
A Functional Encryption and crypto tools440

A.1 Formal definition of Functional Encryption441

Functional encryption relies on a pair of keys like in public key encryption: a master secret key msk442

and a public key pk. The public key pk can be shared and is used to encrypt the data, while the master443

secret key msk is used to build functional decryption keys dkf for f ∈ F . A user having access to c444

an encryption of x with pk and to dkf can learn f(x) but can’t learn anything else about x.445

We give the definition of Functional Encryption, originally defined in [12, 32].446

Definition A.1 (Functional Encryption) A functional encryption scheme FE for a set of functions447

F ⊆ X → Y is a tuple of PPT algorithms FE = (SetUp,KeyGen,Enc,Dec) defined as follows.448

SetUp(1λ,F) takes as input a security parameter 1λ, the set of functions F , and outputs a master449

secret key msk and a public key pk.450

KeyGen(msk, f) takes as input the master secret key and a function f ∈ F , and outputs a functional451

decryption key dkf .452

Enc(pk, x) takes as input the public key pk and a message x ∈ X , and outputs a ciphertext ct.453

Dec(dkf , ct) takes as input a functional decryption key dkf and a ciphertext ct, and returns an454

output y ∈ Y ∪ {⊥}, where ⊥ is a special rejection symbol.455

A.2 IND-CPA security456

With notations of Appendix A.1, for any stateful adversary A and any functional encryption scheme457

FE, we define the following advantage.458

AdvFEA (λ) := Pr

β′ = β :

(pk,msk)← SetUp(1λ,F)
(x0, x1)← AKeyGen(msk,·)(pk)

β
$← {0, 1}, ct← Enc(pk, xβ)

β′ ← AKeyGen(msk,·)(ct)

− 1

2
,

with the restriction that all queries f that A makes to key generation algorithm KeyGen(msk, ·) must459

satisfy f(x0) = f(x1).460

We say FE is IND-CPA secure if for all PPT adversaries A, AdvFEA (λ) = negl(λ)2.461

A.3 Bilinear Groups462

Our FE scheme uses bilinear (or pairing) groups, whose use in cryptography has been introduced463

by [11, 24]. More precisely, given λ a security parameter, let G1 and G2 be two cyclic groups of464

prime order p (for a 2λ-bit prime p) and g1 and g2 their generators, respectively. The application465

e : G1 × G2 → GT is a pairing if it is efficiently computable, non-degenerated, and bilinear:466

e(gα1 , g
β
2) = e(g1, g2)αβ for any α, β ∈ Zp. Additionally, we define gT := e(g1, g2) which spans the467

group GT of prime order p.468

We will denote by GGen a probabilistic polynomial-time (PPT) algorithm that on input 1λ returns a469

description PG = (G1,G2, p, g1, g2, e) of an asymmetric bilinear group. For convenience, given s =470

1, 2 or T , n ∈ N and vectors ~u := (u1 . . . un) ∈ Znp , ~v ∈ Znp , we denote by g~us := (gu1
s . . . gun

s) ∈ Gns471

and e(g~u1 , g
~v
2) =

∏
i=1 e(g1, g2)ui·vi = e(g1, g2)~u·~v ∈ GT , where ~u · ~v is the inner product, i.e.472

~u · ~v :=
∑n
i=1 uivi.473

12

SetUp(1λ,Fn,Bx,By,Bf
):

PG := (G1,G2, p, g1, g2, e)← GGen(1λ), ~s,~t $← Znp , msk := (~s,~t), pk :=
(
PG, g~s1, g

~t
2

)
Return (pk,msk).

Enc
(
pk, (~x, ~y)

)
:

γ
$← Zp, W $← GL2, for all i ∈ [n], ~ai := (W−1)>

(
xi
γsi

)
,~bi := W

(
yi
−ti

)
Return ct :=

(
gγ1 , {g

~ai
1 , g

~bi
2 }i∈[n]

)
∈ G1 × (G2

1 ×G2
2)n

KeyGen(msk, q):

Return dkf :=
(
g
q(~s,~t)
2 , q

)
∈ G2 ×Fn,Bx,By,Bq

.

Dec
(
pk, ct :=

(
gγ1 , {g

~ai
1 , g

~bi
2 }i∈[n]

)
, dkq :=

(
g
q(~s,~t)
2 , q

))
:

out := e(gγ1 , g
q(~s,~t)
2) ·

∏
i,j∈[n] e

(
g~ai1 , g

~bj
2

)qi,j
Return log(out) ∈ Z.

Figure 10: Our functional encryption scheme for quadratic polynomials.

B Our Quadratic Functional Encryption Scheme474

B.1 Proofs of IND-CPA security ans correctness475

Proof of Security476

To prove security of our scheme, we use the Generic Bilinear Group Model, which captures the477

fact that no attacks can make use of the representation of group elements. For convenience, we use478

Maurer’s model [30], where a third party implements the group and gives access to the adversary via479

handles, providing also equality checking. This is an alternative, but equivalent, formulation of the480

Generic Group Model, as originally introduced in [31, 37].481

We prove security in two steps: first, we use a master theorem from [6] that relates the security in the482

Generic Bilinear Group model to a security in a symbolic model. Second, we prove security in the483

symbolic model. Let us now explain the symbolic model (the next paragraph is taken verbatim from484

[4]).485

In the symbolic model, the third party does not implement an actual group, but keeps track of abstract486

expressions. For example, consider an experiment where values x, y are sampled from Zp and the487

adversary gets handles to gx and gy . In the generic model, the third party will choose a group of order488

p, for example (Zp,+), will sample values x, y ←R Zp and will give handles to x and y. On the489

other hand, in the symbolic model the sampling won’t be performed and the third party will output490

handles to X and Y , where X and Y are abstract variables. Now, if the adversary asks for equality491

of the elements associated to the two handles, the answer will be negative in the symbolic model,492

since abstract variable X is different from abstract variable Y , but there is a small chance the equality493

check succeeds in the generic model (only when the sampling of x and y coincides).494

To apply the master theorem, we first need to change the distribution of the security game to495

ensure that the public key, challenge ciphertext, and functional decryption keys only contain group496

elements whose exponent is a polynomial evaluated on uniformly random values in Zp (this is called497

polynomially induced distributions in [6, Definition 10], and previously in [10]). We show that this is498

possible with only a negligible statistical change in the distribution of the adversary view.499

2In cryptography, the security parameter λ is a measure of the probability with which an adversary can break
the scheme. λ or 1λ means that the probability of breaking the scheme is 2−λ.

13

After applying the master theorem from [6], we prove the security in the symbolic model (cf.500

Appendix D.1), which simply consists of checking that an algebraic condition on the scheme in501

satisfied.502

Theorem B.1 (IND-CPA Security in the Generic Bilinear Group Model) For any PPT adver-503

sary A that performs at most Q group operations against the functional encryption scheme described504

on 10, we have, in the generic bilinear group model:505

AdvFEA (λ) ≤ 12 · (6n+ 3 +Q+Q′)2 + 1

p
,

where Q′ is the number of queries to KeyGen(msk, ·).506

The proof of this result is quite technical and can be found in the dedicated Appendix D.507

Proof of Correctness508

For all i, j ∈ [n], we have:

e(g~ai1 , g
~bj
2) = g

~ai·~bj
T = g

xiyj−γsitj
T

since509

~ai ·~bj =

(
(W−1)>

(
xi
γsi

))>
·
(
W

(
yj
−tj

))
=

(
xi
γsi

)>
W−1W

(
yj
−tj

)
= xiyj − γsitj .

Therefore we have:510

out = e(gγ1 , g
q(~s,~t)
2) ·

∏
i,j

e(g~ai1 , g
~bi
2)qi,j = g

γq(~s,~t)
T · g

∑
i,j qi,jxiyj−γqi,jsitj

T

= g
γq(~s,~t)
T · gq(~x,~y)−γq(~s,~t)T = g

q(~x,~y)
T .

Proof of Complexity511

The complexity can be inferred from the decryption phase as detailed in Figure 10 and we compare512

this with previous quadratic FE schemes in Figure 11.513

FE scheme ct dkf Dec Assumption
[6, Sec. 3] G6n+1

1 ×G6n+1
2 G1 ×G2 6n2(E1 + P) + 2P SXDH, 3PDDH

[6, Sec. 4] G2n+1
1 ×G2n+1

2 G2
1 3n2(E1 + P) + 2P GGM

Ours G2n+1
1 ×G2n

2 G2 2n2(E1 + P) + P GGM

Figure 11: Performance comparison of FE for quadratic polynomials. E1 and P denote exponentiation
in G1 and pairing evaluation, respectively. Decryption additionally requires solving a discrete
logarithm but this computational overhead is the same for all schemes and is therefore omitted here.

B.2 Detailed equivalence of the FE scheme with a neural network514

Proof of Linear Homomorphism515

For all (~x, ~y) ∈ Znp × Znp , and (~u,~v) ∈ Znp × Znp , given an encryption of (~x, ~y) under the public516

key pk := (g~s1, g
~t
2), one can efficiently compute an encryption of (~u>~x,~v>~y) under the public key517

pk′ := (g~u
>~s

1 , g~v
>~t

2). Indeed, given518

Enc(pk, (~x, ~y)) := (gγ1 , {g
~ai
1 , g

~bi
2 }i∈[n]),

and ~u,~v ∈ Znp , one can efficiently compute:519

(gγ1 , g
∑

i∈[n] ui·~ai
1 , g

∑
i∈[n] vi·~bi

2),

14

which is Enc(pk′, (~u>~x,~v>~y)), since:520 ∑
i∈[n]

ui · ~ai =
∑
i∈[n]

ui · (W−1)>
(
xi
γsi

)
= (W−1)>

(∑
i∈[n] ui · xi

γ
∑
i∈[n] ui · si

)

= (W−1)>
(
~u>~x
γ~u>~s

)
.

Similarly, we have:521 ∑
i∈[n]

vi ·~bi =
∑
i∈[n]

vi ·W
(
yi
−ti

)
= W

(
~v>~y
−~v>~t

)
.

C Additional results522

C.1 Influence of weight compression on the network performance523

We show here that we can manage to compress significantly the network weights in order to have524

a very fast discrete logarithm without modifying the results and conclusions made throughout the525

article. The main and collateral model follow the same CNN structure as stated above, and the526

collateral accuracy is reported after 10 epochs of training.527

Main accuracy with compression 97.72± 0.30 %
Collateral accuracy with compression 55.27± 0.41 %

Table 2: Impact of weight compression on the main and collateral accuracies

C.2 Influence of alpha during adversarial training528

To choose the best value for α, we have chosen an output size of 4 which allows us to keep a very529

high main accuracy while reducing significantly the collateral one, as shown in Figure 4. We observe530

that the semi-adversarial training does not affect much the main accuracy for a large range of values531

for α, while its impact on the collateral accuracy is decisive. Figure 12 illustrates the role of α and532

justify our choice of α = 1.7. For this experiment, we have chosen for both networks a simple feed533

forward with a hidden layer of 32 neurons.534

Figure 12: Trade-off between the main and collateral tasks accuracies as a function of α

D Security proof of our FE scheme535

Proof. For any experiment Exp, adversary A, and security parameter λ ∈ N, we use the notation:536

AdvExp(A) := Pr[1 ← Exp(1λ,A)], where the probability is taken over the random coins of Exp537

and A.538

15

Exp1(1λ,A): KeyGen(msk, f):

(G1,G2, p, g1, g2, e)← GGen(1λ), ~s,~t $← Znp return (g
f(~s,~t)
2 , f).

a, b, c, d
$← Zp, set PG := (G1,G2, p, g

ad−bc
1 , g2, e)

msk := (~s,~t), pk :=
(
PG, g(ad−bc)~s1 , g~t2

)(
(~x(0), ~y(0)), (~x(1), ~y(1))

)
← AKeyGen(msk,·)(pk)

β
$← {0, 1}, γ $← Zp

for all i ∈ [n], ~ai :=

(
d −c
−b a

)(
x
(β)
i
γsi

)
,~bi :=

(
a b
c d

)(
y
(β)
i
−tj

)
ct =:

(
g
γ(ad−bc)
1 , {g~ai1 , g

~bi
2 }i∈[n]

)
β′ ← AKeyGen(msk,·)(pk, ct)
Return 1 if β′ = β and for all queried f , f(~x(0), ~y(0)) = f(~x(1), ~y(1)).

Figure 13: Experiment Exp1, for the proof of Theorem B.1.

While we want to prove the security result in the real experiment Exp0, in which the adversary has to539

guess β, we slightly modify it into the hybrid experiment Exp1, described in 13: we write the matrix540

W
$← GL2 used in the challenge ciphertext as W :=

(
a b
c d

)
, chosen from the beginning. Then541

W−1 = 1
ad−bc

(
d −b
−c a

)
.542

The only difference with the IND-CPA security game as defined in Appendix A.2, is that we change543

the generator g1
$← G∗1 into gad−bc1 for a, b, c, d $← Zp, which only changes the distribution of544

the game by a statistical distance of at most 3
p (this is obtained by computing the probability that545

ad− bc = 0 when a, b, c, d $← Zp). Thus,546

AdvFEA (λ) = Adv0(A) ≤ Adv1(A) +
3

p
.

Note that in Exp1, the public key, the challenge ciphertext and the functional decryption keys only547

contain group elements whose exponents are polynomials evaluated on random inputs (as opposed to548

gW
−1

1 , for instance). This is going to be helpful for the next step of the proof, which uses the generic549

bilinear group model.550

Next, we make the generic bilinear group model assumption, which intuitively says that no PPT551

adversary can exploit the structure of the bilinear group to perform better attacks than generic552

adversaries. That is, we have (with Exp2 defined in 14):553

max
PPTA

(
Adv1(A)

)
= max

PPTA

(
Adv2(A)

)
.

In this experiment, we denote by ∅ the empty list, by append(L, x) the addition of an element x to554

the list L, and for any i ∈ N, we denote by L[i] the i’th element of the list L if it exists (lists are555

indexed from index 1 on), or ⊥ otherwise.556

Thus, it suffices to show that for any PPT adversary A, Adv2(A) is negligible in λ. The experiment557

Exp2 defined in Figure 14 falls into the general class of simple interactive decisional problems from558

[6, Definition 14]. Thus, we can use their master theorem [6, Theorem 7], which, for our particular559

case (setting the public key size N := 2n+ 2, the key size c = 1, the ciphertext size c∗ := 4n+ 1,560

and degree d = 6 in [6, Theorem 7]) states that:561

Adv2(A) ≤ 12 · (6n+ 3 +Q+Q′)2

p
,

16

Exp2(1λ,A):

L1 = L2 = LT := ∅, Qsk := ∅, ~s,~t $← Znp , a, b, c, d $← Zp, append(L1, (ad − bc) · ~s),
append(L2,~t), β $← {0, 1}(

(~x(0), ~y(0)), (~x(1), ~y(1))
)
← AOadd,Opair,Osk,Oeq(1λ, p)

Ochal

(
(~x(0), ~y(0)), (~x(1), ~y(1))

)
β′ ← AOadd,Opair,Osk,Oeq(1λ, p)
If β = β′, and for all f ∈ Qsk, f(~x(0), ~y(0)) = f(~x(1), ~y(1)), output 1. Otherwise, output 0.

Oadd(s ∈ {1, 2, T}, i, j ∈ N):
append(Ls, Ls[i] + Ls[j]).

Opair(i, j ∈ N):
append(LT , L1[i] · L2[j]).

Ochal

(
(~x(0), ~y(0)), (~x(1), ~y(1))

)
:

γ
$← Zp, append(L1, γ(ad− bc))

for all i ∈ [n], ~ai :=

(
d −c
−b a

)(
x
(β)
i
γsi

)
, append(L1,~ai), ~bi :=

(
a b
c d

)(
y
(β)
i
−ti

)
,

append(L2,~bi).

Osk(f ∈ Fn,Bx,By,Bf
):

append(L2, f(~s,~t)), Qsk := Qsk ∪ {f}.

Oeq(s ∈ {1, 2, T}, i, j ∈ N):
Output 1 if Ls[i] = Ls[j], 0 otherwise

Figure 14: Experiment Exp2. Wlog. we assume no query contains indices i, j ∈ N that exceed the
size of the involved lists.

where Q′ is the number of queries to Osk, and Q is the number of group operations, that is, the562

number of calls to oracles Oadd and Opair, provided the following algebraic condition is satisfied:563

{M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq0(M)}

= {M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq1(M)},

where for all M, b ∈ {0, 1},564

Eqb(M) :


1

(AD −BC)~S
(AD −BC)Γ

D~x(b) − ΓC~S

−B~x(b) + ΓA~S


>

M


1
~T

A~y(b) −B~T
C~y(b) −D~T

(f(~S, ~T))f∈Qsk

 = 0,

where the equality is taken in the ring Zp[~S, ~T ,A,B,C,D,Γ], and 0 denotes the zero polynomial.565

Intuitively, this condition captures the security at a symbolic level: it holds for schemes that are not566

trivially broken. The latter means that computing a linear combination in the exponents of target567

group elements that can be obtained from pk, the challenge ciphertext, and functional decryption568

keys, does not break the security of the scheme. We prove this condition is satisfied in D.1 below. �569

17

Lemma D.1 (Symbolic Security) For any (~x(0), ~y(0)), (~x(1), ~y(1)) ∈ Z2n
p , and any set Qsk ⊆570

Fn,Bx,By,Bf
such that for all f ∈ Qsk, f(~x(0), ~y(0)) = f(~x(1), ~y(1)), we have:571

{M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq0(M)}

= {M ∈ Z(3n+2)×(3n+Q′+1)
p : Eq1(M)},

where for all M, b ∈ {0, 1},572

Eqb(M) :


1

(AD −BC)~S
(AD −BC)Γ

D~x(b) − ΓC~S

−B~x(b) + ΓA~S


>

M


1
~T

A~y(b) −B~T
C~y(b) −D~T

(f(~S, ~T))f∈Qsk

 = 0,

where the equality is taken in the ring Zp[~S, ~T ,A,B,C,D,Γ], and 0 denotes the zero polynomial.573

Proof.Let b ∈ {0, 1}, and M ∈ Z(3n+2)×(3n+Q′+1)
p that satisfies Eqb(M). We prove it also satisfies574

Eq1−b(M). To do so, we use the following rules:575

Rule 1 : for all P,Q,R ∈ Zp[~S, ~T ,A,B,C,D,Γ], with deg(P) ≥ 1, if P · Q + R = 0 and R is576

not a multiple of P , then Q = 0 and R = 0.577

Rule 2 : for all P ∈ Zp[~S, ~T ,A,B,C,D,Γ], any variable X among the set {~S, ~T ,A,B,C,D,Γ},578

and any x ∈ Zp, P = 0 implies P (X := x) = 0, where P (X := x) denotes the polynomial579

P evaluated on X = x.580

Evaluating Eqb(M) on B = D = 0 (using Rule 2), then using Rule 1 on P = CΓSiTj for all581

i, j ∈ [n], we obtain that:582

Mn+2+i


0
~T
0
0

(f(~S, ~T))f∈Qsk

 = 0,

where Mn+2+i denotes the n+ 2 + i’th row of M.583

Similarly, using Rule 1 on P = ΓASiTj for all i, j ∈ [n], we obtain that:584

M2n+2+i


0
~T
0
0

(f(~S, ~T))f∈Qsk

 = 0.

Thus, we have:585

∀β ∈ {0, 1} :


0
0
0

D~x(β) − ΓC~S

−B~x(β) + ΓA~S


>

M


0
~T
0
0

(f(~S, ~T))f∈Qsk

 = 0. (1)

Using Rule 1 on P = (AD −BC)SiBTj for all i, j ∈ [n] in the equation Eqb(M), we get that the586

coefficient Mi+1,n+1+j = 0 for all i, j ∈ [n]. Similarly, using Rule 1 on P = (AD −BC)SiDTj587

for all i, j ∈ [n], we get Mi+1,2n+1+j = 0 for all i, j ∈ [n]. Then, using Rule 1 on P =588

(AD −BC)ΓBTj for all j ∈ [n], we get Mn+2,n+1+j = 0 for all j ∈ [n]. Finally, using Rule 1 on589

P = (AD−BC)ΓDTj for all j ∈ [n], we get Mn+2,2n+1+j = 0 for all j ∈ [n]. Overall, we obtain:590

∀β ∈ {0, 1} :


0

(AD −BC)~S
(AD −BC)Γ

0
0


>

M


0
0

A~y(β) −B~T
C~y(β) −D~T

0

 = 0. (2)

18

We write:591 
0
0
0

D~x(b) − ΓC~S

−B~x(b) + ΓA~S


>

M


0
0

A~y(b) −B~T
C~y(b) −D~T

0


=
∑
i,j∈[n]

(
Dx

(b)
i − ΓCSi

−Bx(b)i + ΓASi

)>

×
(
m

(1)
i,j

(
1 0
0 1

)
+m

(2)
i,j

(
1 0
0 0

)
+m

(3)
i,j

(
0 0
1 0

)
+m

(4)
i,j

(
0 1
0 0

))
×

(
Ay

(b)
j −BTj

Cy
(b)
j −DTj

)

Evaluating the equation Eqb(M) on C = D = 0 (by Rule 2), then using Rule 1 on P = ΓABSiTj

for all i, j ∈ [n], we obtain m
(3)
i,j = 0 for all i, j ∈ [n]. Evaluating the equation Eqb(M) on

A = B = 0 (by Rule 2), then using Rule 1 on P = ΓCDSiTj for all i, j ∈ [n], we obtain m(4)
i,j = 0

for all i, j ∈ [n]. Evaluating the equation Eqb(M) on A = B = C = D = 1 (using Rule 2), then
using Rule 1 on P = ΓSiTj for all i, j ∈ [n], using the fact that m(3)

i,j = m
(4)
i,j = 0 and (1), we obtain

m
(2)
i,j = 0 for all i, j ∈ [n]. Using Rule 1 on P = Γ(AD−BC)SiTj for all i, j ∈ [n] in the equation

Eqb(M), we obtain that for all i, j ∈ [n],

m
(1)
i,j = Mn+2


0
0
0
0

(fi,j)f∈Qsk

 ,

where Mn+2 is the n+ 2’th row of M.592

Putting everything together, can write593 
0
0
0

D~x(b) − ΓC~S

−B~x(b) + ΓA~S


>

M


0
0

A~y(b) −B~T
C~y(b) −D~T

0


as594

(AD −BC)Mn+2


0
0
0
0(

f(~x(b), ~y(b))− Γf(~s,~t)
)
f∈Qsk



= (AD −BC)Mn+2


0
0
0
0(

f(~x(1−b), ~y(1−b))− Γf(~s,~t)
)
f∈Qsk



=


0
0
0

D~x(1−b) − ΓC~S

−B~x(1−b) + ΓA~S


>

M


0
0

A~y(b) −B~T
C~y(b) −D~T

0

 (3)

19

where we use the fact that for all f ∈ Qsk, we have the equality f(~x(b), ~y(b)) = f(~x(1−b), ~y(1−b)).595

Evaluating equation Eqb(M) on A = B = D = 0 (by Rule 2), then using Rule 1 on ΓSiC for all596

i ∈ [n], and using (1) and (3), we obtain that the coefficient Mn+2+i,1 = 0 for all i ∈ [n]. Evaluating597

Eqb(M) on B = C = D = 0 (by Rule 2), then using Rule 1 on ΓSiA for all i ∈ [n], and using (1)598

and (3), we obtain that the coefficient M2n+2+i,1 = 0 for all i ∈ [n]. Thus, we have:599

∀β ∈ {0, 1} :


0
0
0

D~x(β) − ΓC~S

−B~x(β) + ΓA~S


>

M


1
0
0
0
0

 = 0. (4)

Evaluating equation Eqb(M) on A = C = D = 0 (by Rule 2), then using Rule 1 on BTj for all600

i ∈ [n], and using (3), we obtain that the coefficient M1,n+1+j = 0 for all j ∈ [n]. Evaluating601

Eqb(M) on A = B = C = 0 (by Rule 2), then using Rule 1 on DTj for all j ∈ [n], and using (3),602

we obtain that the coefficient M1,2n+1+j = 0 for all j ∈ [n]. Thus, we have:603

∀β ∈ {0, 1} :


1
0
0
0
0


>

M


0
0

A~y(β) −B~T
C~y(β) −D~T

0

 = 0. (5)

Overall, we have:604

Eqb(M) :


1

(AD −BC)~S
(AD −BC)Γ

D~x(b) − ΓC~S

−B~x(b) + ΓA~S


>

M


1
~T

A~y(b) −B~T
C~y(b) −D~T

(f(~S, ~T))f∈Qsk

 = 0

which implies the following relation, under (1),(2),(4),(5)605 
1

(AD −BC)~S
(AD −BC)Γ

0
0


>

M


1
~T
0
0

(f(~S, ~T))f∈Qsk



+


0
0
0

D~x(b) − ΓC~S

−B~x(b) + ΓA~S


>

M


0
0

A~y(b) −B~T
C~y(b) −D~T

0

 = 0

and then, under (3)606 
1

(AD −BC)~S
(AD −BC)Γ

0
0


>

M


1
~T
0
0

(f(~S, ~T))f∈Qsk



+


0
0
0

D~x(1−b) − ΓC~S

−B~x(1−b) + ΓA~S


>

M


0
0

A~y(1−b) −B~T
C~y(1−b) −D~T

0

 = 0.

20

Under (1),(2),(4),(5), this implies607

Eq1−b(M) :


1

(AD −BC)~S
(AD −BC)Γ

D~x(1−b) − ΓC~S

−B~x(1−b) + ΓA~S


>

M


1
~T

A~y(1−b) −B~T
C~y(1−b) −D~T
(f(~S, ~T))f∈Qsk

 = 0

�608

21

	Functional Encryption and crypto tools
	Formal definition of Functional Encryption
	IND-CPA security
	Bilinear Groups

	Our Quadratic Functional Encryption Scheme
	Proofs of IND-CPA security ans correctness
	Detailed equivalence of the FE scheme with a neural network

	Additional results
	Influence of weight compression on the network performance
	Influence of alpha during adversarial training

	Security proof of our FE scheme

