
Supplementary material: Symmetry-adapted generation of 3d point sets for
the targeted discovery of molecules

Architecture

Here we summarize the exact settings used in all layers of our neural network architecture. The
structure of the interaction blocks can be found in Schütt et al. [14]. The number of atom features
was set to 128 and used in all atom-wise dense layers of the interaction block and filter-generating
layers. Distances are expanded in the filter-generating layers using 25 Gaussians with equally spaced
centers 0 Å≤ µ ≤ 10 Å. Overall, we use nine interaction blocks for feature extraction. We re-use one
embedding layer with 128 features at all steps depicted in Fig. 1 of the paper. The output network
for type predictions consists of five atom-wise dense layers with shifted-softplus non-linearity and
128, 96, 64, 32, and 1 atom features, respectively. The output network for distance predictions also
consists of five atom-wise dense layers with shifted-softplus non-linearity and 128, 171, 214, 257,
and 300 atom features. Both output networks contain a final softmax layer.

Training details

The neural networks were trained with stochastic gradient descent using the ADAM optimizer [48].
We start with a learning rate of 10−4 which is reduced using a decay factor of 0.5 after 10 epochs
without improvement of the validation loss. The training is stopped at lr ≤ 10−6. Afterwards, the
model with lowest validation error is selected for generation.

While the atom type labels qtype
i can be directly obtained from the training data, the labels for distance

distributions qdist
ij are obtained using:

[
qdist
ij

]
l
=

exp(− 1
γ (d(t+i)j − µl)

2)∑300
l=1 exp(−

1
γ (d(t+i)j − µl)2)

∀ j < t+ i.

The width of the Gaussians can be tuned with the γ parameter, which we set to 10% of the bin size in
our experiments, resulting in very peaky, uni-modal label vectors.

Controlling randomness with the temperature parameter

In order to control the randomness during generation, we do not directly implement Eq. 3 but include
a temperature parameter T :

p(rt+i|Rt
≤i−1,Z

t
≤i) =

1

α
exp

(∑t+i−1
j=1 log p(d(t+i)j |xj)

T

)
. (5)

Increasing T will smoothen the grid distribution, effectively increasing randomness, whereas small
values lead to a peaky distribution and thus less randomness. For all experiments, we chose a fixed
temperature of T = 0.1 according to the following procedure.

We used the G-SchNet model trained on 50k equilibrium structures from QM9 [26–28] and generated
20k molecules for each T ∈ {2, 1, 0.1, 0.01, 0.001}. From each set, 1k valid and unique molecules
were randomly chosen, where 800 resembled test structures, 100 resembled training structures, and
the remaining 100 were novel structures with more than 9 heavy atoms. We relaxed the five sets
of 1k molecules at the PBE/def2-SVP level of theory[59, 60] using the Orca program, employing
the resolution of identity (RI) approximation[61, 62] and Grimme D3 dispersion correction with
Becke-Johnson damping.[63] The root-mean-square deviation (RMSD) between atomic positions
before and after relaxation was measured. A smaller RMSD means that the generated structures are
closer to a true equilibrium configuration.

In Fig. 6 we show boxplots of the RMSD for the five different temperatures T . We see that the
smallest median values and interquartile ranges are observed for values of T smaller than 1. Since
increasing T corresponds to increasing randomness during sampling, the increase in the RMSD for
T = 1 and T = 2 is expected. However, decreasing T to smaller values than 0.1 does not lead to
smaller RMSDs. Generally, we expect the number of unique sampless to decrease as T gets too small.
Therefore, for the other experiments, we chose the highest value for T that still produces structures
close to equilibrium, namely T = 0.1.
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Figure 6: The boxplots show the RMSD of atomic positions between generated and relaxed structures
for different values of T , where the boxes extend from the lower to the upper quartile values, the red
lines indicate the medians, and the whiskers reach up to 1.5 times the interquartile ranges. Outliers
are not shown.

Sampling generation traces for training

The generation traces start with the focus and origin tokens set to the same position, which is the
center of mass of the respective training molecule. The first new type and position are taken from
the atom closest to the center of mass. At each subsequent step, we randomly select one of the
already placed non-token atoms as focus point (which is only a single choice for the second step).
The new position and type are then taken from the neighbor which is closest to the origin token,
where neighbors are all unplaced atoms of the training molecule that are connected to the focus by a
bond. If no unplaced neighbors are left, the new type is set to the stop token and the focused atom
is marked as finished, i.e. it cannot be chosen as focus anymore. For the next step, another already
placed (unfinished) atom is randomly chosen as focus and the procedure is repeated until all atoms
have been placed and marked as finished.

Generating molecules

For the first step of molecule generation, the focus and origin token are set to the origin of a 3d
grid. The grid extends up to 1.7 Å into all dimensions with a step-size of 0.05 Å. The token are
processed by G-SchNet to sample the type of the first non-token atom and to obtain the two predicted
distance distributions. The probabilities of the grid cell positions are calculated according to Eq. 5 in
order to sample the position of the first atom. Then, at each subsequent step, a random unfinished
non-token atom is selected as focus token (which is only a single choice for the second step). The
grid is centered on the focus (but the origin token stays at the former origin of the grid) and G-SchNet
predictions are obtained to sample the type and position of the next atom (see Fig. 1 in the paper for
an exemplary generation step). If the stop token is predicted as next type, the currently focused atom
is marked as finished and no position is sampled. Instead the next generation step is initialized by
randomly selecting one of the remaining unfinished atoms as focus point. The generation process
stops if no unfinished atoms are left. For our experiments, we also stopped the process if molecules
were not finished after placing 35 atoms and discarded these structures as invalid (usually ~1% of
generated molecules).

Matching molecules

To remove non-unique structures and identify moleclues that resemble training or test data, we
calculate the Tanimoto similarity of path-based fingerprints (FP2) [52] for pairs of molecules with
Open Babel. If the similarity is one, we compare the canonical SMILES representations in a second
step. If they match, the two molecules are treated as equal. Note that this is a conservative approach
as it filters out some spatial isomers which cannot be distinguished with SMILES.
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Figure 7: Ablation study on the effect of the origin token. Statistics are compared for 20k molecules
generated by a G-SchNet model with origin token and 20k molecules generated by a G-SchNet model
without origin token. Table (a) shows the percentage of generated molecules for which the properties
indicated by the check marks in each row hold. The average numbers of atoms, bonds, and rings per
generated molecule and per QM9 molecule are compared in (b), (c), and (d), respectively. B1, B2,
and B3 correspond to single, double, and triple bonds. R3, R4, R5, and R6 are rings of size 3 to 6.

Ablation study

In order to assess the effect of the origin token, we conduct an ablation study where we remove
the origin token from the input to a G-SchNet model during training and generation. All other
hyperparameters are identical to the ones used when training the standard G-SchNet with origin
token. After training, we generate 20k molecules with each architecture and compare their statistics.
Fig. 7a shows that the validity of generated molecules drops by almost 20 percent without the origin
token. Furthermore, the amount of generated molecules that match QM9 training or test structures
significantly decreases. All QM9 structures consist of at most 9 heavy atoms but only 13.7% of the
molecules generated without origin token have 9 or less heavy atoms (compared to 60.4% with origin
token). The diverging atom count can also be seen in Fig. 7b. Moreover, the bond count in Fig. 7c
also diverges from the training data distribution. The ring count in Fig. 7d, on the other hand, is not
noticeably better or worse without origin token. There is an increase in six-membered rings and a
decrease in all smaller ring structures compared to the model with origin token. Both models slightly
diverge from the QM9 training data ring count. Overall, we conclude that the origin token has a
significant, positive effect on the approximated probability distribution. It enables G-SchNet to better
capture the characteristics of the training data, leading to a model that generates more valid molecules
which are more faithful to the training structures but still equally unique and unseen (in test or novel)
compared to a model without origin token.

Targeted discovery with respect to further electronic properties

In a similar fashion to the experiments for molecules with a small HOMO-LUMO gap, we bias
G-SchNet models towards large values of three more electronic properties available in QM9, namely
the isotropic polarizability, the dipole moment, and the electronic spatial extent. The results depicted
in Fig. 8 show clear shifts in the distribution of targeted properties for molecules generated with
biased G-SchNets. We again use small subsets of molecules from QM9 exhibiting the respective
property for fine-tuning of the G-SchNet model previously trained on 50k structures. These subsets
consist of 2100/500 molecules with an isotropic polarizability ≥ 91 Bohr3, 3000/500 molecules
with a dipole moment ≥ 5.75 Debye, and 4400/500 molecules with an electronic spatial extent
≥ 1785 Bohr2 for training/validation, respectively. In contrast to the HOMO-LUMO gap experiments,
where we relaxed generated structures and calculated the gap numerically with time-consuming DFT
simulations, we train three separate SchNet models to predict the three electronic properties. We use
100k molecules from QM9 for training, 10k for validation, and the remaining structures as a test set.
The mean absolute test error is 0.070 Bohr3 for the electronic polarizability, 0.016 Debye for the
dipole moment, and 0.126 Bohr2 for the electronic spatial extent.

Detailed statistics

We provide two tables which report more detailed statistics on relevant properties of generated
molecules. In Table 1 we compare 20k molecules generated by our standard G-SchNet model,
by the G-SchNet model trained on QM9 without structures with 3- or 4-membered rings, by the
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Figure 8: Distribution of three quantum-chemical properties for molecules from QM9 (blue), gener-
ated by an unbiased G-SchNet (purple), and generated by G-SchNets biased towards larger values of
the respective property (green).

Table 1: Statistics for all of our models and CGVAE [22] (molecules provided by the authors).
CGVAE was trained on all molecules in QM9. Our models were trained on 50k randomly selected
molecules from QM9. For the second model molecules with three- and four-membered rings were
excluded. The third model was fine-tuned on 3k molecules with a HOMO-LUMO gap ≤ 4.5 eV. The
numbers are percent of all validly generated molecules (which are 77%, 78%, 69% and 100% of
20k generated for the models from left to right). The molecules are categorized according to the
checkmarks in the first five columns. Unseen refers to molecules not found in the training data and
novel stands for molecules not found in QM9. ≤9 heavy marks molecules with nine or less heavy
atoms and gap refers to the HOMO-LUMO gap and was calculated for relaxed structures.
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G-SchNet
50k +
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CGVAE

~134k

X 91.6% 89.4% 73.8% 98.4%
X X 79.4% 68.3% 66.8% 87.4%
X X 63.8% 68.3% 57.5% 87.4%
X X 70.2% 58.2% 57.8% 30.0%
X X X 58.0% 37.1% 50.8% 18.9%
X X X 42.4% 37.1% 41.5% 18.9%
X X X 6.8% 21.2% 43.4% –

G-SchNet model biased towards small HOMO-LUMO gaps, and by the constrained graph variational
autoencoder (CGVAE). The provided numbers are percent of all validly generated structures.

In Table 2 we compare the number of valid, novel, and unique molecules generated by the standard
G-SchNet as well as six related generative models that rely either on graphs or SMILES strings
as molecule representation. The shown numbers are the respective percentage of 20k generated
molecules for each model. Note that this means that a high novelty score can also come from a
low number of valid molecules, as each invalid structure is not included in the training data and
therefore novel. Similarly, a high uniqueness score is only interesting if the majority of generated
molecules is valid as otherwise the model generates many unique but invalid structures. In general,
the methods cannot directly be compared since generating 3d molecular structures is a different task
than generating graphs or strings. For example, all of the valid G-SchNet molecules correspond to one
proper 3d structure whereas valid graphs and SMILES strings may have no, one, or many different
corresponding 3d conformers which cannot easily be found without expensive quantum-chemical
simulations.
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Table 2: Percent of valid, novel (not in training data), and unique molecules among 20k structures
generated after training on QM9 for G-SchNet and related models working with SMILES or graph
representations. Molecules are considered valid if the valency-constraints of all its atoms are met. In
order to identify duplicate and novel molecules, we use molecular fingerprints and canonical SMILES
strings as explained in section "matching molecules" above. Statistics for graph- and SMILES-based
models are taken from Fig. 3 in Liu et al. [22].

G-SchNet CGVAE*[22] GraphVAE*[64] NeVAE*[65] LSTM*[22] CVAE*[19] GVAE*[32]
3d structure graph graph graph SMILES SMILES SMILES

valid 77.07% 100.00% 61.00% 98.00% 94.78% 10.00% 30.00%
novel 87.47% 94.30% 85.00% 100.00% 82.98% 90.00% 95.44%
unique 91.91% 98.57% 40.90% 99.86% 96.94% 64.50% 9.30%

*statistics are taken from Fig. 3 in Liu et al. [22]
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