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1 Ablation studies

1st-order baseline: We tested a new ODE1VAE variant where the latent space is governed by 1st-
order ODE system. ODE1VAE is similar to the NeuralODE Chen et al. (2018), except for having
BNNs, and for NeuralODE placing a variational distribution on initial value q(x0), while ODE1VAE
models the posterior over full trajectory q(x0:T ).

ODE1VAE vs ODE2VAE: We performed a new comparison study of ODE1VAE against ODE2VAE
on bouncing balls dataset. The experimental setup is kept the same, except that the number of
convolutional filters is reduced so that the impact of differential function choice becomes more
apparent. Table 1 shows the resulting MSE over 10 frame ahead predictions. Note that ODE2VAE
models the acceleration v̇t = f(st,vt) : R2d → Rd whereas 1st-order systems learn żt = f(zt) :
Rd → Rd. Results show that the 2nd-order dynamics results in far better accuracy, even if the first
order dynamics has more flops (d = 50). We will include ablation studies in the paper.

NN vs BNN: Table 1 shows comparable performance of BNNs and NNs on bouncing balls. In order
to demonstrate the benefit of using a BNN, we repeat the CMU walking experiment with a NN
differential function. The MSE achieved by ODE2VAE-NN over three test sequences is 9.96, whereas
ODE2VAE-BNN error improves to 9.43.

Table 1: Comparison of neural network (NN) and Bayesian neural network (BNN) ODE’s with
different latent dimensionalities on BOUNCING BALL experiment. Adding 2nd order momentum
achieves superior performance, while BNN’s have a smaller impact.

Latent dimensions d Test MSE

Model 1st-order state 2nd-order momentum NN BNN

ODE1VAE 25 - 45 43
50 - 36 35

ODE2VAE 25 25 26 27

2 Extra results

Below, we report the MSEs of mean trajectories, which are obtained with mean model predictions
(e.g., for our model, when the mean value from the encoder distribution and variational posterior is
used).
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Table 2: Average mean MSE on future mocap frames

Test error

Model Dataset 1 Dataset 2 Reference

GPDM 57.52 N/A Wang et al. (2008)
VGPLVM 128.03 N/A Damianou et al. (2011)
DTSBN-S 78.39 37.20 Gan et al. (2015)
NPODE 45.74 22.96 Heinonen et al. (2018)
NEURALODE 97.74 21.60 Chen et al. (2018)
ODE2VAE 32.19 17.20 current work
ODE2VAE-KL 30.72 6.48 current work

Table 3: Mean prediction errors on test angle of
rotating MNIST dataset (� taken from Casale
et al. (2018))

MODEL TEST ERROR
GPPVAE-DIS� 0.0306
GPPVAE-JOINT� 0.0280
ODE2VAE 0.0204
ODE2VAE-KL 0.0184
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Figure 1: Mean prediction errors on bouncing
balls dataset.

3 Experiment details

3.1 CMU mocap

We consider two different datasets. Here is a link to the first one (with 43 sequences) and here is a
link to the second dataset. We set γ = 1. We tried out the architecture in Figure 4 with 1/2 hidden
layers, 30/50 hidden units, tanh/relu/no activation functions. We found out that 2 hidden layers, 30
units and tanh performs the best. Each experiment is executed on a standard laptop for around 3
hours. The latent dimensionality is fixed to 6 for all models, i.e., st,vt ∈ R3.

We visualize the position trajectories in Figure 2 for cases in which either encoder/BNN variational
posteriors are sampled or the mean values are used. Note that latent field that is considered in our
work corresponds to the right-most panel, whereas neural ODEs considers the second one.
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Figure 2: Example latent trajectories from CMU mocap experiment

3.2 Rotating MNIST

Here is the dataset. We set γ = 1. We tried out 4/8/12 as the number of layers in the first layers of
encoders and 8/12/16 as the last layer of the decoder. The code is executed on NVIDIA Tesla V100
GPUs for around 4 hours. The latent dimensionality is fixed to 16 for all models, i.e., st,vt ∈ R8.
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https://www.dropbox.com/s/4a8mwv1bbxh4rk5/mocap43.mat?dl=0
https://www.dropbox.com/s/sgvg4ngrxkjpjof/mocap35.mat?dl=0
 https://www.dropbox.com/s/aw0rgwb3iwdd1zm/rot-mnist-3s.mat?dl=0
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Figure 3: Comparison of our method against neural ODEs on CMU mocap data set. Each panel
demonstrates a sensor measurement plotted over time.

Figure 4: CMU mocap walking data experiment neural architectures

3.3 Bouncing balls

Here is the dataset. We set γ = 0.001. We tried out 8/16/32 as the number of layers in the first
layers of encoders and 16/32 as the last layer of the decoder. We also experimented with relu and
tanh activations. The code is executed on NVIDIA Tesla V100 GPUs for around 3 days. The latent
dimensionality is fixed to 50 for all models, i.e., st,vt ∈ R25. Also note that we obtained the same
error when st,vt ∈ R50.
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Figure 5: Rotating MNIST experiment neural architectures

Figure 6: Bouncing balls experiment neural architectures
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