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Supplementary material

A Properties of EMSE minimization

A.1 EMSE and the expected error in estimating the DDC of exact posterior

The following proposition sets up the relationship between the EMSE in (5) and the error between
h(x) and the true posterior mean (3).
Proposition 1. Minimizing (5) minimizes Ep(x)[Ep(z|x)[γ(z)]− h(x)‖2], the expected l-2 squared
distance between the true posterior DDC and the recognition model prediction. The minimum is
achieved when h(x) = Ep(z|x)[γ(z)]

Proof. Following the standard decomposition of the MSE for regression with additional expectation
on p(x),

(5) = Ep(z,x)[‖γ(z)− h(x)‖2]

= Ep(z,x)[‖γ(z)− Ep(z|x)[γ(z)] + Ep(z|x)[γ(z)]− h(x)‖2]

= Ep(x) Tr[Cp(z|z)(γ(z))] + Ep(x)[Ep(z|x)[γ(z)]− h(x)‖2]. (15)

The cross term in the second line is zero because

Ep(z,x)[(γ(z)− Ep(z|x)[γ(z)]) · (Ep(z|x)[γ(z)]− h(x))]

=Ep(x)[Ep(z|x)[(γ(z)− Ep(z|x)[γ(z)]]) · (Ep(z|x)[γ(z)]− h(x))] = 0

The first term is a positive constant that is independent of h. The second term is minimized at 0 when
h(x) = Ep(z|x)[γ(z)], which in turn minimizes (5).

Therefore, minimizing (5) effectively minimizes the second term of (15) which is the expected l-2
squared distance between the prediction h(x) and the DDC of exact posterior under γ(z), which
depends on the flexibility of h.

A.2 MSE and the expected KL divergence

We first review a few known results for minimal exponential family from [46].
Definition 1. (Minimal exponential family [46, Section 3.2]) A minimal exponential family distribu-
tion has the form

q(z) = exp(θ · γ(z)− Φ(θ)) (16)
in which there does not exist a nonzero real vector a such that the linear combination a · γ(z) is
equal to a constant.

If γ is chosen to be a nonlinearity on random linear projections of z, e.g. γi = tanh(vi · z + b) with
elements of vi and b being draws from a random distribution, then the γ is linearly independent with
probability one.
Lemma 1. (Log normalizer derivatives [46, Proposition 3.1]) Let rZ(θ) = E[γ(z)]) be the mean
parameter of a minimal exponential family distribution in (16), the following holds:

∂Φ(θ)

∂θi
= rZ,i(θ) = E[γi(z)]) (17)

∂2Φ(θ)

∂θi∂θj
=
∂rZ,i(θ)

∂θj
= E[γi(z)γj(z)ᵀ])− E[γi(z)]E[γi(z)] =: C[γ(z)]ij (18)

Note that ∇θΦ(θ) maps from θ to r if and only if the exponential family distribution is minimal
[46, Proposition 3.2]. In addition, under the same condition, there exists a mapping θ(r) such that
E[γ(z)] = r. Thus, the exponential family defined by the sufficient statistics γ(z) can be specified
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by either θ or r. Importantly, r is a valid or feasible mean parameter if there exists some q such that
Eq[γ(z)] = r. Thus, γ defines a family of distributions by the set of all feasible mean parameters.

Let an internal model take joint distribution p(z,x). Given a posterior DDC r(x) = hφ(x), let
the implied (by maximum entropy) exponential family distribution be qφ(z|x) := exp(θ(r(x)) ·
γ(z)− Φ(θ(r(x)))). Let the error between the predicted and true DDC for a given φ be eφ(x) =
hφ(x)− Ep(z|x)[γ(z)] = r(x)− E[γ(z)|x].
Theorem 1. Under the following assumptions:

• γ(z) forms a minimal exponential family;

• r(x) is a valid expectation under qφ(z|x) for any x (r(x) is in the set of feasible means);

If eφ(x) = 0 for some φ∗ for all x, then ∇φKL[p(z|x)||qφ(z|x)]
∣∣
φ∗

= 0 . Further, using
hφ(x) = Wσ(x) (φ = W) as the recognition model, and let W∗ be the minimizer of the EMSE
problem in (5). If there exists εW∗ > 0 such that Ep(z)[‖eW∗(x)‖22] ≤ ε2φ, and there exists an order
3 tensor A and εc > 0 such that Ep(x)[‖ec(x)‖22] ≤ ε2c where ec(x) = ∇Wθ(r(x))

∣∣
W∗ − Aσ(x)

then ∥∥Ep(x) [∇W KL[p(z|x)‖qW(z|x)]
∣∣
W=W∗ ]

∥∥2 ≤ εcεφ. (19)

Proof. The proof uses the same technique to show that the Expectation Propagation algorithm with
exponential family factors minimizes a similar KL. For brevity, let KL[p||q] := KL[p(z|x)||qφ(z|x)]
(note that ec is a matrix)

KL[p||q] =

∫
p(z|x) [log p(z|x)− log qφ(z|x)] dz

= −
∫
p(z|x) [log qφ(z|x)] dz

∇φKL[p||q] = −
∫
p(z|x) [∇φθ(r)γ(z)−∇φΦ(θ(r))] dz

= −
∫
p(z|x)

[
∇φθ(r)(γ(z)− dΦ(θ(r))

dθ(r)
)

]
dz

= ∇φθ(r) [E[γ(z)|x]− r]

= ∇φθ(r) [eφ(x)] . (20)

The second to last equality follows (17). Clearly,∇φKL[p||q] = 0 if eW(x) = 0,∀x.

Now suppose r(x) = Wσ(x). We decompose∇Wθ(r) as follows

∇Wθ(r(x)) = ∇Wθ(r)− Ar(x) + Ar(x) (21)
= ec(x) + Ar(x). (22)

Substituting in (20) and taking the expectation over p(x) gives

E[∇W KL[p||q]] = E [ec(x)eW(x) + (Ar(x)) · eW(x)]

= E [ec(x)eW(x)] + AWE [σ(x)eᵀW(x)]

E[‖∇W KL[p||q]
∣∣
W∗‖]

(1)

≤
√
E [‖ec(x)‖22]

√
E [‖eW∗(x)‖22] + ‖A‖22‖W∗‖22‖E [σ(x)eᵀW∗(x)] ‖22

(2)

≤ εcεW∗ ,

where (1) is due to the Cauchy-Schwarz inequality, and (2) is because the last term is the gradient of
the EMSE w.r.t. W, which is 0 when using W∗ that solving the EMSE problem:

Ex[σ(x)eᵀW∗ ] = Ex
[
σ(x)

(
Ez|xγ(z)−W∗σ(x)

)ᵀ]
= Ez,x [σ(x) (γ(z)−W∗σ(x))

ᵀ
] = 0.

The first assumption holds almost always. The second assumption is in general hard to reinforce,
but after optimizing φ, the DDC r(x) is likely to be inside the set of feasible means unless the true
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posterior is close to a delta distribution on a single value of z, in which case the true posterior mean
lies close to the boundary of the feasible set, and estimation error is likely to push r out of the feasible
set.

The bound in (19) suggests that whenever εW is small, the gradient of the KL is also small. For
finite independent samples from p, εW shrinks at rate 1/

√
n. The multiplier εc suggests that the

gradient of KL goes to zero faster if σ(x) better approximates the Jacobian θ(r) w.r.t r (εc is small).
This Jacobian is, after inverting the total derivative dr

dθ and using (18), is [Cq(x|x)(γ(x))]−1, which
depends on the exponential family defined by γ(z).

Thus, Theorem 1 suggests that an ideal σ(x) would be rich enough to linearly approximate not just
the posterior mean but also the posterior covariance of γ(z) for all x. A simple γ(z) would help a
given σ(x) satisfy these requirements, but a too simple γ(z) may not be rich enough to approximate
a more complicated distribution, and the lowest KL could still be large even after optimizing the
recognition parameters.

B Formal solution to the filtering loss

We show the formal solution to minimizing (10) before discussing its biological implications.

Proposition 2. Given a DDC of previous belief rt-1, Wrt-1 below is the minimizer of (10)

Lf (W) = Eq(z1:t,xt|x1:t-1)

[
‖Wσ(xt)−ψ(z1:t)‖22

]
(10 revisited)

Wrt-1 = CZ1:t,Xt|x1:t−1
C−1Xt,Xt|x1:t-1

(23)

CZ1:t,Xt|x1:t-1 = CZ1:t,Xt|Zt-1rt-1 CXt,Xt|x1:t-1 = CXt,Xt|Zt-1rt-1

CZ1:t,Xt|Zt-1 = arg min
C

Ep(zt-1,zt,xt)‖Cψt-1 −ψ(z1:t)σ(xt)
ᵀ‖22

CXt,Xt|Zt-1 = arg min
C

Ep(zt-1,xt)‖Cψt-1 − σ(xt)σ(xt)
ᵀ‖22.

This is similar to the kernel Bayes rule [18]. The two minimization problems are essentially computing
the readout weights used to approximate the conditional covariance matrices C. This solution for
filtering involves solving these two problems before taking an inverse of a correlation matrix. If one
interprets the two tensor C’s as weights, the matrix C’s are readout from rt-1, then it is not clear how
the inverse and Wrt-1 could be implemented by neural mechanisms.

C Approximated solution for filtering

C.1 The bilinear approximation and the tensor train decomposition

The bilinear approximation hW(rt-1,xt) (12) and the corresponding solution to minimizing the
EMSE (11) w.r.t. W is connected to the tensor train decomposition (TT) [35]. The EMSE is

Lbil(W) = Eq(z1:t,xt,x1:t-1)

[
‖W · (rt-1 ⊗ xt)−ψ(z1:t)‖22

]
. (24)

Denote the minimizer of (24) at each t by W∗t . Consider the situation that, at each t, we would like
to predict ψt using a sequence of observations x1:t. Let σ(·) ∈ RKσ be sufficiently rich so that
there exists a linear operator W(p)

t that maps from the product space of σ(x1) ⊗ · · · ⊗ σ(xt) to
rt := Eq(z1:t|x1:t)[ψ(z1:t)], then W

(p)
t is an order t+ 1 tensor which is expensive to estimate. Low

rank approaches may alleviate the difficulty, such as TT. In fact, the sequence of minimizers to (24)

15



{W∗t′}tt′=1 form a TT of an order t+ 1 tensor W(f)
t with the same shape as W(p)

t . For example:

W∗
1 = arg min

W1

Ep
∑
i

∑
j

W1,jiσi(x1)− ψ1,j

2

⇒ r1,j =
∑
ji

W∗
1,jiσi(x1)

W∗2 = arg min
W2

Ep
∑
l

∑
jk

W2,lkjr1,jσk(x2)− ψ2,l

2

= arg min
W2

Ep
∑
l

∑
jk

W2,lkj

∑
ij

W ∗1,jiσi(x1)

σk(x2)− ψ2,l

2

= arg min
W2

Ep
∑
l


∑
ik

∑
j

W2,lkjW
∗
1,ji


︸ ︷︷ ︸

W
(f)
2,lki

σi(x1)σk(x2)− ψ2,l



2

the summation in the square brackets is the TT of W(f)
2 . Thus, the proposed optimization for (24)

finds a tensor of the same shape as W(p)
t in the TT space sequentially, predicting a new ψt by joining

a new core tensor with W
(f)
t-1 , and only minimize the EMSE in the space of the new core tensor to get

W∗t .

We argue that the computed rt after sequentially optimizing W given a large set of training examples
containing bootstrapped rt-1 does not diverge and produce a good approximation to the true posterior
moments on ψt. For any t, the set of inputs in the regression contains xt, so if the regression
is performed in closed-form rather than using the delta rule, the output rt is at least close to the
true Ep(z1:t|x1:t)[ψt] as Eq(z1:t|xt)[ψt], the output of another regression similar to (5), which can be
made closer to Ep(z1:t|xt)[ψt] using more flexible h and more training examples. At time t+ 1, the
statistical dependency between rt (depending on xt) and ψt+1 improves the prediction quality if
h is flexible enough to pick up this dependency. At time t + τ , as τ > 0 increases, the prediction
should continue to improve until xt become uninformative of ψt+τ , which depends on the range of
temporal dependencies (“time constant”) of the internal model and the encoding functions ψt.

D Experimental details

In all simulations in the main text, we assume the brain can draw samples from the internal model,
and the recognition weights W and readout weights α have been trained on these samples for a
long time and have converged. In our experiments, this condition was achieved by closed-form
regression in solving least square regressions, using 10,000-20,000 sequences from the internal model
and a Tikhonov regularization on W with strength 0.001, and trained the recognition parameters
for around 100 time steps in order for the SSM to enter in the stationary regime. The learned
parameters are then fixed for online inference. The base tuning functions γ(·) in (9) and input
feature map σ(·) in (12) and (13) have tanh nonlinearity after fixed random linear projections;
the weights and biases in the projection are randomly drawn from a Gaussian with variance such
that these functions are relatively smooth for the inputs they receive. Code is available at https:
//github.com/kevin-w-li/ddc_ssm

16

https://github.com/kevin-w-li/ddc_ssm
https://github.com/kevin-w-li/ddc_ssm


0

5
latent state

tone noise

0 50
time

observations

0 4

Figure 4: Example training data used for the auditory illusion experiment.

D.1 Auditory continuity illusions

D.1.1 Model setup

The internal model has a 2-D binary latent dynamics for the tone (zt,0) and noise (zt,1), and a 3-D
noisy observation xt,i, i ∈ {0, 1, 2} for three frequency bands. Mathematically, it is defined as

ct,i ∼ Bernoulli(0.1) i ∈ {0, 1}
lt,0 ∼ Uniform({2, 4}) lt,1 ∼ Uniform({1, 3})

zt,i =


zt-1,i if zt-1,i 6= 0.0 and ct,i = 0

ct,ilt,i if zt-1,i = 0.0

0 if zt-1,i 6= 0.0 and ct,i = 1

i ∈ 0, 2

xt,1 = max{zt,0, zt,1}+ ζt,i, ζt,1 ∼ N (0, 0.12)

xt,i = zt,1 + ζt,i, ζt,i ∼ N (0, 0.12) i ∈ 0, 2

In words, the tone has energy levels {0, 2, 4} and the noise has energy levels {0, 1, 3}. At each time
step, the tone and the noise can turn on or fall off with probability 0.1. For each of the two, if it turns
on, it takes one of the two non-zero levels with equal chance; but it can only fall down to 0. The
middle frequency channel reflects the greater level of the tone and the noise. The other two frequency
channels only contain the noise. All three bands are contaminated by a small amount of i.i.d Gaussian
noise. Example of the simulated data are shown in Figure 4.

In the DDC filter, we set the Kψ = 200,Kγ = 20 and Kσ = 10 and used the hbil in (12).

D.1.2 Additional methods and results

We showed in Figure 1 the marginal p.m.f of the inferred tone level given observations up to time the
stimulus time p(zt-τ |x1:t) decoded from rt. This is done by first approximating posterior expectation
over the static tuning function γ(zt-τ ) (other choices of basis are possible) using (14), obtaining
mt-τ := Eqzt-τ |x1:t

[Zt-τ |x1:t], a DDC on Zt-τ |x1:t. Using maximum entropy decoding, we can find
the corresponding p.m.f. Let the discrete p.m.f be p(zt-τ |x1:t) =

∏|Z|
i p

δ(zt-τ=zi)
i , where |Z| is the

cardinality of the support on z (9 in this case), and π is the discrete probabilities that can be decoded
from r and γ by solving the following optimization problem:

min
p

|Z|∑
i

pi log(pi) s.t.
|Z|∑
i

piγj(zi) = mj ,

|Z|∑
i

pi = 1, pi ∈ [0, 1], (26)

which is relatively simple for a 9-outcome (3 tone × 3 noise levels), discrete distribution.
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Figure 5: Maximum entropy decoding of the posterior marginals in the tracking experiment, compared
with Figure 3 which is obtained by approximating expectation of bin functions.

D.2 Flash-lag effect

The internal model that reproduced the smoothing effect is

p(zt|zt-1) = N ([Azt-1]+, [0.012, 0.0022, 1e−15]) A =

[
0.0 1.0 0.0
0.0 0.0 1.0
0.0 0.0 0.8

]
(27)

p(xt,i|zt) = Poisson
(

3 exp

[
− (loc(i)− zt,0)2

2× 1.52

])
(28)

where []+ is a elastic bounding box at ±1. loc is a linear transformation from pixel numbers to real
values.

In the DDC filter, we set the dimensionalities Kψ = 500,Kγ = 100 and Kσ = 150 and used the
hlin(·) in (13).

D.3 Noisy and occluded tracking

The internal model has 3-D latent (2 continuous, 1 discrete) and 30-D observation.
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p(zt|zt-1) = N (f(zt-1), [0.12, 0.12]) (29)
f(zt) = stAzt-1 (30)

st =
1

‖zt-1‖2 exp(−4(‖zt-1‖2 − 0.3) + 1)
(31)

p(mt|mt−1) = (Bernoulli(0.1) +mt−1) mod 2 (32)

p(zt,i|zt,mt) = N
(

max

{
exp

[
− (loc(i)− zt,0)2

2× 32

]
,mt

}
, I300.12

)
(33)

(34)

where loc is a linear transformation from pixel number to real values, and A is a rotation matrix
by π/8. Due to the sigmoidal scaling, zt stays around the unit circle most of the time, but can
occasionally cross through the origin due to noise.

In the DDC filter, we set the dimensionalities Kψ = 500,Kγ = 100 and Kσ = 200 and used the
hlinW (·) in (13).

The histogram decoding from rt is expected to be noisier due to the non-smoothness of the bin
functions Figure 3, but still shows meaningful temporal integration of the observations. Results of the
maximum entropy decoding of the posterior marginals are shown in Figure 5, which is less smooth
due to rt being not exactly in the set of feasible sufficient statistics.

E Robustness against neuronal noise

In the main text, we have discussed DDC when the representation rZ|x is deterministic, but real
neurons are noisy. In this case, the spike count in some time window are taken as a noisy DDC repre-
sentation. A noisy DDC may not identify a member in the class of exponential family distributions
specified by γ, as it may not correspond to any valid mean parameter. However, if the noise has zero
mean (including Poisson noise) and no or weak correlation, then it does not fatally harm inference
or learning to infer, as long as the training for W and α is performed also on noisy DDC and on
function evaluations on noisy samples. For inference, this type of noise on the input tends to average
out in summations or inner products, the main operations in DDC computations as in (2) and (6). For
learning to infer, noise on the input acts as a regularizer for W, and noise on the output does not
change the solution to regressions.

To verify our intuitions, we re-ran the experiments with the following changes to the DDC filter:

• The nonlinearity in γ(zt) and σ(xt) changes from tanh(·) to sigmoid(·)
• Independent Poisson noise is added to each feature evaluation of γ(zt), σ(xt) and
k(rt-1,xt) and output of hφ.

and the results are shown in Figure 6 for the smoothing in flash-lag effect and Figure 7 for occluded
tracking. The results are mostly the same as using noiseless DDC, although higher variability in
prediction resulting from a noisy representation is clearly visible.
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Figure 6: Same as Figure 2 but with noisy DDC. The error bars of DDC models are stds from 100
runs.
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Figure 7: Same as Figure 3 but with noisy DDC.
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