k):

V ?(s0)− V̂ ?k (s0) ≤
∑
(s,a)

ŵ
π?,k,s0
sa

(
r̂k(s, a)− r(s, a) + γ (p̂k(s, a)− p(s, a))

>
V ?
)

(27)

V ?(s0)− V̂ ?k (s0) ≥
∑
(s,a)

ŵ
π̂?k,k,s0
sa

(
r̂k(s, a)− r(s, a) + γ (p̂k(s, a)− p(s, a))

>
V ?
)

(28)

(29)

Outside the failure event (lemma 2) it holds that:

V ?(s0)− V̂ ?k (s0) ≤
∑
(s,a)

ŵ
π?,k,s0
sa CIsa(nksa) (30)

V ?(s0)− V̂ ?k (s0) ≥
∑
(s,a)

ŵ
π̂?k,k,s0
sa CIsa(nksa) (31)

Finally, a weighted sum over the probabilities of starting at each starting state ρs yields the thesis.

Next, we recall the following version of the simulation lemma that expresses the accuracy with which
a generic policy π can be evaluated on the empirical vs real MDP as a function of its distance to the
optimal value function.
Lemma 4 (Simulation Lemma for Policy Estimate). If nmin is the minimum number of samples
allocated to any (s, a) pair then outside of the failure event it holds that:

‖(V̂ πk − V π)‖∞ ≤
∑
(s,a)

ŵ
π,k,ρ

sa CIsa(nksa) + Cp(nmin)‖ (V π − V ?) ‖∞. (32)

Proof. Using the simulation lemma (lemma 3)

(V̂ πk − V π)(ρ) =
∑
(s,a)

ŵ
π,k,ρ

sa

(
r̂k(s, a)− r(s, a) + γ (p̂k(s, a)− p(s, a))

>
V π
)

(33)

=
∑
(s,a)

ŵ
π,k,ρ

sa

(
r̂k(s, a)− r(s, a) + γ (p̂k(s, a)− p(s, a))

>
V ?
)

(34)

+ γ
∑
(s,a)

ŵ
π,k,ρ

sa (p̂k(s, a)− p(s, a))
>

(V π − V ?) . (35)

Notice that we have the following upper bound outside of the failure event:∣∣∣ ∑
(s,a)

ŵ
π,k,ρ

sa

(
r̂k(s, a)− r(s, a) + γ (p̂k(s, a)− p(s, a))

>
V ?
) ∣∣∣ ≤∑

(s,a)

ŵ
π,k,ρ

sa CIsa(nksa). (36)

To bound the second line, if n ≥ nmin we obtain the upper bound (by Holder’s inequality):

≤ γ

(1− γ)
max
(s,a)
‖ (p̂k(s, a)− p(s, a)) ‖1‖ (V π − V ?) ‖∞

def
= Cp(nmin)‖ (V π − V ?) ‖∞. (37)

C.3 Variance Lemma

The lemma below allows to express how much the variance varies when we consider different value
functions.
Lemma 5. For any two random variables V1, V2 it holds that:∣∣∣√Var(V1)−

√
Var(V2)

∣∣∣ ≤ ‖V1 − V2‖2,p ≤ ‖V1 − V2‖∞ (38)

where ‖ · ‖2,p denotes the 2-norm of the random variables (i.e., the second moment) under p and
‖ · ‖∞ is the almost sure upper bound to the random variable.
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Proof. Consider the mean-centered random variables V 1 = V1 − EV1 and V 2 = V2 − EV2. Then:√
Var(V1) =

√
Var(V 1) =

√
E(V 1)2 = ‖V 1‖2,p = ‖V 2 + V 1 − V 2‖2,p (39)

≤ ‖V 2‖2,p + ‖V 1 − V 2‖2,p =

√
E(V 2) +

√
E(V 1 − V 2)2 (40)

=

√
Var(V 2) +

√
E(V1 − V2)2 − (E(V1 − V2))

2 (41)

=
√

Var(V2) +
√

Var(V1 − V2). (42)

where the inequality is Minkowski’s inequality (i.e., the triangle inequality for norm of random
variables).
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D Optimization Programs

In this section we describe the optimization programs that we investigate in this work: (1) the
oracle optimization program, which is directly tied with the accuracy of estimating the optimal value
function on the empirical MDP, (2) the algorithm optimization program, which can be solved using
the empirical quantities and finally (3) the ?-optimization program, function of problem dependent
quantities which can be used to analyze the sample complexity of our algorithm.

D.1 Definitions

Definition 4 (Oracle Minimax Program).
min
n
fO(n)

s.t.
∑
(s,a)

nsa ≤ nmax (43)

where:
fO(n)

def
= max

ρ,π

∑
(s,a)

ŵ
π,k+1,ρ

sa CIsa(nk+1
sa )

s.t. (I − γ(P̂πk+1)>)ŵ
π,k+1,ρ

= ρ∑
s

ρs = 1

ρsa ≥ 0

(V̂ ?k − V̂ πk )(ρ) ≤ Cεk

(44)

Definition 5 (Algorithm Minimax Program).
min
n
fA(n)

s.t.
∑
(s,a)

nsa ≤ nmax (45)

where:
fA(n)

def
= max

ρ,π

∑
(s,a)

ŵ
π,k,ρ

sa (ĈIsa(nk+1
sa ) +Bksa) + 2Cp(nmin)επk

s.t. (I − γ(P̂πk )>)ŵ
π,k,ρ

= ρ∑
s

ρs = 1

ρsa ≥ 0

(V̂ ?k − V̂ πk )(ρ) ≤ Cεk

(46)

The program is solved with επk = εk.
Definition 6 (?-Minimax Program).

min
n
f?(n)

s.t.
∑
(s,a)

nsa ≤ nmax (47)

where:

f?(n)
def
= max

ρ,π

∑
(s,a)

wπ,ρsa
(
CIsa(nk+1

sa ) + 2Bksa
)

+ 15Cp(nmin)επk + 8Cp(nmin)εk

s.t. (I − γ(Pπ)>)wπ,ρ = ρ∑
s

ρs = 1

ρs ≥ 0

(V ? − V π)(ρ) ≤ C?εk

(48)
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Similarly as above, επk = εk when computing the sample complexity because the program of
definition 5 is solved with επk = εk.

D.2 Relation Between the Optimization Programs

In this section we investigate the relation between the three optimization programs (oracle, algorithm
and ?). In particular, we show that we can upper bound the objective function of the inner maximiza-
tion program and enlarge its feasibility set as we move from the oracle to the algorithm and finally to
the ? program. This ensures that the outer minimization is minimizing a function that is increasingly
larger (when moving from the oracle to the algorithm and finally to the ? program), giving an upper
bound on its value.

Lemma 6 (Relation Between the Optimization Programs). Consider the three optimization programs
of definition 4,5,6. We have that:

fO(n) ≤ fA(n) (49)

Furthermore, outside of the failure event if

|(V ? − V̂ ?k )(ρ)| ≤ εk, ∀ρ ≥ 0, ‖ρ‖1 = 1 (50)

holds then

fA(n) ≤ f?(n) (51)
(52)

also holds.

Proof.

Oracle Minimax to Algorithm Minimax Consider the maximization program contained in the
definition of fO, see definition 4. First, we can add the variable ŵ

π,k,ρ
and the constraint

(I − γ(P̂πk )>)ŵ
π,k,ρ

= ρ (53)

to the oracle inner maximization program without changing its objective value or restricting its
feasibility set since ŵ

π,k,ρ
is fully determined by equation 53. Next, lemma 9 allows us to move from

using the distribution from episode k + 1 (which is unknown) to episode k (which can be computed
by using the empirical MDP M̂k) in the objective function:∑

(s,a)

ŵ
π,k+1,ρ

sa CIsa(nk+1
sa ) =

∑
(s,a)

ŵ
π,k,ρ

sa CIsa(nk+1
sa ) +

∑
(s,a)

(ŵ
π,k+1,ρ

sa − ŵπ,k,ρsa )CIsa(nk+1
sa )

(54)

≤
∑
(s,a)

ŵ
π,k,ρ

sa CIsa(nk+1
sa ) + 2Cp(nmin)επk (55)

At this point we can use the variance correction provided by lemma 11 to obtain:∑
(s,a)

ŵ
π,k,ρ

sa CIsa(nk+1
sa ) + 2Cp(nmin)επk ≤

∑
(s,a)

ŵ
π,k,ρ

sa (ĈIsa(nk+1
sa ) +Bksa) + 2Cp(nmin)επk

(56)

that uses the empirical quantities only. We can now drop the variable ŵ
π,k+1,ρ

and its constraint

(I − γ(P̂πk+1)>)ŵ
π,k+1,ρ

= ρ (57)

since the variable ŵ
π,k+1,ρ

does not appears elsewhere. Notice that this again does not change the
feasible set for (π, ρ).
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Algorithm Minimax to ?-Minimax First, we add the variable wπ,ρ and the constraint

(I − γ(Pπ)>)wπ,ρ = ρ (58)

to the minimax optimization program of definition 5; this does not change the objective function
or restrict the set of feasible ρ, π since equation 58 can always be satisfied: wπ,ρ is the distribution
induced by the policy upon starting from ρ onM. Next, we chain lemma 9 with lemma 11 to express
the objective function as a function of the “real quantities”, obtaining:∑

(s,a)

ŵ
π,k,ρ

sa ĈIsa(nk+1
sa ) ≤

∑
(s,a)

wπ,ρsa
(
CIsa(nk+1

sa ) +Bksa
)

+ Cp(nmin)επk . (59)

Now we examine the remaining term:∑
(s,a)

(
wπ,ρsa − ŵ

π,k,ρ

sa

)
(2Bksa) = 2

∑
(s,a)

(
wπ,ρsa − ŵ

π,k,ρ

sa

)( 2cn
(1− γ)(nsa − 1)

+ γ

√
2cn
nsa

εk

)
.

(60)

We further split the above into two. For the first, using the definition of CIsa(nksa) and lemma 10 we
obtain:

2
∑
(s,a)

(
wπ,ρsa − ŵ

π,k,ρ

sa

)( 2cn
(1− γ)(nsa − 1)

)
= 2

∑
(s,a)

(
wπ,ρsa − ŵ

π,k,ρ

sa

)6× cn
3(1− γ)(nsa − 1)︸ ︷︷ ︸

CIsa(nksa)


(61)

≤ 12
∑
(s,a)

(
wπ,ρsa − ŵ

π,k,ρ

sa

)
CIsa(nksa) ≤ 12Cp(nmin)επk . (62)

For the second term, use the definition of Cp(nmin) together with
∑

(s,a)

(
wπ,ρsa + ŵ

π,k,ρ

sa

)
= 2

(1−γ)

to claim:

2
∑
(s,a)

(
wπ,ρsa − ŵ

π,k,ρ

sa

)(
γ

√
2cn
nsa

εk

)
≤ 4

∑
(s,a)

(
wπ,ρsa + ŵ

π,k,ρ

sa

)
(1− γ)Cp(nmin)εk = 8Cp(nmin)εk.

(63)

In summary we have obtained:∑
(s,a)

ŵ
π,k,ρ

sa

(
ĈIsa(nk+1

sa ) +Bksa

)
+ 2Cp(nmin) (64)

≤
∑
(s,a)

wπ,ρsa
(
CIsa(nk+1

sa ) + 2Bksa
)

+ 15Cp(nmin)επk + 8Cp(nmin)εk. (65)

At this point we can drop the the variable ŵ
π,k,ρ

and its constraint:

(I − γ(P̂πk+1)>)ŵ
π,k,ρ

= ρ (66)

since the variable ŵ
π,k,ρ

does not show up elsewhere. Notice that this operation does not change the
constraints on the ρ, π optimization variables. Finally, lemma 7 allows us to replace the constraint
(V̂ ?k − V̂ πk )(ρ) ≤ Cεk with the relaxed version on the real MDP (V ? − V π)(ρ) ≤ C?εk. This
enlarges the feasibility set for the policies. Notice that an enlarged feasibility for the maximization
program set can only increase the objective function, so fO ≤ f? holds pointwise.

18



E Helper Lemmas

In this section we state and prove some helper lemmas.

E.1 Enlarging The Feasibility Set

Lemma 7 (Enlarging The Feasibility Set). Outside of the failure event if:

|(V ? − V̂ ?k )(ρ)| ≤ εk, ∀ρ ≥ 0, ‖ρ‖1 = 1 (67)

π ∈ Ŝk (68)
επk ≤ εk (69)

then

π ∈ Sk. (70)

Proof. Since by assumption:

(V̂ ?k − V̂ πk )(ρ) ≤ Cεk (71)

for all ρ then must we have that (by choosing ρ to be any canonical vector in R|S|):

‖V̂ ?k − V̂ πk ‖∞ ≤ Cεk. (72)

Next, for an arbitrary ρ consider:

(V̂ ?k − V̂ πk )(ρ) = (V̂ ?k − V ?︸ ︷︷ ︸
≥−εk

+V ? − V π + V π − V̂ πk )(ρ) (73)

and apply the simulation lemma, lemma 4 to the last difference obtaining:

≥ −εk + (V ? − V π)(ρ)− εk − Cp(nmin)‖V ? − V π‖∞ (74)

Therefore:

−2εk + (V ? − V π)(ρ)− Cp(nmin)‖V ? − V π‖∞ ≤ (V̂ ?k − V̂ πk )(ρ) ≤ Cεk (75)

from which we can derive:

(V ? − V π)(ρ) ≤ Cεk + 2εk + Cp(nmin)‖V ? − V π‖∞. (76)

By taking ρ to be each canonical vector in RS we can derive:

‖V ? − V π‖∞ ≤ Cεk + 2εk + Cp(nmin)‖V ? − V π‖∞. (77)

from which

‖V ? − V π‖∞ ≤
Cεk + 2εk

1− Cp(nmin)
. (78)

follows.8 Since this is a max-norm bound on the vector V ? − V π , a linear combination weighted by
ρ must also satisfy:

(V ? − V π)(ρ) ≤ C + 2

1− Cp(nmin)
εk

def
= C?εk. (79)

The thesis finally follows by definition of Sk.

8For this passage we need Cp(nmin) < 1, but our choice of nmin ensures that.
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E.2 Visit Probability Lemma

Although the visit distribution wπ,ρ can require many samples to be estimated accurately, in this
section we show that the uncertainty in the distribution nicely interacts with the confidence intervals
for the transitions and rewards. We need the following helper lemma:

Lemma 8 (Distribution Lemma). It holds that:(
wπ,ρ − ŵπ,k,ρ

)>
= (wπ,ρ)

>
(Pπ − P̂πk )

∞∑
t=0

γt+1
(
P̂πk

)t
. (80)

Proof. The cumulative discounted sum of visit probabilities (for policy π upon starting from ρ)
satisfies (see for example [WBS07])

wπ,ρ = ρ+ γ(Pπ)>wπ,ρ (81)

ŵ
π,k,ρ

= ρ+ γ(P̂π)>ŵ
π,k,ρ

(82)

onM and M̂k, respectively. Subtraction yields:

wπ,ρ − ŵπ,k,ρ = γ
(

(Pπ)>wπ,ρ − (P̂πk )>ŵ
π,k,ρ

)
(83)

= γ
(

(Pπ)>wπ,ρ − (P̂πk )>wπ,ρ + (P̂πk )>wπ,ρ − (P̂πk )>ŵ
π,k,ρ

)
(84)

= γ
(

(Pπ − P̂πk )>wπ,ρ + (P̂πk )>
(
wπ,ρ − ŵπ,k,ρ

))
. (85)

By induction, this yields:

wπ,ρ − ŵπ,k,ρ =

∞∑
t=0

γt+1
(

(P̂πk )>
)t (

(Pπ − P̂πk )>wπ,ρ
)
. (86)

By transposing the above equality we obtain the statement.

Now we are ready to analyze how the distribution shift interacts with the confidence intervals for
policies that are accurately estimated:

Lemma 9 (Interaction between distribution inaccuracy and confidence intervals). If for π it holds
that

(ŵ
π,k,ρ

)>CIk ≤ επk (87)

then we have that: (
wπ,ρ − ŵπ,k,ρ

)>
CIk ≤ Cp(nmin)επk(

ŵ
π,j,ρ − ŵπ,k,ρ

)>
CIk ≤ 2Cp(nmin)επk , j ≥ k. (88)

Proof. Thanks to lemma 8 we can write:(
wπ,ρ − ŵπ,k,ρ

)>
CIk = γ (wπ,ρ)

>
(Pπ − P̂πk )

∞∑
t=0

γt
(
P̂πk

)t
CIk (89)

≤ γ‖ (wπ,ρ)
>

(Pπ − P̂πk )‖1‖
∞∑
t=0

γt
(
P̂πk

)t
CIk‖∞ (90)

Notice that the j-th row of
∞∑
t=0

γt
(
P̂πk

)t
(91)
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is precisely the discounted sum of visit probabilities upon starting from state j on M̂k and following
π. Let us call ej the canonical vector with a 1 in position j and 0’s elsewhere; the j-th row is
expressible as:

e>j

∞∑
t=0

γt
(
P̂πk

)t
= (ŵ

π,k,sj
)>. (92)

This immediately yields:

e>j

∞∑
t=0

γt
(
P̂πk

)t
CIk = (ŵ

π,k,sj
)>CIk ≤ επk . (93)

and therefore equation 89 admits the upper bound (by Holder’s inequality):

≤ γ‖ (wπ,ρ)
>

(Pπ − P̂πk )‖1επk (94)

= γ‖
∑
(s,a)

wπ,ρsa (p(s, a)− p̂k(s, a))
> ‖1επk (95)

≤ γ
∑
(s,a)

wπ,ρsa ‖ (p(s, a)− p̂k(s, a))
> ‖1επk (96)

≤ Cp(nmin)επk . (97)

To obtain the second equation of 88 proceed similarly:(
ŵ
π,j,ρ − ŵπ,k,ρ

)>
CIk = γ

(
ŵ
π,j,ρ

)>
(P̂πj − P̂πk )

∞∑
t=0

γt
(
P̂πk

)t
CIk (98)

≤ γ‖
(
ŵ
π,j,ρ

)>
(P̂πj − P̂πk )‖1‖

∞∑
t=0

γt
(
P̂πk

)t
CIk‖∞ (99)

≤ γ
∑
(s,a)

ŵ
π,j,ρ

sa (‖p̂j(s, a)− p(s, a)‖1 + ‖p(s, a)− p̂k(s, a)‖1) ‖
∞∑
t=0

γt
(
P̂πk

)t
CIk‖∞

(100)
≤ 2Cp(nmin)επk . (101)

E.3 Bernstein Correction

In this section we discuss how to correct the variance estimate computed with the empirical transitions
and value function estimate in a way that results in a variance overestimate (to obtain valid confidence
intervals).
Lemma 10 (Bernstein Correction). If

‖V ? − V̂ ?k ‖∞ ≤ εk (102)

holds then outside of the failure event we have that:∣∣∣ √ Var
p(s,a)

V ? −
√

Var
p̂k(s,a)

V̂ ?k

∣∣∣≤ εk +
1

1− γ

√
2cn

nsa − 1
(103)

Proof. Outside the failure event:∣∣∣ √ Var
p̂k(s,a)

V ? −
√

Var
p(s,a)

V ?
∣∣∣≤ 1

1− γ

√
2cn

nsa − 1
(104)

holds and further lemma 5 yields:∣∣∣ √ Var
p̂k(s,a)

V ? −
√

Var
p̂k(s,a)

V̂ ?k

∣∣∣≤ ‖V ? − V̂ ?k ‖∞. (105)

Chaining the two yields the statement.
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Lemma 11 (Realation Between Real and Empirical Confidence Intervals). If

‖V ? − V̂ ?k ‖∞ ≤ εk (106)
holds then outside of the failure event we have that:

CIsa(nsa) ≤ ĈIsa(nsa) +Bksa ≤ CIsa(nsa) + 2Bksa (107)
where:

Bksa
def
=

2cn
(1− γ)(nsa − 1)

+ γ

√
2cn
nsa

εk. (108)

Proof. Apply lemma 10 twice, first to obtain the “hat quantities” and then to go back to the “real
quantities”:

CIsa(nsa)
def
=

√
2 VarR(s, a)cn

nsa
+ γ

√
2 Varp(s,a) V ?cn

nsa
+

cn
3(nsa − 1)

+
γcn

3(1− γ)(nsa − 1)︸ ︷︷ ︸
= cn

3(1−γ)(nsa−1)

(109)

≤

√
2 Var R̂(s, a)cn

nsa
+ γ

√
2 Varp̂k(s,a) V̂

?
k cn

nsa
+

cn
3(1− γ)(nsa − 1)

+
2cn

(1− γ)(nsa − 1)
+ γ

√
2cn
nsa

εk︸ ︷︷ ︸
Bksa

(110)
def
= ĈIsa(nsa) +Bksa (111)

≤

√
2 VarR(s, a)cn

nsa
+ γ

√
2 Varp(s,a) V ?cn

nsa
+

cn
3(1− γ)(nsa − 1)

+ 2

(
2cn

(1− γ)(nsa − 1)
+ γ

√
2cn
nsa

εk

)
︸ ︷︷ ︸

2Bksa

(112)
def
= CIsa(nsa) + 2Bksa. (113)

E.4 Feasible Set Contains Good Policies

In this section we build the supporting lemmas to show that the feasibility set (V̂ ?k − V̂ πk )(ρ) ≤ Cεk
in episode k is constructed in a way that ensures that the optimal policy π? and the next-episode
empirical optimal policy π̂?k+1 are never eliminated at step k, i.e., they are Cεk-optimal for all starting
distribution ρ. This ensures that enough samples are allocated at step k to use lemma 2 at the next
episode. This guarantees an accurate estimate of the value function.

First we focus on the optimal policy π?.
Lemma 12 (π? is a Feasible Solution). Outside of the failure event, if

‖V̂ ?k − V ?‖∞ ≤ εk (114)

επ
?

k ≤ εk (115)
holds at step k then it holds that:

(V̂ ?k − V̂ π
?

k )(ρ) ≤ 2εk ≤ Cεk, ∀ρ ≥ 0, ‖ρ‖1 = 1 (116)

Proof. Using the simulation lemma (lemma 3) with π = π? and using the fact that we are outside of
the failure event we obtain that:

|(V̂ ?k − V ? + V ? − V̂ π
?

k )(ρ)| ≤ |(V̂ ?k − V ?)(ρ)|+ |(V ? − V̂ π
?

k )(ρ)| (117)

≤ εk +
∣∣∣ ∑

(s,a)

ŵ
π?,k,ρ

sa CIsa(nksa)
∣∣∣ ≤ εk + επ

?

k ≤ 2εk. (118)
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Next we turn our attention to the next-step empirical optimal policy. To ensure accuracy, we need to
show that we always allocate enough samples to π̂?k+1 at step k, i.e., π̂?k+1 is feasible at step k. We
achieve this through an inductive argument in theorem 1, which leverages the following lemma. The
lemma shows that if a policy is ruled out then it can never become optimal again. This lemma plays a
key role in constructing the constraint (V̂ ?k − V̂ πk )(ρ) ≤ Cεk because it defines its size through the
constant C.

Lemma 13 (Ruled-Out Policies Can Never Be Optimal Again). Let j be the first episode in which
policy µ is not feasible for some ρ in the sense that µ 6∈ Ŝj while µ ∈ Ŝj−1, µ ∈ Ŝj−2, . . . , µ ∈ Ŝ1

holds. Outside of the failure event if π? ∈ Ŝj , C ≥ 20, εj = εj−1/2 and:

|(V ? − V̂ ?j )(ρ)| ≤ εj , ∀ρ ≥ 0, ‖ρ‖1 = 1 (119)

|(V ? − V̂ ?j−1)(ρ)| ≤ εj−1, ∀ρ ≥ 0, ‖ρ‖1 = 1 (120)

hold together with:

2
(
εµj−1 + 2Cp(nmin)εµj−1 + Cp(nmin)(1 + C)εj−1

)
≤ 4εj−1 (121)

2
(
ε
π̂?j
j + 2Cp(nmin)ε

π̂?j
j + Cp(nmin)(1 + C)εj

)
≤ 4εj (122)

then µ cannot be an optimal policy on any empirical MDP M̂k for k ≥ j.

Proof. Coupled with the hypothesis, Lemma 14 ensures:

|(V̂ π̂
?
j

k − V̂ π̂
?
j

j )(ρ)| ≤ 4εj (123)

|(V̂ µk − V̂
µ
j−1)(ρ)| ≤ 4εj−1 (124)

|(V̂ µj − V̂
µ
j−1)(ρ)| ≤ 4εj−1 (125)

Since µ 6∈ Ŝj by assumption, we have that for at least a starting distribution ρ:

(V̂
π̂?j
j − V̂ µj )(ρ) > Cεj =

1

2
Cεj−1. (126)

This implies that for that starting distribution ρ:

(V̂ µk − V̂
?
k )(ρ) ≤ (V̂ µk − V̂

π̂?j
k )(ρ) (127)

= (V̂ µk − V̂
µ
j−1 + V̂ µj−1 − V̂

µ
j + V̂ µj − V̂

π̂?j
j + V̂

π̂?j
j − V̂ π̂

?
j

k )(ρ) (128)

< 8εj−1 + 4εj −
1

2
Cεj−1 = 8εj−1 + 2εj−1 −

1

2
Cεj−1 ≤ 0 (129)

In other words µ is not optimal on M̂k.

The following helper lemma explains that the empirical value of a policy doesn’t change a lot between
different episodes provided that the policy is feasible for the smaller-numbered episode. In other
words, if a policy is accurately estimated, say of order ε, its value on all empirical MDPs for later
episodes has a fluctuation of order ε.

Lemma 14 (Empirical Value of Feasible Policies Does Not Change Much In Later Episodes). If
π ∈ Ŝj and

|(V ? − V̂ ?j )(ρ)| ≤ εj , ∀ρ ≥ 0, ‖ρ‖1 = 1 (130)

also holds, then outside of the failure event it holds that:

|
(
V̂ πk − V̂ πj

)
(ρ)| ≤ (2 + 4Cp(nmin))επj + 2Cp(nmin)(1 + C)εj (131)

for all episodes k ≥ j.
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Proof. The simulation lemma 3 applied to the two empirical MDPs M̂k and M̂j gives:(
V̂ πk − V̂ πj

)
(ρ) =

∑
(s,a)

ŵ
π,k,ρ

sa

(
(r̂k(s, a)− r̂j(s, a)) + γ (p̂k(s, a)− p̂j(s, a))

>
V̂ πj

)
(132)

=
∑
(s,a)

ŵ
π,k,ρ

sa

(
(r̂k(s, a)− r̂j(s, a)) + γ (p̂k(s, a)− p̂j(s, a))

>
V ?
)

(133)

+ γ
∑
(s,a)

ŵ
π,k,ρ

sa (p̂k(s, a)− p̂j(s, a))
>

(V̂ πj − V ?) (134)

We focus on the first term. Outside the failure event the first upper bound below holds

≤
∑
(s,a)

ŵ
π,k,ρ

sa

(
CIsa(nksa) + CIsa(njsa)

)
≤ 2

∑
(s,a)

ŵ
π,k,ρ

sa CIsa(njsa). (135)

The second upper bound above holds because nksa ≥ njsa (i.e., number of samples can only increase)
and the confidence intervals are shrinking with increasing samples: CIsa(nksa) ≤ CIsa(njsa). Lemma
9 allows9 us to use the empirical distribution from step j instead of k ensuring:

2
∑
(s,a)

ŵ
π,k,ρ

sa CIsa(njsa) ≤ 2
∑
(s,a)

ŵ
π,j,ρ

sa CIsa(njsa) + 4Cp(nmin)επj (136)

≤ (2 + 4Cp(nmin))επj . (137)

The second step is by definition of επj . Now we bound the remaining term; by the hypothesis of this
lemma:

|(V̂ πj − V ?)(ρ)| = |(V̂ πj − V̂ ?j + V̂ ?j − V ?)(ρ)| ≤ (C + 1)εj (138)

for all ρ and so in particular we must have ‖V̂ πj − V ?‖∞ ≤ (1 + C)εj and hence outside of the
failure event by Holder (and by adding and subtracting p(s, a)) it holds that:

γ
∑
(s,a)

ŵ
π,k,ρ

sa (p̂k(s, a)− p̂j(s, a))
>

(V̂ ?j − V ?) ≤ 2Cp(nmin)(1 + C)εj (139)

giving the thesis.

E.5 Feasible Policies Will Have Improved Accuracy

In this section we show that feasible policies for the algorithm minimax program of definition 5 will
gain accuracy at the next episode provided that they are already accurately estimated in the current
episode (condition επk ≤ εk, which is equivalent to a small distribution shift).
Lemma 15 (Feasible Policies Will Have Improved Accuracy). Outside of the failure event if:

π ∈ Ŝk; επk ≤ εk (140)

holds then at the next episode it holds that:

επk+1 ≤ εk+1 =
εk
2
. (141)

Proof. BESPOKE solves a program equivalent to the minimax program of definition 5 that ensures
that for feasible (π, ρ):

εk
4
≤
∑
(s,a)

ŵ
π,k,ρ

sa

(
ĈIsa(nksa) +Bksa

)
+ 2Cp(nmin)εk ≤

εk
2
. (142)

by the choice of nmax (see inner loop over nmax in the algorithm 1). Since επk ≤ εk, we have that:
εk
4
≤
∑
(s,a)

ŵ
π,k,ρ

sa

(
ĈIsa(nksa) +Bksa

)
+ 2Cp(nmin)επk ≤

εk
2

(143)

9Note that j and k are flipped in the two lemmas.
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must hold. By lemma 6 we have that the value of the oracle objective of definition 4 is less than εk/2,
i.e.:

επk+1
def
=
∑
(s,a)

ŵ
π,k+1,ρ

sa CIsa(nk+1
sa ) ≤ εk

2

def
= εk+1 (144)

must hold for those (π, ρ).

Lemma 16 (Minimum Number of Samples). Outside of the failure event if C = 20 and

nsa ≥ nmin
def
=

2× 6252γ2Scn
(1− γ)2

(145)

then it holds that:

Cp(nmin) ≤ 1

625
(146)

2Cp(nmin)(2 + C) ≤ 1

2
(147)

Proof. Immediate, by definition of Cp(nmin) and nmin, see appendix A.

Finally, the following technical lemma ensures that if the optimal policy and empirical optimal policy
of step k are feasible in all episodes up to k then the accuracy in value function estimate can be
guaranteed.
Lemma 17 (Guaranteed Accuracy). Outside of the failure event if:

1. π? ∈ Ŝj in all episodes j < k

2. π̂?k ∈ Ŝj in all episodes j < k

then

|(V ? − V̂ ?k )(ρ)| ≤ εk, ∀ρ ≥ 0, ‖ρ‖1 = 1 (148)

holds.

Proof. Chaining lemma 15 for π? and all episodes up to k − 1 gives:

max
ρ

∑
(s,a)

ŵ
π?,k,ρ

sa CIsa(nksa)
def
= επ

?

k ≤ εk. (149)

Likewise, chaining lemma 15 for π̂?k and all episodes up to k − 1 gives:

max
ρ

∑
(s,a)

ŵ
π̂?k,k,ρ

sa CIsa(nksa)
def
= ε

π̂?k
k ≤ εk. (150)

Finally, lemma 2 gives the thesis.
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F Main Results

In this section we show that the algorithm works as intended, namely it terminates in finite time after
logarithmically many iterations and returns with high probability an εInput-correct value function
estimate and an almost εInput-suboptimal policy. Finally, we analyze its sample complexity.

F.1 BESPOKE Works as Intended

Theorem 1 (BESPOKE Works as Intended). With probability at least 1 − δ, in every episode k
BESPOKE maintains an empirical MDP M̂k such that its optimal value function V̂ ?k and its optimal
policy π̂?k satisfy:

‖V ? − V̂ ?k ‖∞ ≤ εk, ‖V ? − V π̂
?
k‖∞ ≤ 2εk

where εk+1
def
= εk

2 , ∀k. In particular, when BESPOKE terminates in episode kFinal it holds that
εInput

2 ≤ εkFinal ≤ εInput.

Proof. We reason by induction outside of the failure event, which has measure 1−δ by lemma 2. The
inductive hypothesis is over the episodes k = 1, 2, . . . and consists of the following two conditions:

1. π? ∈ Ŝj in all episodes j < k

2. π̂?k ∈ Ŝj in all episodes j < k

In other words, we assume that the optimal policy π? is feasible up to episode k − 1, and that the
optimal policy on M̂k is also feasible up to episode k − 1. Before showing the inductive step, notice
that the inductive hypothesis together with lemma 17 ensures10:

‖V ? − V̂ ?p ‖∞ ≤ εp, ∀p < k. (151)

Notice that the above equation is equivalent to:

|(V ? − V̂ ?p )(ρ)| ≤ εp, ∀ρ ≥ 0, ‖ρ‖1 = 1, ∀p < k. (152)

by simply choosing ρ to be the point mass in any starting state.

Optimal Policy We have that π? ∈ Ŝj for all episodes j ≤ k − 1 by the inductive hypothesis. By
repeatedly chaining lemma 15 for all episodes j = 1, 2, . . . , k we can ensure the condition

επ
?

j ≤ εj , ∀j ≤ k. (153)

Lemma 12 then ensures π? ∈ Ŝk.

Empirical Optimal Policies We need to show that π̂?k+1 ∈ Ŝj for all j ≤ k. Suppose it isn’t, and
let us show that this situation cannot arise. Consider the first episode j ≤ k such that π̂?k+1 6∈ Ŝj .
Since π̂?k+1 was in Ŝp, ∀p < j, chaining lemma 15 yields:

ε
π̂?k+1

j−1 ≤ εj−1. (154)

The inductive hypothesis ensures11 π̂?j was in Ŝp, ∀p < j, and so chaining lemma 15 yields:

ε
π̂?j
j ≤ εj (155)

10the lemma ensures |(V ? − V̂ ?p )(ρ)| ≤ εp for all ρ, so choose ρ to be the point mass on a starting state
11Notice that this part refers to policy π̂?j and not π̂?k+1. This condition is ensured by the inductive hypothesis

which holds in all episodes up to k.
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also holds. Finally, lemma 16 ensures the following two inequalities:

2Cp(nmin) ε
π̂?k+1

j−1︸ ︷︷ ︸
≤εj−1

+2Cp(nmin)(1 + C)εj−1 ≤
εj−1

2

2Cp(nmin) ε
π̂?j
j︸︷︷︸
≤εj

+2Cp(nmin)(1 + C)εj ≤
εj
2
. (156)

Together, equation 151, 155, 154, 156 satisfy the assumption of lemma 13 (with µ = π̂?k+1). This
gives a contradiction, because the lemma claims that π̂?k+1 cannot be an optimal policy while being
6∈ Ŝj for some j < k.

The proof by induction is complete and now lemma 17 ensures

|(V ? − V̂ ?k )(ρ)| ≤ εk, ∀ρ ≥ 0, ‖ρ‖1 = 1, ∀k. (157)

When the termination condition for the algorithm BESPOKE are satisfied in episode kFinal,

|(V ? − V̂ ?kFinal)(ρ)| ≤ εkFinal , ∀ρ ≥ 0, ‖ρ‖1 = 1 (158)

must hold with
εInput

2
≤ εkFinal ≤ εInput. (159)

Finally, the triangle inequality gives:

‖V ? − V πFinal‖∞ ≤ ‖V ? − V̂ ?kFinal‖∞ + ‖V̂ ?kFinal − V
πFinal‖∞ (160)

≤ εkFinal + ‖V̂ ?kFinal − V
πFinal‖∞ (161)

In addition, lemma 4 ensures that for πFinal at that episode:

‖V̂ ?kFinal − V
πFinal‖∞ ≤ εInput + γCp(nmin)‖V ? − V πFinal‖∞ (162)

Combining the two gives:

‖V ? − V πFinal‖∞ ≤
2εInput

1− γCp(nmin)
≤ 2.03εInput (163)

by the choice of nmin (see appendix A and lemma 16).

F.2 Computational Complexity of BESPOKE

Proposition 4 (Computational Complexity of BESPOKE). Outside of the failure event BESPOKE
terminates in at most

log2(
1

(1− γ)εInput
) + 1 (164)

episodes. Let nFinalsa be the total number of samples allocated by the algorithm at termination given
by theorem 2. Then BESPOKE at termination has solved at most:

(log2(
1

(1− γ)εInput
) + 1)× log2(

∑
(s,a)

nFinalsa ) (165)

convex minimization programs as defined in definition 7.

Proof. By the halving rule on εk, BESPOKE must terminate after at most log2( 1
(1−γ)εInput

) + 1

episodes; in addition, if nFinalsa is the final number sample allocated by the the algorithm to (s, a)
then BESPOKE solves at most log2(

∑
(s,a) n

Final
sa ) convex programs as described in definition 7 at

each episode.
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F.3 Sample Complexity of BESPOKE

Theorem 2 (Sample Complexity of the Algorithm BESPOKE). With probability at least 1− δ, the
total sample complexity of BESPOKE up to episode k is upper bounded by

∑
(s,a) nsa where nsa is

the total number of samples allocated to the (s, a) pair:

nsa = Õ
(

min
{ 1

(1− γ)3(εk)2
,

VarR(s, a) + γ2 Varp(s,a) V
?

(1− γ)2(εk)2
+

1

(1− γ)2(εk)
, (166)

VarR(s, a) + γ2 Varp(s,a) V
?

∆2
s,a

+
1

(1− γ)∆s,a

}
+

γS

(1− γ)2

)
. (167)

Proof. We show that a sample complexity

nsa = Õ
(

min
( 1

(1− γ)3ε2k︸ ︷︷ ︸
A

,
VarR(s, a) + γ2 Varp(s,a) V

?

(1− γ)2ε2k
+

1

(1− γ)2εk︸ ︷︷ ︸
Bsa

, (168)

VarR(s, a) + γ2 Varp(s,a) V
?

∆2
sa

+
1

(1− γ)∆sa︸ ︷︷ ︸
Csa

)
+

γS

(1− γ)2

)
(169)

suffices to ensure that the value of the star minimax program of definition 6 is ≤ εk
4 . By lemma 6 this

is an upper bound on the sample complexity of the algorithm minimax program of definition 5 to
guarantee that its objective is ≤ εk

4 .

Three cases are possible for the min of equation 168: either the min of equation 168 is attained
by A or Bsa or Csa, and we partition the state-action space accordingly into the sets Ak,Bk, Ck
corresponding to whether a certain (s, a) pair attains the minimum of equation 168 with the expression
A,Bsa, Csa, respectively. In other words, we have the partition: Ak ∪ Bk ∪ Ck = S ×A where:

Ak
def
= {(s, a) | A = arg max(A,Bsa, Csa)} (170)

Bk
def
= {(s, a) | Bsa = arg max(A,Bsa, Csa)} (171)

Ck
def
= {(s, a) | Csa = arg max(A,Bsa, Csa)} (172)

(173)

with ties broken arbitrarily.

Therefore it suffices to bound the terms below:

f?(n) =
∑

(s,a)∈Ak

wπ,ρsa (CIsa(nk+1
sa ) + 2Bksa) +

∑
(s,a)∈Bk

wπ,ρsa (CIsa(nk+1
sa ) + 2Bksa) (174)

+
∑

(s,a)∈Ck

wπ,ρsa (CIsa(nk+1
sa ) + 2Bksa) + 23Cp(nmin)εk. (175)

separately for all policies π and starting distributions ρ that satisfy:

(V ? − V π)(ρ) ≤ C?εk. (176)

Pairs in Ak First notice that a sample complexity

Õ

(
1

(1− γ)2εk
+

1

(1− γ)2

)
(177)

suffices to ensure ∑
(s,a)∈Ak

wπ,ρsa (2Bksa) ≤ εk
200

. (178)
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By definition of CIsa(nk+1
sa ) we can write:

∑
(s,a)∈Ak

wπ,ρsa CIsa(nk+1
sa ) =

∑
(s,a)∈Ak

wπ,ρsa γ

√
2 Varp(s,a) V ?cn

nsa
+

∑
(s,a)∈Ak

wπ,ρsa
γcn

3(1− γ)(nsa − 1)

+
∑

(s,a)∈Ak

wπ,ρsa

√
2 VarR(s, a)cn

nsa
+

∑
(s,a)∈Ak

wπ,ρsa
cn

3(nsa − 1)
(179)

Since π is C?εk optimal for every starting distribution it must be C?εk optimal in the max-norm as
well and hence we have the upper bound below thanks to lemma 5:

≤
∑

(s,a)∈Ak

γwπ,ρsa

√2 Varp(s,a) V πcn

nsa
+

√
2cn√
nsa

C?εk +
cn

3(1− γ)(nsa − 1)

 (180)

+
∑

(s,a)∈Ak

wπ,ρsa

√2 Varp(s,a)R(s, a)cn

nsa
+

cn
3(nsa − 1)

 (181)

We focus on the first term of equation 180. Cauchy-Schwartz gives:

≤ γ√
1− γ

√
2
∑

(s,a)∈Ak w
π,ρ
sa Varp(s,a) V πcn

n
(182)

where n = min(s,a)∈Ak nsa. Thanks to the law of total variance [AMK12] we have that∑
(s,a)∈Ak w

π,ρ
sa Varp(s,a) V

π is at most the variance of the returns upon following policy π on
the true MDP, and it is thus bounded by 1/(1− γ)2. This gives the upper bound:

≤ 1

(1− γ)
3
2

√
2cn
n

(183)

At this point a sample complexity:

nsa = Õ

(
1

(1− γ)3ε2k

)
(184)

nsa = Õ

(
1

(1− γ)2

)
(185)

nsa = Õ

(
1

(1− γ)2εk

)
(186)

respectively, suffices to ensure that each term in equation 180 (i.e., the transition terms) is less than
εk
200 . Since εk ≤ 1

1−γ we have that:

nsa = Õ

(
1

(1− γ)3ε2k
+

1

(1− γ)2

)
(187)

suffices. Now we focus on the remaining terms (the reward terms), equation 181. We have the upper
bound below: ∑

(s,a)∈Ak

wπ,ρsa

(√
2cn
nsa

+
cn

3(nsa − 1)

)
(188)

Again, a sample complexity of order:

Õ

(
1

(1− γ)2ε2k

)
(189)

suffices to ensure that each term in 179 is ≤ εk
200 . This implies that expression 181 is ≤ εk

25 .
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Pairs in Bk Notice that we have

γ

√
2 Varp(s,a) V ?cn

nsa
≤ (1− γ)

εk
100

(190)

γcn
3(1− γ)(nsa − 1)

≤ (1− γ)
εk

100
(191)√

2 VarR(s, a)cn
nsa

≤ (1− γ)
εk

100
(192)

cn
3(nsa − 1)

≤ (1− γ)
εk

100
(193)

2Bksa ≤ (1− γ)
εk

100
(194)

for

nsa = Õ

(
γ2 Varp(s,a) V

?

(1− γ)2ε2k

)
(195)

nsa = Õ

(
γ

(1− γ)2εk

)
(196)

nsa = Õ

(
VarR(s, a)

(1− γ)2ε2k

)
(197)

nsa = Õ

(
1

(1− γ)εk

)
(198)

nsa = Õ

(
1

(1− γ)2εk
+

γ2

(1− γ)2

)
(199)

respectively. Summing over the (s, a) pairs with their maximum of type B yields:

∑
(s,a)∈Bk

wπ,ρsa (CIsa(nk+1
sa ) + 2Bksa) ≤

∑
(s,a)∈Bk

wπ,ρsa (1− γ)
εk
20

=
εk
20
. (200)

Pairs in Ck In this case notice that we have

γ

√
2 Varp(s,a) V ?cn

nsa
≤ ∆sa

100C?
(201)

γcn
3(1− γ)(nsa − 1)

≤ ∆sa

100C?
(202)√

2 VarR(s, a)cn
nsa

≤ ∆sa

100C?
(203)

cn
3(nsa − 1)

≤ ∆sa

100C?
(204)

2Bksa ≤
∆sa

100C?
(205)
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for

nsa = Õ

(
Varp(s,a) V

?

∆2
sa

)
(206)

nsa = Õ

(
1

(1− γ)∆sa

)
(207)

nsa = Õ

(
VarR(s, a)

∆2
sa

)
(208)

nsa = Õ

(
1

∆sa

)
(209)

nsa = Õ

(
1

(1− γ)∆sa

)
(210)

(211)

respectively. This ensures12

CIsa(nk+1
sa ) + 2Bksa ≤ γ

√
2 Varp(s,a) V ?cn

nsa
+

γcn
3(1− γ)(nsa − 1)

(212)

+

√
2 VarR(s, a)cn

nsa
+

cn
3(nsa − 1)

+
∆sa

100C?
(213)

≤ ∆sa

20C?
(214)

Summing over the (s, a) pairs with their maximum of type C:∑
(s,a)∈Ck

wπ,ρsa (CIsa(nk+1
sa ) + 2Bksa) ≤ 1

20C?

∑
(s,a)∈Ck

wπ,ρsa ∆sa =
1

20C?
(V ? − V π) (ρ) ≤ 1

20
εk.

(215)

The equality arises from lemma 1 and the last inequality on the constraint on the policy for the
?-optimization program.

Term 23Cp(nmin)εk This can be made ≤ εk
25 with lemma 16 by using

nsa = Õ

(
S

(1− γ)2

)
(216)

samples.

Concluding remarks Summing all the upper bounds just derived for each term ensures that
equation 174 is upper bounded by εk

4 with a total sample complexity as written in the theorem
statement. By lemma 6 this is an upper bound on the sample complexity of the algorithm at step k,
and since BESPOKE reaches step k after logarithmically-many episodes (see proposition 4), this is
also the total sample complexity up to episode k up to log factors.

G Efficient Implementation

In this section we rewrite the minimax optimization program of definition 5 (with επk = εk) into
a convex minimization program that can be efficiently solved. First we directly optimize over the
distribution13 w instead of over the policy π and introduce an appropriate scalar slack variable t. This

12Note that C? is just a constant.
13We drop all subscripts on w in this section for simplicity.

31



allows us to put the inner maximization in the following matrix form (we neglect the constant term
+2Cp(nmin)ε):

max
x

c>x

s.t. Ax = b

x ≥ 0

(217)

with

c =

ĈIk+1
+Bk

0
0

 ; x =

[
w
ρ
t

]
; A =

Ξ− γP̂>k −I 0
0 1

> 0

r̂>k −V̂ ?k −1

 ; b =

[
0
1
−Cεk

]
.

Here I is the identity and Ξ is a marginalization matrix as described in [WBS07]. Written explicitly,
we have:

[ĈI
k+1

+Bk]sa =

(√
2cn Var

(
R̂(s, a)

)
+ γ

√
2cn Var

p̂k(s,a)
V̂ ?k + γ

√
2cnεk

)(
1
√
nsa

)
(218)

+

(
7cn

3(1− γ)

)(
1

nsa − 1

)
(219)

Notice that the above expression is a convex function of the nsa for nsa ≥ 2.

We compute the dual of the linear program above (with nsa fixed):

min
y

b>y

s.t. A>y ≥ c
(220)

Therefore, the minimax program of definition 5 can be reformulated into an equivalent convex
minimization program (now we add back +2Cp(nmin)ε and the outer minimization program):
Definition 7 (Convex Minimization Program).

min
n,y

b>y + 2Cp(nmin)ε

s.t. c−A>y ≤ 0

nsa ≥ 0, ∀(s, a)∑
(s,a)

nsa ≤ nmax.

(221)
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