
A The canonicalization map

In this appendix, we provide a proof of Lemma 1. We compute Q and R via a reduction on the affine
expression trees that represent the canonicalized problem. Let f be the root node with arguments
(descendants) g1, . . . , gn. Then we obtain tensors T1, . . . , Tn representing the (linear) action of f
on each argument. We recurse on each subtree gi and obtain tensors S1, . . . , Sn. Due to the DPP
rules, for i = 1, . . . , n, we either have (Ti)j,k,` = 0 for ` 6= p + 1 or (Si)j,k,` = 0 for ` 6= p + 1.
We define an operation (Ti, Si) such that in the first case, (Ti, Si) =

Pp+1
`=1 (Ti)[:,:,p+1](Si)[:,:,`],

and in the second case (Ti, Si) =
Pp+1

`=1 (Ti)[:,:,`](Si)[:,:,p+1]. The tree rooted at f then evaluates to
S0 = (T1, S1) + · · ·+ (Tn, Sn).

The base case of the recursion corresponds to the tensors produced when a variable, parameter, or
constant node is evaluated. (These are the leaf nodes of an affine expression tree.)

• A variable leaf x 2 Rd produces a tensor T 2 Rd⇥n+1⇥1, where Ti,j,1 = 1 if i maps to j in
the vector containing all variables, 0 otherwise.

• A parameter leaf p 2 Rd produces a tensor T 2 Rd⇥1⇥p+1, where Ti,1,j = 1 if i maps to j
in the vector containing all parameters, 0 otherwise.

• A constant leaf c 2 Rd produces a tensor T 2 Rd⇥1⇥1, where Ti,1,1 = ci for i = 1, . . . , d.

B Derivative of a cone program

In this appendix, we show how to differentiate through a cone program. We first present some
preliminaries.

Primal-dual form of a cone program. A (convex) cone program is given by

(P) minimize cTx
subject to Ax+ s = b

s 2 K,

(D) minimize bT y
subject to AT y + c = 0

y 2 K⇤.
(10)

Here x 2 Rn is the primal variable, y 2 Rm is the dual variable, and s 2 Rm is the primal slack
variable. The set K ✓ Rm is a nonempty, closed, convex cone with dual cone K⇤ ✓ Rm. We call
(x, y, s) a solution of the primal-dual cone program (10) if it satisfies the KKT conditions:

Ax+ s = b, AT y + c = 0, s 2 K, y 2 K⇤, sT y = 0.

Every convex optimization problem can be reformulated as a convex cone program.

Homogeneous self-dual embedding. The homogeneous self-dual embedding reduces the process
of solving (10) to finding a zero of a certain residual map [76]. Letting N = n+m+1, the embedding
uses the variable z 2 RN , which we partition as (u, v, w) 2 Rn ⇥ Rm ⇥ R. The normalized residual
map introduced in [24] is the function N : RN ⇥ RN⇥N ! RN , defined by

N (z,Q) =
�
(Q� I)⇧+ I

�
(z/|w|),

where ⇧ denotes projection onto Rn ⇥K⇤ ⇥ R+, and Q is the skew-symmetric matrix

Q =

2

4
0 AT c

�A 0 b
�cT �bT 0

3

5 . (11)

If N (z,Q) = 0 and w > 0, we can use z to construct a solution of the primal-dual pair (10) as

(x, y, s) = (u,⇧K⇤(v),⇧K⇤(v)� v)/w, (12)

where ⇧K⇤(v) denotes the projection of v onto K⇤. From here onward, we assume that w = 1. (If
this is not the case, we can scale z such that it is the case.)

14

Differentiation. A conic solver is a numerical algorithm for solving (10). We can view a conic
solver as a function : Rm⇥n ⇥ Rm ⇥ Rn ! Rn+2m mapping the problem data (A, b, c) to a
solution (x, y, s). (We assume that the cone K is fixed.) In this section we derive expressions for the
derivative of , assuming that S is in fact differentiable. Interlaced with our derivations, we describe
how to numerically evaluate the adjoint of the derivative map, which is necessary for backpropagation.

Following [1] and [4, Section 7], we can express as the composition � � s �Q, where

• Q : Rm⇥n ⇥ Rm ⇥ Rn ! RN⇥N maps the problem data to Q, given by (11),

• s : RN⇥N ! RN solves the homogeneous self-dual embedding, which we can implicitly
differentiate, and

• � : RN ! Rn ⇥ Rm ⇥ Rm maps z to the primal-dual pair, given by (12).

To backpropagate through , we need to compute the adjoint of the derivative of at (A, b, c) applied
to the vector (dx, dy, ds), or

(dA, db, dc) = DT (A, b, c)(dx, dy, ds) = DTQ(A, b, c)DT s(Q)DT�(z)(dx, dy, ds).

Since our layer only outputs the primal solution x, we can simplify the calculation by taking
dy = ds = 0. By (12),

dz = DT�(z)(dx, 0, 0) =

2

4
dx
0

�xT dx

3

5 .

We can compute Ds(Q) by implicitly differentiating the normalized residual map:

Ds(Q) = �(DzN (s(Q), Q))�1DQN (s(Q), Q). (13)

This gives
dQ = DT s(Q)dz = �(M�T dz)⇧(z)T ,

where M = (Q� I)D⇧(z) + I . Computing g = M�T dz via a direct method (i.e., materializing M ,
factorizing it, and back-solving) can be impractical when M is large. Instead, one might use a Krylov
method like LSQR [65] to solve

minimize
g

kMT g � dzk22, (14)

which only requires multiplication by M and MT . Instead of computing dQ as an outer product, we
only obtain its nonzero entries. Finally, partitioning dQ as

dQ =

"
dQ11 dQ12 dQ13

dQ21 dQ22 dQ23

dQ31 dQ32 dQ33

#
,

we obtain

dA = �dQT
12 + dQ21

db = �dQ23 + dQT
32

dc = �dQ13 + dQT
31.

Non-differentiability. To implicitly differentiate the solution map in (13), we assumed that the
M was invertible. When M is not invertible, we approximate dQ as �gls⇧(z)T , where gls is a
least-squares solution to (14).

15

C Examples

This appendix includes code for the examples presented in §6.

Logistic regression. The code for the logistic regression problem is below:

1 import cvxpy as cp
2 from cvxpylayers.torch import CvxpyLayer
3
4 beta = cp.Variable ((n, 1))
5 b = cp.Variable ((1, 1))
6 X = cp.Parameter ((N, n))
7
8 log_likelihood = (1. / N) * cp.sum(
9 cp.multiply(Y, X @ beta + b) - cp.logistic(X @ beta + b)

10)
11 regularization = -0.1 * cp.norm(beta , 1) -0.1 *

cp.sum_squares(beta)
12
13 prob = cp.Problem(cp.Maximize(log_likelihood + regularization))
14 fit_logreg = CvxpyLayer(prob , parameters =[X], variables =[beta ,

b])

Stochastic control. The code for the stochastic control problem (7) is below:

1 import cvxpy as cp
2 from cvxpylayers.torch import CvxpyLayer
3
4 x_cvxpy = cp.Parameter ((n, 1))
5 P_sqrt_cvxpy = cp.Parameter ((m, m))
6 P_21_cvxpy = cp.Parameter ((n, m))
7 q_cvxpy = cp.Parameter ((m, 1))
8
9 u_cvxpy = cp.Variable ((m, 1))

10 y_cvxpy = cp.Variable ((n, 1))
11
12 objective = .5 * cp.sum_squares(P_sqrt_cvxpy @ u_cvxpy) +

x_cvxpy.T @ y_cvxpy + q_cvxpy.T @ u_cvxpy
13 prob = cp.Problem(cp.Minimize(objective),
14 [cp.norm(u_cvxpy) <= .5, y_cvxpy == P_21_cvxpy @ u_cvxpy])
15
16 policy = CvxpyLayer(prob ,
17 parameters =[x_cvxpy , P_sqrt_cvxpy , P_21_cvxpy , q_cvxpy],
18 variables =[u_cvxpy])

D TensorFlow layer

In §5, we showed how to implement the problem (4) using our PyTorch layer. The below code shows
how to implement the same problem using our TensorFlow 2.0 layer.

1 import tensorflow as tf
2 from cvxpylayers.tensorflow import CvxpyLayer
3
4 F_t = tf.Variable(tf.random.normal(F.shape))
5 g_t = tf.Variable(tf.random.normal(g.shape))
6 lambd_t = tf.Variable(tf.random.normal(lambd.shape))
7 layer = CvxpyLayer(problem , parameters =[F, g, lambd],

variables =[x])
8 with tf.GradientTape () as tape:
9 x_star , = layer(F_t , g_t , lambd_t)

10 dF , dg , dlambd = tape.gradient(x_star , [F_t , g_t , lambd_t])

16

E Additional examples

In this appendix we provide additional examples of constructing differentiable convex optimization
layers using our implementation. We present the implementation of common neural networks layers,
even though analytic solutions exist for some of these operations. These layers can be modified in
simple ways such that they do not have analytical solutions. In the below problems, the optimization
variable is y (unless stated otherwise). We also show how prior work on differentiable convex
optimization layers such as OptNet [6] is captured by our framework.

The ReLU, defined by f(x) = max{0, x}, can be interpreted as projecting a point x 2 Rn onto the
non-negative orthant as

minimize 1
2 ||x� y||22

subject to y � 0.

We can implement this layer with:

1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = cp.Minimize(cp.sum_squares(x-y))
4 cons = [y >= 0]
5 prob = cp.Problem(obj , cons)
6 layer = CvxpyLayer(prob , parameters =[x], variables =[y])

The sigmoid or logistic function, defined by f(x) = (1 + e�x)�1, can be interpreted as projecting a
point x 2 Rn onto the interior of the unit hypercube as

minimize �x>y �Hb(y)
subject to 0 < y < 1,

where Hb(y) = � (
P

i yi log yi + (1� yi) log(1� yi)) is the binary entropy function. This is
proved, e.g., in [4, Section 2.4]. We can implement this layer with:

1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = cp.Minimize(-x.T*y - cp.sum(cp.entr(y) + cp.entr(1.-y)))
4 prob = cp.Problem(obj)
5 layer = CvxpyLayer(prob , parameters =[x], variables =[y])

The softmax, defined by f(x)j = exj/
P

i e
xi , can be interpreted as projecting a point x 2 Rn onto

the interior of the (n� 1)-simplex �n�1 = {p 2 Rn | 1>p = 1 and p � 0} as

minimize �x>y �H(y)
subject to 0 < y < 1,

1>y = 1,

where H(y) = �
P

i yi log yi is the entropy function. This is proved, e.g., in [4, Section 2.4]. We
can implement this layer with:

1 x = cp.Parameter(d)
2 y = cp.Variable(d)
3 obj = cp.Minimize(-x.T*y - cp.sum(cp.entr(y)))
4 cons = [sum(y) == 1.]
5 prob = cp.Problem(obj , cons)
6 layer = CvxpyLayer(prob , parameters =[x], variables =[y])

17

The sparsemax [58] does a Euclidean projection onto the simplex as

minimize ||x� y||22
subject to 1>y = 1,

0 y 1.

We can implement this layer with:

1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = cp.sum_squares(x-y)
4 cons = [cp.sum(y) == 1, 0. <= y, y <= 1.]
5 prob = cp.Problem(cp.Minimize(obj), cons)
6 layer = CvxpyLayer(prob , [x], [y])

The constrained softmax [59] solves the optimization problem

minimize �x>y �H(y)
subject to 1>y = 1,

y u,
0 < y < 1.

We can implement this layer with:

1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = -x*y-cp.sum(cp.entr(y))
4 cons = [cp.sum(y) == 1., y <= u]
5 prob = cp.Problem(cp.Minimize(obj), cons)
6 layer = CvxpyLayer(prob , [x], [y])

The constrained sparsemax [55] solves the optimization problem

minimize ||x� y||22,
subject to 1>y = 1,

0 y u.

We can implement this layer with:

1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = cp.sum_squares(x-y)
4 cons = [cp.sum(y) == 1., 0. <= y, y <= u]
5 prob = cp.Problem(cp.Minimize(obj), cons)
6 layer = CvxpyLayer(prob , [x], [y])

The Limited Multi-Label (LML) layer [7] solves the optimization problem

minimize �x>y �Hb(y)
subject to 1>y = k,

0 < y < 1.

We can implement this layer with:

1 x = cp.Parameter(n)
2 y = cp.Variable(n)
3 obj = -x*y-cp.sum(cp.entr(y))-cp.sum(cp.entr(1.-y))
4 cons = [cp.sum(y) == k]
5 prob = cp.Problem(cp.Minimize(obj), cons)
6 layer = CvxpyLayer(prob , [x], [y])

18

The OptNet QP. We can re-implement the OptNet QP layer [6] in a few lines of code. The OptNet
layer is a solution to a convex quadratic program of the form

minimize 1
2x

>Qx+ q>x
subject to Ax = b,

Gx h,

where x 2 Rn is the optimization variable, and the problem data are Q 2 Rn⇥n (which is positive
semidefinite), p 2 Rn, A 2 Rm⇥n, b 2 Rm, G 2 Rp⇥n, and h 2 Rp. We can implement this with:

1 Q_sqrt = cp.Parameter ((n, n))
2 q = cp.Parameter(n)
3 A = cp.Parameter ((m, n))
4 b = cp.Parameter(m)
5 G = cp.Parameter ((p, n))
6 h = cp.Parameter(p)
7 x = cp.Variable(n)
8 obj = cp.Minimize (0.5*cp.sum_squares(Q_sqrt*x) + q.T @ x)
9 cons = [A @ x == b, G @ x <= h]

10 prob = cp.Problem(obj , cons)
11 layer = CvxpyLayer(prob , parameters =[Q_sqrt , q, A, b, G, h],

variables =[x])

Note that we take the matrix square-root of Q in PyTorch, outside the CVXPY layer, to get the
derivative with respect to Q. DPP does not allow the quadratic form atom to be parametrized, as
discussed in §4.1.

19

	1 Introduction
	2 Related work
	3 Background
	4 Differentiating through disciplined convex programs
	4.1 Disciplined parametrized programming
	4.2 Canonicalization
	4.3 Derivative of a conic solver
	4.4 Solution retrieval

	5 Implementation
	6 Examples
	6.1 Data poisoning attack
	6.2 Convex approximate dynamic programming

	7 Evaluation
	8 Discussion
	A The canonicalization map
	B Derivative of a cone program
	C Examples
	D TensorFlow layer
	E Additional examples

