
Supplementary Information
In order to make the SI self-contained, we repeat brief portions of the main text here.

S1 and S2 provide short introductions to Hopfield networks and error-correcting codes re-
spectively. S3 demonstrates that the states and energy minima of error-correcting codes can
be mapped onto the states of higher-order Hopfield networks. S4 shows that the mapping
described in S3 is only partial, in that error-correcting codes cannot, in general, be decoded
by neural network dynamics. S5 describes sparse bipartite expander graphs. S6 describes the
construction of expander codes by Sipser & Spielman1. S7 shows that expander codes are
isomorphic to sparse higher-order Hopfield networks. S8 and S9 describe the construction
of expander-graph-based pairwise Hopfield networks that have exponentially-many global
energy minima and large basins of attraction. S10 and S11 consider the case of weaker
constraints and noisy state updates, respectively, and show that exponential capacity and
good error-correction still approximately hold. S12 describes a self-organization rule that
allows construction of the exponential-capacity network. S13 shows that standard bounds
on the capacity of Hopfield networks for arbitrary patterns still apply when the networks
have hidden nodes.

Contents

S1 Hopfield networks and Boltzmann machines 2

S2 Error correcting codes 2

S3 Mapping between general linear codes and higher-order Hopfield
networks 4

S4 Energy-based decoding for Hamming and other codes 4

S5 Expander graphs 7

S6 Irregular expander codes with general constraints 7

S7 Sparse higher-order Hopfield networks generically have robust ex-
ponential capacity 11

S8 Hopfield network expander codes: construction 12

S9 Hopfield network expander codes: error-correcting dynamics 17

S10 Weakening constraints 18

S11 Noisy updates / finite temperature 20

S12 Self-organization to exponential capacity 22

S13 Notes on capacity results 25

1

S1 Hopfield networks and Boltzmann machines

We consider networks of N binary neurons. At a given time, t, each neuron has state xti=0 or
1, corresponding to the neuron being inactive or active respectively. The network is defined
by an N -dimensional vector of biases, b, and an N ×N symmetric weight matrix W . Here
bi is the bias (or background input) for the ith neuron (equivalently, the negative of the
activation threshold), and Wij is the interaction strength between neurons i and j (set to 0
when i = j).

Neurons update their states asynchronously according to the following rule:

xt+1
i =

1 if

∑
jWijx

t
j + bi > 0

0 if
∑

jWijx
t
j + bi < 0

Bern(0.5) if
∑

jWijx
t
j + bi = 0

(1)

Here Bern(0.5) represents a random variable that takes values 0 and 1 with equal probability.
Hopfield networks can also be represented by an energy function, defined as

E(x|θ,W) = −1

2

∑
i 6=j

Wijxixj −
∑
i

bixi (2)

The dynamical rule is then to change the state of a neuron if doing so decreases the energy
(and to change the state with 50% probability if doing so leaves the energy unchanged).

We also consider Boltzmann machines, which are similar to Hopfield networks but have
probabilistic update rules.

xt+1
i = Bern(p)

where p =
1

1 + e−β(
∑

j Wijxt
j+bi)

(3)

The probability of a state x in a Boltzmann machine is p(x) ∝ e−βE(x), where E(x) is
defined as in Eq. 2 and β is a scaling constant (often called inverse temperature). Note that
the Hopfield network is the β →∞ limit of a Boltzmann machine.

Hopfield networks with N neurons and ∼ N2 pairwise analog (infinite-precision) weights
trained with simple learning rules can learn and exactly correct up to N/(2 log(N)) random
binary inputs2 or imperfectly recall 0.14N states (with residual errors in a small fraction of
neurons)3. With sparse inputs or better learning rules, it is possible to store and robustly
correct ∼ N states4–7. Independent of learning rule and architecture, the capacity of Hopfield
networks with pairwise connections is theoretically bounded at ∼ N arbitrary states8–10.
Thus, achieving high pattern capacity requires that the memory states have special structure.

S2 Error correcting codes

Given a string of variables (message) to be transmitted, an error correcting code (ECC)
adds redundancy to allow the message to be recovered despite added noise. A parity check

2

code over some set of variables xi, where each xi ∈ {0, 1}, is defined by a set of constraints,∑
xi = 0, where the sums are taken modulo 2. Thus each constraint restricts its participating

variables to some set of acceptable states.
A classical example of such an ECC is the (7,4) Hamming code11, which is defined by

considering 4-bit messages and adding 3 parity-check bits to the message, defined as

x5 = x1 + x2 + x3

x6 = x2 + x3 + x4

x7 = x1 + x3 + x4 (4)

For example, instead of transmitting the message 0101, three additional check bits are
added on and the message transmitted is 0101101. Thus there are 24 possible correct mes-
sages (see Fig. 1); these possible message are called codewords. If a message is received that
does not correspond to a codeword, it is mapped to the closest codeword, thus correcting
errors. The parity check bits are chosen so that any two codewords are separated by the
state of at least three bits. Thus, if a transmitted message is received where a single bit is
flipped, the Hamming code can recover the original message.

The distance of a code is the separation between codewords, and is twice the number of
errors that can be corrected. The rate of a code is the number of information bits transmitted
per message bit. The (7, 4) Hamming code has a distance of 3 and a rate of 4/7.

Rather than seeing a codeword as the combination of a desired message and a set of
added check bits, the parity check bit equation can be reframed as a set of 3 constraints on
7 variables:

x1 + x2 + x3 + x5 = 0

x2 + x3 + x4 + x6 = 0

x1 + x3 + x4 + x7 = 0 (5)

The codewords are the states that satisfy these equations. Thus the Hamming codewords
occupy a 4 dimensional subspace of a 7 dimensional space.

The constraint structure of a code can be represented as a bipartite grapha, with one set
of variable nodes and another set of constraint nodes. This is shown for the (7,4) Hamming
code in Fig. 1, with 7 variables and 3 constraint nodes (each corresponding to an equation).
Analyzing and constructing codes from a graph-theoretic perspective has been a very fruitful
area of research for the last three decades12.

Considering longer blocks of bits allows the construction of codes with better performance,
meaning that they either have a larger distance between codewords (i.e., correct more errors)
or send information at a higher rate (i.e., more efficiently), or some combination of the above.

The (7,4) Hamming code is one example of a family of Hamming codes of increasing
length. For each value k ≥ 2, there exists a Hamming code of length N = 2k − 1 with k
constraints. The code conveys 2k − k − 1 bits of information and can correct one error11;13.
To construct the constraints, first express each variable / message bit in binary (ranging
from 1 to 2k − 1). Then the jth constraint is the sum of all variables that have the j-th bit

aA bipartite graph is a network with two sets of nodes. Nodes in each set connect only with nodes from
the other set.

3

set in their binary expansion. For example, the first constraint sums up bits 1, 3, 5, 7 and
so on, and the second constraints sums up bits 2, 3, 6, 7, 10, 11 and so onb.

S3 Mapping between general linear codes and higher-

order Hopfield networks

Claim 1. A parity check code can be mapped onto Hopfield networks whose neurons, si, take
states in {-1, +1} by mapping binary state 0 to +1 and binary state 1 to -1.

Proof. The parity check constraints
∑

i∈Ci
xi = 0 can be reexpressed as products

∏
i∈Ci

si =
1. These can be used to define an energy function

E(s) = −
∑
Ci

∏
i∈Ci

si (6)

This energy function takes its minimum energy values if and only if all the constraints are
satisfied and the energy increases as the number of the violated constraints increases:

E(s) = Emin + 2NV C(s),

where NV C(s) is the number of violated constraints in state s. Thus the minimum energy
states of this network are the codewords of the corresponding parity-check code.

Note that a mapping also exists to Hopfield networks where neurons take states in {0,1},
but the energy function is slightly more complex.

Continuing our (7,4) Hamming code example, a Hopfield network with the same minimum
energy states as the codewords of the (7,4) Hamming code has energy function:

E = −s1s2s3s5 − s2s3s4s6 − s1s3s4s7. (7)

This mapping involves higher-order edges, meaning edges that connect more than 2 neurons.
It has been known for a while that the codewords of ECCs can be mapped to higher-order
Hopfield networks14;15. However, we make the further observation that by adding hidden
neurons (as we do for our exponential capacity Hopfield network construction later), an
equivalent network can be constructed with pairwise interactions.

S4 Energy-based decoding for Hamming and other codes

For energy-based decoding, we require that the number of violated constraints can serve as
a local error signal, meaning that we can decide to flip a neuron based purely on whether
doing so reduces the number of violated constraints. In this section we first prove that such
decoding generically fails for Hamming codes, and then provide a heuristic argument for
why such decoding requires codes where each variable participates in only a small number
of constraints (i.e., the bipartite graph representation is sparse), and where small sets of
variables do not share many constraints in common.

bNote that when applied to k = 3 this yields the (7, 4) Hamming code from this section and from Figure
1 up to a relabeling of variables (there are slightly different conventions for the order in which the variables
are labeled).

4

Hamming code decoding

Claim 2. Energy-based (greedy) decoding of a length N Hamming code produces equal or
lower energy when changing the state of any one of N/2− 1 variables, but leads away from
the nearest codeword in these cases; it both produces equal or lower energy and leads toward
the nearest codeword only when changing the state of one specific variable.

Proof. Consider the family of Hamming codes described in Section S2. The construction im-
plies that any given variable has a fixed probability p of participating in each constraint, and
p ≈ 1/2 (p is not exactly half because there is no variable that participates in 0 constraints,
but the difference between p and 1/2 shrinks as N gets larger).

Now consider starting at a codeword and corrupting the state of a randomly-chosen
variable, which we call xi (note that all states in a Hamming code are either a codeword or at a
Hamming distance of 1 from a codeword). This makes some set R of constraints unsatisfied,
where |R| ∼ Bern(N, p) and is N/2 on average. To perform energy-based decoding, we
consider the effect of flipping a neuron, xj, on the number of unsatisfied constraints. We
already know that flipping xi back to its original state will make all constraints satisfied.
Flipping any of the remaining neurons (j 6= i) will lead the system away from the nearest
codeword. Therefore, if the system is to perform accurate decoding, a different neuron (j 6= i)
should not flip, which requires that flipping it ought to result in a higher-energy state. We
see next that this does not hold.

If xj is connected to a set S of constraints, then flipping xj will change the state of
constraints in S ∩R from unsatisfied to satisfied and change those in S \R from satisfied to
unsatisfied. Thus the energy of the state with xj flipped is determined by |S \R| − |S ∩R|.
Since these sets are chosen independently and with p = 1/2, on average |S \ R| = |S ∩ R|.
At least 50% of possible flips have |S ∩R| ≥ |S \R| and these lead to states that have equal
or lower energy. Thus about N/2 possible directions lead to states that have equal or lower
energy (but are further away from the original codeword), and only 1 of these leads to the
desired codeword.

Note that here the problem is the overlap between the constraints connected to the
variables xi and xj, suggesting we would like this to be small. Also note that, in this case,
gradient descent (i.e., picking the neighboring state with lowest energy, not just any state
with lower energy) would lead in the right direction, but this is a consequence of our initial
state being next to a codeword / global minimum and is not generic; moreover, finding the
steepest direction is a harder computational problem that is not solved by Hopfield network
update dynamics.

Local energy-based decoding of other codes

We next heuristically argue that for good local energy-based decoding, a code must be sparse
(i.e., each variable participates in a sparse subset of constraints) and that variables should
not share too many constraints in common.

First consider a code of length N in which O(N) errors can be corrected by an appropriate
decoderc, and where each variable participates in a fraction pN of constraints. Start at a

cNote that in the Hamming code, only 1 error can be corrected.

5

codeword and corrupt (flip) a set of αN bits, which we call E. In the absence of special
structure, E contacts a number of constraints that grows as N2, and thus even for very small
α and p, all possible constraints will be connected and will receive multiple edges from the
nodes in E. Thus, their states will be approximately random.

Now flipping a node that is outside of E will change the state of a set of pN constraints,
which we call T . Satisfied constraints in T will change to unsatisfied and vice versa. The
new state will have lower energy if T contained more unsatisfied than satisfied constraints,
which will happen with about 50% probability. Thus, there are many variables outside of
E that would lead to lower energy states when flipped, and energy-based decoding will in
general not recover the nearest codeword.

Next, consider codes of length N where each variable participates in a small number of
constraints that does not grow with N . As before, consider a set of error nodes E, which
will be connected to some small set of constraints, S. Some subset of constraints in S are
unsatisfied. For accurate energy-based decoding to be possible, flipping variables outside of
E should increase the number of unsatisfied constraints while flipping variables in E should
decrease the number of unsatisfied constraints. For both cases, this is determined by the
overlap of connected constraints between the variable that will be flipped and the nodes in E.
First, consider flipping a node xi outside E. xi is connected to some set of constraints T . All
constraints in T \ S will switch from satisfied to unsatisfied, and some subset of constraints
in T ∩ S will switch from unsatisfied to satisfied. Thus, we would like T ∩ S to be as small
as possible (and T \ S to be large). Similarly, consider flipping a node xi inside E, which is
connected to some set of constraints T ⊂ S. Constraints in T that are only connected to xi
and not to other members of E will become satisfied, while a subset of constraints in T that
receive multiple edges from E will become unsatisfied. As before, we wish this subset to be
small and the number of constraints in T that are only connected to xi to be large. Thus
we wish the overlap of constraints between xi and E \ xi to be small.

This argument suggests that codes decodable by a local energy-based rule should be
sparse and that small sets of variables should not share many constraints in common. In
the next section we describe expander graphs, which were used by by Sipser & Spielman1 to
formalize this notion and construct easily-decodable codes.

In summary, for the general case of linear ECCs embedded in a Hopfield network, while
the constructed networks have the right energy minima (codewords), the dynamics do not
perform optimal decoding (i.e. error-correction). Optimal decoding should map each cor-
rupted codeword to the most likely original codeword, which for IID noise at each variable,
corresponds to the nearest codeword (in Hamming distance, meaning the codeword reached
by the fewest variable flips from the current state). By contrast, the Hopfield network energy-
based dynamics flips a neuron if doing so reduces the number of violated constraints (which
is proportional to the energy). While the nearest codeword has lower energy than the cur-
rent state, energy-based decoding will not necessarily guide the state to the right codeword.
The network may end up in a codeword that is not the nearest codeword (as happens for
the Hamming code network implementation) or it may get stuck in a local energy minimum
(for codes other than the Hamming code). Thus while it is easy to write down an energy
function that returns the codewords as minimum energy states, most error-correcting codes
cannot be decoded by a local dynamical rule.

6

S5 Expander graphs

Expansion is a property of a graph (i.e., network) where small sets of nodes have a large
number of neighbors (i.e., connected nodes). In the context of coding theory, sparse expander
graphs allow variables to not share many constraints in common, allowing for local energy-
based decoding.

There are various ways to formalize the notion of expansion. We consider bipartite
graphs, meaning graphs that are divided into two sets of nodes, with connections between
these sets but no connections within a set.

Definition 1. Consider an undirected bipartite graph with N nodes in an input layer and
NC ∼ N nodes in a hidden layer, which we call a constraint layer. Assume that input nodes
have connections drawn from some degree distribution with degree z such that zmin ≤ z ≤
zmax. Similarly, constraint nodes are drawn from a distribution with zC < zmaxC . Such a
graph is a (γ, (1− ε)) expander if every set of nodes S in the input layer with |S| ≤ γN has
at least (1 − ε)|δ(S)| neighbors, where δ(S) is the set of edges connected to nodes in S, and
|δ(S)| is the number of edges in this set.

Thus, in an expander graph, small subsets of variables (“small” is determined by γ)
participate in proportionately large sets of constraints (“large” is determined by 1− ε). Note
that if the edges emerging from S each target disjoint nodes, then ε = 0. Thus, ε → 0
corresponds to increasing expansion.

Expander graphs can be constructed in various ways, but sparse random bipartite graphs
are generically expander graphs1;16. We use the following lemma from Luby et al. (2001).

Lemma 1. Let B be a bipartite graph, with nodes divided into N left nodes and NC right
nodes. Suppose that a degree is assigned to each node so that all left nodes have degree at
least five, and all right nodes have degree at most C for some constant C. Suppose that a
random permutation is chosen and used to match each edge out of a left node with an edge
into a right node. Then, with probability 1− O(1/N), for some fixed γ > 0 and ε < 1/4, B
is a (γ, (1− ε)) expander.

In our simulations we generate all graphs randomly by picking edges to connect pairs
of variable and constraint nodes subject to the constraints on the degree distributions (see
Figure S1 for numerical estimates of expansion in these graphs).

S6 Irregular expander codes with general constraints

The following analysis is based on Sipser & Spielman1 and Luby et al.16, with slight gener-
alization to consider the case of general rather than parity constraints (note that in this case
the capacity results hold in expectation; see SI 8.2). We consider an undirected bipartite
graph with N nodes in the input layer and NC < N nodes in the hidden layer, which we
call a constraint layer. Assume that input nodes have connections drawn from some degree
distribution with degree z such that zmin ≤ z ≤ zmax. Similarly, constraint nodes are drawn
from a distribution with zC < zmaxC . We assume that such a graph is an expander for some

7

Figure S1: Estimates of network expansion. Each plot shows the ratio of the number
of neighbors to the number of edges for sample subsets of neurons drawn from the networks
used to generate Figure 2. This ratio corresponds to (1 − ε) in the main text. Dashed line
shows (1 − ε) = 0.75, which is the theoretical lower bound on expansion required for good
error correction.

8

γ > 0 and with ε < 1/4. Note that the lemma in the previous section guarantees that such
graphs can be constructed randomly.

We consider a code defined on this bipartite graph, where input nodes can take values in
{0, 1} and constraint nodes are satisfied by some configurations of their inputs, with these
preferred configurations differing on the state of at least 2 nodes. In the simplest case, these
are parity constraints and thus the number of codewords grows as 2N−NC (for discussion of
capacity with more general constraints see SI 8.2).

The bit-flip algorithm of Sipser & Spielman1 proceeds by flipping the state of any variable
if doing so reduces the number of unsatisfied constraints. As we review below, the algorithm
can correct a number of errors proportional to N around a state where all constraints are
satisfied.

Given two configurations of the input nodes, Q1 and Q2, define the distance d(Q1, Q2)
to be the number of nodes at which they differ (this is just the Hamming distance). Let the
set ∆(Q1, Q2) contain the list of the nodes at which Q1 and Q2 differ.

To prove that the network performs good decoding / pattern completion, we consider a
network where the input nodes are in state Q, where Q differs from some state Qsat where
all constraints are satisfied. Let E = ∆(Qsat, Q) be the set of nodes at which they differ.

We will show that if d(Qsat, Q) < zmin

zmax (1− 2ε)γN , then the network dynamics converges to
Qsat (for constant degree, as reported in the main text, this is (1 − 2ε)γN ; moreover, since
ε < 1/4, the number of correctable errors is at least γN/2).

By assumption d(Qsat, Q) = |E| ≤ γN . Define U(E) to be the unsatisfied constraints
connected to E and S(E) to be the satisfied constraints connected to E. The neighbors of E
are N(E) = U(E)∪S(E) (and the number of neighbors is |N(E)|). Define a unique neighbor
of E to be a constraint node that is only connected to one node in E, and Unique(E) to
be the set of such neighbors. We start by lower bounding |Unique(E)| using a counting
argument.

Since |E| ≤ γN , the expansion property holds, and E has at least (1− ε)|δ(E)| neighbors
(recall that δ(E) is the number of edges leaving the set E). Thus, at least (1−ε)|δ(E)| of the
edges in δ(E) go to different constraint nodes. There are ε|δ(E)| remaining edges, meaning
that at most ε|δ(E)| constraint nodes can receive more than one edge and the remainder
receive exactly one edge from E and are unique neighbors. Consequently

|Unique(E)| ≥ (1− ε)|δ(E)| − ε|δ(E)| = (1− 2ε)|δ(E)|. (8)

The number of unique neighbors of E is determined purely by graph connectivity and not
by the particular constraints imposed. The expansion property guarantees that the number
of unique neighbors is large.

Next, we translate the |Unique(E)| into a bound on U(E), the set of unsatisfied con-
straints. In the simplest case, the acceptable states for each constraint differ on at least
2 variable nodes (we weaken this assumption in the following section). Any constraint
C ∈ Unique(E) is connected to only one corrupted variable node and is thus violated (but
is one flipped bit away from being satisfied). Consequently,

|U(E)| ≥ (1− 2ε)|δ(E)|. (9)

Note that since ε > 1/2, |U(E)| > 0 and thus some constraints are unsatisfied. This result
guarantees that any states which satisfy all constraints must differ on > γN nodes. This

9

follows because the argument above applies to any state Q such that d(Q,Qsat) ≤ γN nodes,
where Qsat is a satisfied state. Consequently d(Q,Qsat) ≤ γN implies that Q does not satisfy
all constraints.

The randomized construction allows us to construct networks with ε > 1/4, guaranteeing
that |U(E)| > |δ(E)|/2. Thus at least half the edges leaving E target unsatisfied constraints,
meaning that at least one node in E is adjacent to more unsatisfied than satisfied constraints.
Hence there is always a node whose state is energetically unfavorable and that will eventually
switch.

This statement is stronger than the claim that states with satisfied constraints are sep-
arated by γN . While states with all satisfied constraints are minima, it might have been
the case that there also exist local minima with unsatisfied constraints within this γN ra-
dius. For example, if all the error nodes were connected to more satisfied than unsatisfied
constraints, then flipping any single node would increase the energy function. The corre-
sponding input state would be a local minimum and would be an acceptable steady-state for
the neural network (a non-local decoding algorithm could circumvent this by searching over
a wider set of neighbors). Note that local minima might still exist, but not within a radius
of γN of a state with all satisfied constraints.

Thus far we have shown that minima of the energy function must differ on the states
of > γN variables, and that there is always at least one error node that it is favorable to
flip if the number of errors is less than γN . However we have not shown that the network
dynamics converges to the right energy minimum (it is also possible to flip non-error nodes).
To establish correct convergence, consider a network state on decoding step t, Q(t), such
that ∆(Q(t), Qsat) = E(t). Let U(t) be the set of unsatisfied constraints at time t, and
note that the network dynamics always decreases the number of unsatisfied constraints, so
U(t+ 1) < U(t) < · · · < U(0).

We require that |E(0)| < zmin

zmax (1− 2ε)γN (recall that zmin and zmax bound the degree of
nodes in the input layer; this ratio is 1 for the constant degree nodes we discuss in the main
text). Each variable in E sends out a maximum of zmax edges, and a constraint node can
only be unsatisfied if it receives one of these edges. Thus

|U(t)| ≤ |U(0)| ≤ |δ(E(0))| ≤ zmax|E(0)| < zmin(1− 2ε)γN (10)

On the other hand, energy minima are separated by a distance of at least γN . Thus
if the network starts in a state with distance |E| < γN from Qsat and ends up at another
energy minimum, it must pass through a state with |E| = γN . By Eq. 9, this intermediate
state has at least (1 − 2ε)|δ(E)| ≥ zmin(1 − 2ε)γN violated constraints, which contradicts
Eq. 10. In summary, while the network dynamics may (transiently) increase the size of E,
it does not increase the number of violated constraints. Consequently, if we start in a state
with fewer than zmin

zmax (1− 2ε)γN errors we will always remain in a state with fewer than γN
errors. In this case Eq. 9 guarantees that there is always a node which will change its state,
and doing so reduces the number of violated constraints by at least one. The network will
thus converge in a time bounded by the product of the number of violated constraints and
the time it takes each variable node to flip.

Relatedly, note that the Hamming codes we considered previously have expansion that
goes to 0. For example, in a Hamming code with N variables and k constraints (see S2 for

10

the definition of the family of (N, k) Hamming codes), consider the set Ŝ of variables that
participate in k− 1 constraints. There are k such variables, and each sends out k− 1 edges.
The set as a whole sends out |δ(Ŝ)| = (k−1)k edges and is connected to every constraint node
so has |N(Ŝ)| = k neighbors. Consequently, |N(Ŝ)|/|δ(Ŝ)| → 0 as k → ∞. For expansion,
we require that for some γ > 0, any set S of size |S| < γN has at least (1−ε)|δ(S)| neighbors.
The set Ŝ has size O(log(N)) and thus, no matter how small γ is, for large enough N we can
choose a set of size < γN that contains Ŝ. This set has |δ(S)| ≥ |δ(Ŝ)| and |N(S)| = |N(Ŝ)|
(since Ŝ is connected to every constraint). Consequently, for all γ > 0, |N(S)|/|δ(S)| → 0
as k →∞.

S7 Sparse higher-order Hopfield networks generically

have robust exponential capacity

In the next section, we will construct Hopfield networks with pairwise connectivity that
implement the dynamics of the error-correcting codes defined in the previous section. Before
doing this, we return to the results of Section S3. Recall that in Section S3 we showed that
the codewords of a general linear code could be mapped to the energy minima of a higher-
order Hopfield network, but that the error-correction did not correspond to the Hopfield
dynamics. Thus, while these networks have exponentially-many minima, they do not have
large basins of attraction (i.e., growing as ∼ N) surrounding these minima. We now use this
mapping and insights from expander codes to show two things. First, higher-order Hopfield
networks can implement an expander code (including the error-correcting dynamics) and
thus can have both exponentially-many minima and large basins of attraction. Second, this
result is generic, in that it is true of a random higher-order Hopfield network, provided that
it satisfies the mild conditions required for the equivalent random bipartite graph to be an
expander (see Lemma 1 for example). Note that in this section we consider Hopfield networks
on {−1,+1}, for convenience, but that given such a network there is an equivalent network
on {0,+1} with a slightly more complex energy function.

Theorem 1. Higher-order Hopfield networks of order zC on N neurons and with unit weight
connections can implement an expander code on N variables with constraints that each con-
tain zC variables.

Proof. Consider an expander code that corresponds to a bipartite graph with N variables,
NC parity check nodes, and left and right degrees z and zC respectively. Thus the codewords
of this code are defined by the set of constraints

∑
i∈Ci

xi = 0, where each constraint Ci is a
sum of zC terms. Consider the Hopfield network whose neurons, si take states in {−1,+1},
with energy function E(s) = −

∑
Ci

∏
i∈Ci

si. By Claim 1, the minima of this energy function
correspond to the codewords of the expander code.

Now consider the bit flip error-correction algorithm described in the previous section.
Consider a variable node xi, which participates in S satisfied and U unsatisfied constraints.
Under bit flip dynamics, this node changes state if U > S. In the equivalent Hopfield
network, this is exactly the condition that flipping the neuron reduces energy. Thus, a simple
unit weight higher-order Hopfield network can implement bit flip dynamics. Note that this
argument can easily be extended to variable degrees at the neurons and constraints.

11

We next show that this result is true of randomly-connected networks.

Theorem 2. Consider a randomly-connected higher-order Hopfield network of order zC on
N neurons, where each neuron participates in z edges, with unit weight. Assume that z ≥ 5
and zC ≤ C for some C. Then, with probability approaching 1, for some α, β > 0, this
network has 2αN stable states and can recover each stable state from an initial condition
perturbed on βN neurons.

Proof. Consider a bipartite graph defined by this higher-order Hopfield network, where each
of the N left nodes corresponds to a neuron, each of the NC right nodes corresponds to
an interaction term (i.e., one of the higher-order constraints), and a left and right node
are connected by an edge if the corresponding neuron participates in the corresponding
constraint. If the edges in this graph are chosen randomly, then by Lemma 11;16 this graph
is an expander. Consequently there is an expander code defined on this bipartite graph. By
Theorem 1, the higher-order Hopfield network implements this expander code and hence has
exponential capacity (i.e., number of stable states 2αN for some α > 0) and can recover these
states from a finite fraction of perturbed variables (βN perturbations).

The above proof is described for a certain fixed-degree expander construction, but the
mapping is quite general and easily extended to variable degree and to non-random con-
structions.

Randomly-connected higher-order Hopfield networks are studied in physics in the context
of spin glasses (often under the name p-spin infinite range models)17. The isomorphism
between these models and expander codes that we have identified remains to be further
explored and may be a source of new ideas and techniques for understanding spin glass
models.

S8 Hopfield network expander codes: construction

We now construct regular Hopfield networks (i.e., pairwise connectivity) that implement
the dynamics of the error-correcting codes defined in the previous section. Note that the
construction we present is simply one possible implementation of a broader idea. In this
section we first define a single, isolated constraint node, a small Hopfield network that will
serve as a building block of our construction. We then describe the connections of the full
network and show that it has exponentially-many energy minima. In the section after, we
describe the memory retrieval dynamics of this network.

S8.1 Constraint nodes

Definition 2. Constraint node. Consider a Hopfield network with a set of zC neurons desig-
nated as “input” neurons, and K neurons designated as “constraint” neurons. The zC input
neurons can take 2zC possible states, and we will designate some subset S = {v1, . . . ,vK} of
these to be “preferred” states, where preferred states differ on the value of at least two input
neurons. Note that the number of preferred states equals the number of constraint neurons
K. Let Uij be the connection between the i-th input neuron and the jth constraint neuron.

12

We set Uij = 1 if vj(i) = 1 and Uij = −1 if vj(i) = 0, where vj(i) is the state of the ith
input neuron in the j-th preferred state. These connections will cause the jth constraint
neuron to prefer the jth pattern. In its preferred state, the jth constraint neuron will receive
input

∑
i vj(i) (i.e., the number of nonzero entries in its input pattern). To ensure that all

constraint neurons receive the same amount of input in their preferred state, we also add
a fixed bias of bj = zC −

∑
i vj(i) to the jth constraint neuron. Finally, we add inhibitory

connections of strength zC − 1 between all constraint neurons.

A schematic of the above construction is in Fig. 3a,b in the main text. Note that if x
is the state of the input neurons and h the state of the constraint neurons, then the above
network has energy function

E(x,h) = −
(

xTUh + bTh +
1

2
hTWh

)
, (11)

where U and b are defined in Definition 2, and W is the matrix with diagonal elements set
to 0 and off-diagonal elements set to −(zC − 1).

Claim 3. The energy minima of the network constructed in Definition 2 correspond to states
with x = vj, h(j) = 1 and h(k 6= j) = 0, for some j. Further, if the inputs are clamped to
a preferred state x = vj then, regardless of the initial state of the constraint neurons, the
constraint node settles into a state where h(j) = 1 and all other neurons are 0.

Proof. First, note that the states described above are local minima. If the network is in the
above state, then changing any element x(i) increases the value of the energy term −x(i)h(j)
from −1 to +1 while leaving all other terms fixed. Setting h(j) = 0 increases the energy
−
∑

i x(i)h(j) from −zC to 0. Finally, setting h(k 6= j) = 1 increases the energy −h(k)h(j)
from 0 to zC − 1 while at most decreasing the energy of −x(i)h(k) from 0 to zC − 2 (recall
that the stable state preferred by constraint neuron k, vk, differs from vj on at least 2 input
neurons). Thus the state is a local minimum.

Second, no other state is a local minimum. To see these, we enumerate states by the
number of active constraint neurons.

1. No constraint neurons active: in this case the input neurons are unconstrained and
can freely change state.

2. One constraint neuron active, call this hj: If the input neurons are not in vj, it is
energetically favorable to change them in the direction of vj.

3. Two constraint neurons active, call them hj and hk: There is at least one input neuron
in the state preferred by hj but not hk or vice versa. Changing the state of this neuron
does not increase the energy.

4. More than two constraints neurons active: Turning off one of these neurons decreases
the energy term 1

2
hTWh by at least 2(zC − 1), and increases the remaining terms by

at most zC . Since zC ≥ 2 this decreases energy.

13

Next, consider the case where the inputs are clamped to a preferred state vj, so that
x = vj. If ||h||1 = 0 or ||h||1 = 1 but h(j) = 0 then it is energetically favorable for h(j)
to turn on. If ||h||1 ≥ 2 then there is some active constraint neuron h(k) = 1, for k 6= j.
Turning off this neuron will increase the input energy by at most zC − 2 while decreasing
the energy from recurrent inhibition by at least zC − 1 and is thus energetically favorable.
Hence the only stable state has ||h||1 = 1 with h(j) = 1.

Thus, as a consequence of the strong inhibition, the constraint network has competitive
dynamics: in the lowest energy state the input neurons are in a preferred configuration,
the neuron in the constraint network corresponding to this configuration is active, and all
other neurons are suppressed. Note that the recurrent inhibition can be replaced by non-
specific strong background inhibition to all constraint neurons. This change does not sacrifice
accuracy of the final result, but it slows down network convergence by a constant factor
(independent of N).

We next consider the dynamics of the constraint node when its input neurons are clamped
to a state with Hamming distance of 1 from a preferred state.

Claim 4. Assume that the input neurons to a constraint node are clamped to a state x 6= vj
for all j but ||x − vj|| = 1 for at least one vj. Consider the set W = {w1, . . . ,wL} of
states with Hamming distance 1 from x (this set at least contains vj). The network wanders
through all states in which either one or two of the constraint neurons that prefer states in
W are active and all others are 0.

Proof. The proof proceeds by demonstrating that the states described above are the only
stable states. Regardless of the input state, it is never energetically favorable for more
than two constraint neurons to be active, and so we will only consider states where 0 to 2
constraint neurons are active. Consider the set of constraint neurons preferring states from
the set W of states with Hamming distance 1 from x.

1. If ||h||1 = 0 or ||h||1 = 1 but the active neuron does not prefer a state in W , then
activating a constraint neuron that prefers a state in W does not increase energy and
is permitted.

2. If ||h||1 = 2 but one of the active constraint neurons does not prefer a state in W , then
turning off this neuron will increase the input energy by at most zC−2 while decreasing
the energy from recurrent inhibition by zC − 1 and is thus energetically favorable.

3. Thus the allowable states are where either ||h||1 = 1 or ||h||1 = 2 and the active
constraint neurons prefer states in W . These are energetically equivalent and thus
the network can (and does, given the stochastic nature of sequential updating in the
Hopfield network) wander between all possible combinations.

Finally, we make an observation about when input neurons are able to change state for
a single isolated constraint node.

14

Claim 5. Consider an isolated constraint node whose inputs are not connected to any other
constraint nodes. Assume that the input neurons to the constraint node are in a non-preferred
state x, and that d(x,vj) = 1 for some preferred state vj. Let x(i) be the neuron on which
x and vj differ. Assume that the constraint neuron corresponding to vj, h(j), is active,
either alone or in combination with another constraint neuron h(k) that also prefers a state
adjacent to x. Then it is energetically favorable for neuron x(i) to change state.

Proof. Since h(j) is active, switching the input state to vj decreases the energy due to the
interaction with h(j) by one unit. If some h(k) is also active, then the energy due to the
interaction with h(k) increases by one unit. Thus it is either energetically favorable or neutral
to change the state of neuron x(i).

S8.2 Hopfield networks with exponentially-many well-separated
minima

We next use the constraint nodes constructed above to construct Hopfield networks with
exponentially-many well-separated minima. Our construction relies on mapping expander
codes to bipartite Hopfield networks, with variable nodes corresponding to input neurons,
and constraint nodes corresponding to the Hopfield network constraint nodes described in the
previous section. Note that in order for the capacity of this network to be truly exponential
in all participating neurons, the number of neurons in each constraint node must not grow
with the size of the network. For our construction above, this is true when the constraints
are sparse, meaning that each constraint constrains a fixed number of inputs (as is true for
LDPC codes in general and expander codes in particular).

Theorem 3. Hopfield networks of N neurons with pairwise connectivity can possess exponentially-
many stable states corresponding to the codewords of an expander code.

Proof. As in the section on expander codes, the networks we consider are bipartite, con-
taining N input neurons, which determine the states or memories that will be stored and
corrected, and NC constraint nodes, which determine the allowed states of variables they
are connected to (see Figure 3). However, now these constraint nodes are themselves small
networks of neurons, which have been described above. The ith input neuron connects to
z(i) constraint nodes, and the jth constraint node connects to z

(j)
C inputs. Consequently∑

i z
(i) =

∑
j z

(j)
C (i.e., the number of edges leaving the input neurons equals the number of

edges entering the constraint nodes). z and zC are small and chosen from distributions that
do not scale with N ; consequently the networks are sparse. By Lemma 1, these networks
are (γ, (1− ε)) expanders with ε < 1/4 for appropriate choices of z, zC .

There are zC variables connected to a given constraint node and these could take any of
2zC possible states. The constraint nodes restrict this range, so that a subset of these states
have low energy (and are thus preferred by the network). While there are multiple possible
ways to construct constraint nodes, in the constructions we show each neuron in a constraint
node prefers one possible configuration of the input neurons (see Definition 2 for details).

The Lyapunov (generalized energy) function of the network is:

E(x,h) = −
(

xTUh + bTh +
1

2
hTWh

)
(12)

15

here x,h are the activations of the input neurons and the neurons across all constraint nodes,
respectively; b are biases in the constraint neurons; U are the symmetric weights between
input and constraint neurons (as defined previously in the section on constraint nodes); and
W are the lateral inhibitory interactions between neurons within the constraint nodes.

The network is in a stable or minimum energy state when the input neurons are in a
state that satisfies all of the constraint nodes, and when the constraint neurons preferring
the corresponding input states are active.

If each constraint is satisfied by a fraction 2−rj of possible states, where rj ≥ 1 but is not
necessarily integer, then the average number of minimum energy states for the network is

Nstates = 2−〈r〉NC2N = 2N−〈r〉NC = 2

(
1−〈r〉 〈z〉

〈zC〉

)
N
. (13)

Here the angle brackets represent averages, and the last equality follows because N〈z〉 =
NC〈zC〉. If the constraints are defined to correspond to parity equations then this result
is exact (with rj = 1, as in Fig. 2). For general constraints this result only holds true
in expectation, under the assumption that the constraints independently restrict the set of
possible states (see S12 for further discussion of the case when acceptable states for each
constraint are chosen randomly, and Fig. S3 for numerical verification of the mean-field
argument in this case).

For notational convenience define ẑ = 〈z〉
〈zC〉

. Thus, as long as 〈r〉ẑ < 1, the expected
number of stable states grows exponentially with N . However, N is the number of input
neurons and not the total network size. Each constraint network has at most Kmax = 2z

max
C −1

neurons, and thus the total number of neurons in the network is at most Ntotal ≤ N +
KmaxNC = (1 +Kmaxẑ)N . Since z and zC are drawn from fixed distributions, this prefactor
does not grow with network size. The number of minimum energy states is

Nstates ≥ 2αNtotal where α = (1− 〈r〉ẑ)/(1 +Kmaxẑ) (14)

Thus the expectation of the number of minimum energy states grows exponentially in
the total size of the network.

For the simulations in Figure 2, we set NC = 0.95N , and choose Z = 4 + Zadd, where
P (Zadd = k) = 0.85 × 0.15k−1 (note this is a geometric distribution with p = 0.85). We
then randomly assign outgoing edges from input neurons to constraint nodes, subject to
2 ≤ ZC ≤ 6. In Figure S3d,e, we choose deterministic values of z = 5 and zC = 12 (and
consequently NC = 5N/12).

For Figure 2 we choose the preferred configurations of the constraint nodes to be parity
states of the connected input neurons (this simplifies the numerical simulations, but is not
necessary), and in Figure S3d,e we choose these configurations randomly, but subject to the
constraint that each preferred configuration differs from the others in the state of at least
two neurons.

16

S9 Hopfield network expander codes: error-correcting

dynamics

In this section we show that the Hopfield network dynamics carries out the decoding algo-
rithm1 described in Section S6. We first proceed under the assumption of a separation of
timescales, where constraint neurons change much more rapidly than input neurons. We
then show that this separation of timescales can be made arbitrarily large and thus the
approximation holds to any degree required.

Theorem 4. The dynamics of the Hopfield networks defined in Theorem 3 implement the
bit-flip decoding algorithm described in Section S6.

Proof. We first proceed under the assumption that the rate of changes in constraint neurons
is much more rapid than in the input neurons (explained below). Thus, if the constraint
neurons are not in equilibrium with the input neurons, first consider the case where the input
neurons remain in some fixed state while the constraint neurons settle into equilibrium with
that state.

First consider a constraint node with fixed inputs. If the input corresponds to one of the
preferred states of the constraint node, vj, then as in Claim 3, this node settles to a WTA
state where h(j) = 1 for the appropriate constraint neuron, and all the rest are inactive.
If the input does not correspond to a preferred state for the node, there are neurons that
prefer a neighboring state and these are weakly driven; either one or two of the weakly-
driven neurons can be active, and the node drifts between all 1-sparse or 2-sparse activity
combinations of the weakly-preferred neurons (Claim 4).

We next identify the conditions under which the ith input neuron will change its state.
Define the current state of the input pattern to be x and the state of the input pattern
with input neuron i flipped to be x¬i. Assume that the ith neuron is connected to a set of
constraint nodes, C. We divide C into three groups, which we call CS, CU and CU ′ . The
constraint nodes in CS are in a WTA state with each one’s active neuron’s preferred input
matching the current input. The constraint nodes in CU are the ones for whom neither x
nor x¬i corresponds to any preferred state. The nodes in CU ′ do not have any preferred
states matching x but have preferred states that would match x¬i. The internal states of
the CU ′ nodes move between the 1- and 2-sparse combinations of activity of neurons that
prefer neighboring states of x (Claim 4). Within one constraint node of CU ′ , some of these
neighboring states prefer a flip in i, and others do not. At a given time t, a fluctuating
number M(t) of the constraint nodes in CU ′ are in a neighboring state that prefers a flip in
input i, with 0 ≤M(t) ≤ |CU ′|. When M(t) > |CS|+ |CU | the input neuron i is energetically
favored to flip its state according to the Hopfield dynamics, and will do so. Recall that in
the bit-flip algorithm, the ith input flips whenever |CU ′| > |CS|+ |CU |.

The number of internal states of the constraint nodes is < 2zC−1 and remains fixed with
N . Thus the number of neighboring states for unsatisfied nodes also does not scale with N ,
and the time taken for M(t) to reach CU ′ (or any value > |CS|+ |CU | if |CU ′| > |CS|+ |CU |)
is finite and does not change with N . Thus, it follows that in the Hopfield network, the
ith input will flip with finite probability when doing so is favorable according to the bit-flip
algorithm, and will not do so otherwise. Therefore, the network implements the bit-flip

17

dynamics of Section S6 and, consequently, can correct a number of errors that scales with
network size.

Corollary 1. The basins of attraction of the embedded stable states in the Hopfield network
grow linearly with with network size, and the time taken for the network to converge is
proportional to the number of errors and is hence O(N).

Proof. We have shown that the Hopfield network of Section S8 implements the bit flip
decoding of the expander codes in Section S6, thus the basins of attraction map onto the
basins in Section S6, and are linear in network size.

Each time an input neuron updates its state, the number of constraint nodes in high-
energy (unsatisfied) states decreases by at least one. The initial number of errors in the
input pattern is proportional to network size (O(N)). The maximal number of initially
unsatisfied/high-energy constraint nodes is zmax times the number of errors and thus also
O(N). Consequently, the time to converge is on the order of the product of the time to
update an input neuron with the number of errors.

The update of an input neuron depends on coincident activation of constraint neurons
across a fraction of its connected constraint nodes (O(z)) that prefer the flipped state.
The time taken for this update to happen scales with z, zC , but not N , because z, zC are
independent of N . Thus, the number of steps taken for the Hopfield network to converge is
also O(N), like the bit-flip algorithm, albeit with a larger prefactor.

The proofs above rely on the assumption that the rate of changes in constraint neurons
is high enough that their states are in equilibrium with the states of the input neurons.
This assumption holds because an input neuron must wait to switch until enough of its
unsatisfied constraint nodes, through explorations of combinations of the neighboring states,
push it into the new, lower-energy state. By contrast, when an input neuron switches states,
the constraint neurons with matching preferred input in a previously unsatisfied constraint
are either already active (this was a condition for causing the input neuron’s switch) or
activate as soon as it is their turn to be updated, and the constraint node state immediately
reflects the low-energy configuration for the given input state.

Also note that the separation of timescales between input and constraint neurons can be
made arbitrarily large by choosing the degree of the input neurons to be some sufficiently
large but fixed value (that does not grow with N , so that the network remains sparse). Thus
the separate timescales can be made arbitrarily large, if desired for theoretical reasons.

Finally note that like most codes, these Hopfield networks are not perfect codes, meaning
that the codewords (i.e, the desired stable states) and the surrounding points that map to
them (i.e., the basins of attraction) do not occupy the entire space of possible messages.
Indeed, in high dimensions, the majority of the state space lies in between these spheres and
the network has a large number of shallow local minima in the spaces between the coding
spheres.

S10 Weakening constraints

In the previous section we considered constraints with a guaranteed minimum distance of 2
between their satisfied states. We now extend those results to consider weaker constraints

18

that accept some fraction of adjacent states. For example, such a constraint might be satisfied
when its connected variables take configurations (0, 0, 0), (0, 0, 1), and (1, 1, 1). We define
p to be the probability that a neighbor of a satisfied state is unsatisfied. We show that for
slightly higher expansion, the results above will hold on average, and we bound the deviation
from this average for large N .

Claim 6. Consider a Hopfield network expander code on a (γ, (1− ε) expander graph, where
constraint nodes are satisfied by neighboring states with probability 1− p. If 1

2(1−2ε) < p, then
this network has exponential capacity and can show robust error correction.

Proof. As in section S6, consider a state Q differing from a satisfied state Qsat on a set of
neurons E. In section S6 we had Unique(E) ⊂ U(E) (and, implicitly, p = 1). However, in
the weaker setting, a constraint in Unique(E) is unsatisfied with probability p. For nota-
tional convenience define the random variable X = |U(E)| (i.e., the number of unsatisfied
constraints), and note that X ≥ Binomial(K, p), where K = |Unique(E)| ≥ (1 − 2ε)|δ(E)|.
As before, we wish X > |δ(E)|/2.

For this to hold we will require higher expansion. Choose ε so that 1
2(1−2ε) < p (if

p = 1 then ε < 1/4 as before). Now define α = 1
2p(1−2ε) < 1 and note that E[X] ≥

pK > |δ(E)|/(2α) > |δ(E)|/2. Thus, on average, the state Q will have a neuron that it is
energetically favorable to flip.

We now bound the probability of error, meaning the probability that the number of
unsatisfied constraints is less than half the number of edges leaving E.

P

(
X <

|δ(E)|
2

)
≤ P

(
X < αE[X]

)
≤ exp

(
−(1− α)2

2
E[X]

)
< exp

(
−(1− α)2

4α
|δ(E)|

)
. (15)

Here we use the Chernoff bound for the second inequality.
|δ(E)| is approximately proportional to the number of error variables, |E| (for a fixed

degree network this is exact and the proportionality constant is just the degree). Thus, the
probability that there exists another minimum within a distance d of Qsat falls off exponen-
tially in d.

These results allow the presence of other local minima, which we can divide into two
categories. First, there may be a small number of local minima very close to Qsat, at a
distance that does not scale with network size (and thus a distance that vanishes in relative
terms). The effect of these minima is to slightly expand the desired energy minima to
possibly include a set of nearby states rather than a single state, but the size of this set
does not grow with network size or number of minima. Second, while the probability that
there exists another minimum within a distance d of Qsat falls off exponentially in d, the
number of states at distance d grows exponentially in d, and thus there will be O(1) local
minima at distance d. However, since these minima are produced by rare events, the basins
of attraction are likely to be small and most trajectories should not see these minima.

19

Next, we note that the probability of these local minima decreases exponentially in the
variable degree. To see this, consider Eq. 15 for a fixed degree network, where each variable
participates in z constraints. Then |δ(E)| = z|E|,

P (local minimum) < exp

(
−(1− α)2

4α
|δ(E)|

)
= exp

(
−(1− α)2

4α
z|E|

)
. (16)

Thus it is always possible to achieve an error below any given fixed probability by choosing
z appropriately and this value of z does not need to grow with network size. Moreover, the
error probability can be asymptotically driven to 0 by allowing z to grow with N at any
rate.

S11 Noisy updates / finite temperature

Figure S2: Network dynamics at finite temperature. (a) Fraction of times the network
infers the correct state as a function of percent input corrupted, for two different inverse
temperatures. The network is considered to have reached the correct state if the final state
is within two standard deviations of the mean of the equilibrium distribution shown in b.
(b) Distribution of number of nonzero variable neurons for networks started at the all-zero
energy minimum and allowed to evolve. Note that hidden neurons are subject to noisy
updates as well (state not shown). Colors correspond to a. (c) Sample trajectories for two
values of inverse temperature. Top panel shows inverse temperature = 4.0 and bottom panel
shows inverse temperature = 4.5. Network size of 500 variables in all simulations.

20

Previously, we established the existence of an energy gradient allowing error correction
with large basins of attraction. We now consider the case when input neurons update their
state probabilistically rather than always descending the energy gradient. We show that the
network state evolves towards the energy minimum on average and, as before, we bound the
deviation from this average for large N . Note that in this case we do not expect perfect
decoding. If we start the network at an energy minimum and there is some small probability
p of a neuron flipping to a higher energy state, then on average pN neurons will flip, and thus
the distribution of network states will be localized around, but not exactly at, the minimum.

Claim 7. Assume that neurons update their state probabilistically, with some probability p to
switch to a higher energy state, where p < γ/2 (γ is the size of sets that expand). Consider
a network state within a distance αN of an energy minimum, where p < α < γ/2. The

network is driven towards the energy minimum with probability exp
(
− (α−p)2φN

2

)
.

Proof. Consider a neuron deciding which state to take, with Q and Q] the possible network
states (differing only on the value of that neuron). Assume that P (Q) = 1 − P (Q]) =
f(∆E(Q,Q])), where ∆E is the energy difference between the two states and f is some
function. For a Hopfield network this function always picks the lower energy state, while
for a Boltzmann machine the ratio of probabilities for the two states is exponential in the
energy difference.

We consider the basin of attraction around a minimum energy state Qsat and consider
some general state Q in this basin of attraction. The energy of state Q, E(Q) is proportional
to NV C , the number of violated constraints, with some constant k1 (the constant is irrelevant
for the Hopfield network formulation but not when the switching probability depends on the
energy difference, such as with a Boltzmann machine). If F is the set of error locations, then
the previous analyses show that the number of violated constraints, NV C ≥ (1 − 2ε)|δ(F)|.
Moreover, no constraint is violated unless it receives at least one edge from a variable in F .
Thus NV C ≤ |δ(F)|. For simplicity, we consider the case when the degrees are constant, so
that |δ(F)| = z|F | (but note that we’re considering sets whose size scales with N , and thus
|δ(F)| will be increasingly concentrated around 〈z〉|F | in the large N limit). Combining,

k1(1− 2ε)z|F | ≤ E(Q) ≤ k1z|F | (17)

We make the approximation that E(Q) ∝ |F |. Thus increasing the size of |F | by 1 changes
the energy by some fixed value ∆(E) > 0 and decreasing |F | changes energy by −∆(E).
Consequently, each neuron in Q takes the same state as it does in Qsat with probability 1−p
and takes opposite state with probability p, where p is small and depends on ∆(E).

In equilibrium, the average size of F will be pN and, for large N , fluctuations around
this will be on the order of

√
N . Recall that the basins of attraction have size ≥ γN

2
. Thus

in order for decoding to work we require that p < γ
2
.

We analyze the effect of updating a state Q where |F | = αQ, meaning that a fraction
α of neurons have a state different from the energy minimum. We assume p < α, since pN
is the best decoding possible and that α < γ

2
, so as to keep the state within the basin of

attraction. We show that updates send the network towards state Qsat with high probability.
Consider the network after M = φupdateN neurons have been updated. If neurons update

their states in parallel, as typically assumed, then this happens in constant time; if they

21

instead update sequentially then we are effectively considering some constant fraction of the
time the network takes to converge. Let the random variable Xold

i take value 1 if the i-th
neuron in the update set is in error (i.e. differs from its state in Qsat) and 0 otherwise.
Similarly, Xnew

i is the corresponding random variable after the update. Initially the number
of error neurons in this set is Xold =

∑M
i=1X

old
i ∼ Bin(M,α). After the update the number

of error neurons in this set is Xnew =
∑M

i=1X
new
i ∼ Bin(M, p). Consequently, the set |F |

changes in size by ∆F = Xerror,new −Xerror,old, and we wish to show P (∆F < 0) vanishes as
N gets large.

Note that ∆F =
∑

i Yi, where Yi = Xnew
i − Xold

i . Also, E[∆F] = (p − α)N . Applying
Hoeffding’s inequality we find

P (∆F ≥ 0) = P

(
(∆F − E[∆F]) >

(α− p)
N

)
≤ exp

(
−(α− p)2φN

2

)
(18)

Thus this probability decreases exponentially in N . Note that the average step size ∆F
gets smaller as α→ p.

For the simulations shown in Fig. S2, we scale all the connections described in Section
6 by an inverse temperature β, and update neurons according to Boltzmann dynamics (Eq.
3).

S12 Self-organization to exponential capacity

We have showed that if the preferred patterns at each constraint node differ by at least two
bits, the network as a whole has both exponentially many minima and large (∼ N) basins
of attraction. Here, we show how the neurons within each constraint node, connected to the
same subset of input neurons, can come to prefer sufficiently non-overlapping patterns.

S12.1 Learning rule

We first describe the learning at a single constraint node. The neurons in the constraint
node receive input from the same set of zC input neurons, with weak and non-specific initial
weights (Fig. S3a). Assume that the constraint node has K neurons, where K ≥ 2zC−1.
Each of these K constraint neurons inhibits the others with recurrent inhibition of strength
ξ and receives background inhibition of strength η.

On each learning step, we first provide a random input to the zC input neurons and
allow the constraint neurons to reach equilibrium with the inputs. If the input is within
a Hamming distance of 1 from a previously learned state then, provided |η| < (zC − 1),
the constraint neuron corresponding to that state activates, otherwise all constraint neurons
remain inactive. We then provide an excitatory input of strength ζ > |η| to a randomly
selected constraint neuron. If no other constraint neuron is active (i.e., the state has not
been learned before), then the neuron that receives this excitatory input activates, and we
learn connection strengths of +1 with input neurons that are active and −1 with input

22

Figure S3: Input-driven self-organization of weights in a network with random
connectivity. (a) Schematic of weight updating at a single constraint node. Initially the
constraint node receives weak, non-specific projections from a subset of input nodes (first
panel). Hebbian plasticity then associates random input patterns with sparse random activa-
tion of constraint neurons. If the input to a constraint node is not close to a previously seen
pattern that has become a preferred pattern through plasticity, and if a constraint neuron in
the node is active, the active constraint neuron learns connection strengths that prefer this
pattern (second and third panels; fifth and sixth panels). If the constraint node receives an
input that is close to a previously learned pattern, then the constraint neuron corresponding
to this pattern activates and suppresses the activation of other constraint neurons (fourth
panel). (b) Mean time taken for self-organization as a function of number of constraint
nodes (black circles) along with logarithmic fit (gray line). Time grows logarithmically with
network size. (c) Number of global minima when preferred states at a constraint are cho-
sen randomly (subject to minimum separation of 2 in Hamming distance), shown for small
networks. Blue circles show mean number of global minima for networks with input degree
(z) of 3 and constraint degree (zC) of 8. Blue line shows exponential scaling with exponent
predicted from mean-field argument (Eq. 13). Magenta, red and black show results for other
combinations of (z, zC) (labeled on plots). (d) Number of fixed points for learned networks,
predicted from a mean field analysis (explicit results for small networks shown in panel (c)).
Black circles show individual points from the predicted distribution; gray line shows the
mean. (e) Error-correction performance of network after self-organization with N = 480.
Error bars show standard error.

23

neurons that are inactive, and we add a bias that ensures that the total input drive is zC . If
another constraint neuron is active (i.e., the state has been learned before) then, provided
that |ζ| < |ξ| + |η|, this constraint neuron suppresses the activation of other constraint
neurons via the recurrent inhibition and no learning takes place. At the end of learning, we
remove the inhibitory bias η. Parameters are ξ = −(zC−1), η = −(zC−1.5) and ζ = zC−1.

In sum, the learning proceeds by pairing a very-sparse random drive of the constraint
neurons (so that at most one constraint neuron is activated) with random activation of the
inputs, and updating weights in a Hebbian-like one-shot modification. The background input
to the constraint neurons ensures that all constraint neurons receive the same average input
over time, regardless of their (learned) preferred input configurations.

Learning is considered complete when the constraint node has seen enough patterns
to cover the input space, meaning that every one of the 2zC possible input patterns has
either been learned by the constraint node or is adjacent (i.e., Hamming distance of 1) to
a previously learned pattern. Note that the learning procedure just described is equivalent
to randomly selecting satisfied constraint states from the 2zC possible inputs, subject to
the constraint that each new selected state must be a Hamming distance of at least 2 from
previously selected states.

For multiple constraint nodes, the learning described above proceeds in parallel at each
node. Random patterns are presented to the N -neuron input layer of the network as a whole.
Each constraint node receives input from a random subset of zC input neurons (determined
by the random initial connectivity). Thus for each node learning proceeds using the values
of the input patterns at the relevant zC input neurons and does not depend on the learning
at any other constraint node.

S12.2 Time taken for learning

First consider the time taken for learning at a single constraint node of degree zC . Call
this random variable Ti. As described above, input patterns are presented randomly and
learning terminates when the constraint node has seen enough patterns to cover the input
space, meaning that every one of the 2zC possible input patterns has either been learned by
the constraint node or is adjacent to a previously learned pattern. Note that zC does not
grow with network size, and thus the distribution of learning times at a single node is fixed
with network size.

Let T̃i be the time taken for the network to see all possible input patterns and observe
that Ti is bounded by T̃i, meaning that for any t, P (Ti > t) ≤ P (T̃i > t). The problem
of determining the time T̃i to see every one of 2zC input patterns is the well-known coupon
collector problem18. In particular, E[T̃i] ∼ zC2zC . zC is a small fixed number (and thus the
mean learning time at a single node is constant).

Now consider the time taken to learn all NC constraints, which we call Ttot(NC). Observe
that learning proceeds in parallel, and that the learning at each node does not depend on
the rate of learning at any other node. The time for learning to finish is thus determined by
maxi Ti ≤ maxi T̃i. For notational convenience define µ = zC2zC . Then,

24

P (max
i
Ti > tµ) ≤

NC∑
i=1

P (Ti > tµ) ≤
NC∑
i=1

P (T̃ > tµ) = NCP (T̃ > tµ)

≤ NC2−(t+1)zC = 2−(t+1)zC+log(NC),

where the final inequality is a simple tail bound for the coupon collector problem18. Now
observe that setting t = (1 + ε) log(NC)/zC suffices to ensure that P (Ttot > tµ) → 0 as
NC →∞. Thus, the learning time is O(log(NC)) with desired probability.

S12.3 Numerical experiments

To confirm the learning time numerically, we simulate the learning process at a single con-
straint node of degree zC = 12 to yield a distribution of learning times. We then use this
empirical distribution to compute T (NC) = E[max1≤i≤NC

Ti]. In Fig. S3b we plot log(T (NC))
as a function of NC , verifying the logarithmic scaling.

For the numerical results shown in Fig. S3d,e, we start with a randomly-constructed
bipartite graph, with degree 5 at the input neurons and 12 at the constraint nodes. Thus
each input connects to 5 constraint nodes, and each constraint node constrains the state of
12 inputs. After learning is complete, each constraint is satisfied by a fraction 2−R of its
possible input states, where R is a random variable determined by the learning procedure.

To estimate the capacities for the plot in Fig. S3d, we first numerically compute the
distribution of R. Then for a given number of input nodes N and constraint nodes NC , we

plot samples of 2N−
∑NC

i=1 Ri (i.e., Equation 13), where the Ri’s are independently drawn from
the distribution for R.

This predicted capacity relies on the assumption that the constraints independently re-
strict the set of possible input states. We numerically verify this mean field argument in Fig.
S3c, where we explicitly count the number of global energy minima for small networks of
various sizes and degrees and plot the results along with the predicted exponential scaling,
with exponent given by Eq. 13.

For Fig. S3e, we choose acceptable input states for a constraint node randomly, subject
to a minimum Hamming distance of 2 between selected states (this procedure is equivalent
to the learning procedure), and set the weights between the input and constraint neurons
appropriately. For convenience, we choose the same set of preferred states for each constraint
node (note that the results of S9 apply to any set of constraints as long as there is a minimum
distance of 2 between allowed states at each constraint).

S13 Notes on capacity results

Classical results in the theory of Hopfield networks show that a network of N neurons cannot
store more than O(N) arbitrary patterns8;9. While these results are typically framed in the
context of recurrent networks without hidden neurons, simple arguments show that the same
results hold for more general architectures.

25

First, is it possible to circumvent bounds on the storage of arbitrary patterns through
an alternate scheme, in which exponentially many arbitrary patterns are mapped to the
robust memory states of a high-capacity network such as the one we construct? Encoders in
communications theory do just this, mapping arbitrary inputs to well-separated states before
transmission through a noisy channel. From a neural network perspective, the feedforward
map can be viewed as a recurrent network with input and hidden units and asymmetric
weights, so again we know from capacity results on non-symmetric weights9 that it should
not be possible. Mapping exponentially many arbitrary patterns to these structured memory
states in a retrievable way would require specifying exponentially many pairings between
inputs and structured memory states, and thus in general, equally many synapses. One way
to obtain that many synapses would be to have exponentially many input neurons, but then
the overall network would not possess exponential capacity for arbitrary many patterns as a
function of network size.

Existing capacity results on Hopfield networks typically assume that all neurons are
visible neurons. However, adding hidden neurons cannot change the scaling of capacity
with network size. Consider a network of N neurons with N1 = αN visible neurons and
N2 = (1 − α)N hidden neurons. Assume that the network stores a set S patterns on its
visible neurons, meaning that for each state si ∈ S, there exists at least one stable state of
the network dynamics where the visible neurons are in state si (note that Hopfield networks
always converge to a stable state). If the size of S is f(N1), then there exists an equivalent
network of N = N1 + N2 visible neurons (i.e., no hidden neurons) with at least f(N1)
patterns, and thus the previous capacity results show that f(N1) is O(N) (or O(N2) for
sparse patterns).

References

[1] Sipser, M. & Spielman, D. A. Expander codes. IEEE Trans. Inf. Theory 42, 1710–1722
(1996).

[2] McEliece, R., Posner, E. C., Rodemich, E. R. & Venkatesh, S. The capacity of the
Hopfield associative memory. IEEE Trans. Inf. Theory 33, 461–482 (1987).

[3] Amit, D. J., Gutfreund, H. & Sompolinsky, H. Storing infinite numbers of patterns in
a spin-glass model of neural networks. Phys. Rev. Lett. 55, 1530 (1985).

[4] Kanter, I. & Sompolinsky, H. Associative recall of memory without errors. Phys. Rev.
A 35, 380 (1987).

[5] Tsodyks, M. V. Associative memory in asymmetric diluted network with low level of
activity. Europhys. Lett. 7, 203–208 (1988).

[6] Hillar, C., Sohl-Dickstein, J. & Koepsell, K. Efficient and optimal binary Hopfield asso-
ciative memory storage using minimum probability flow. arXiv preprint arXiv:1204.2916
(2012).

26

[7] Alemi, A., Baldassi, C., Brunel, N. & Zecchina, R. A three-threshold learning rule
approaches the maximal capacity of recurrent neural networks. PLoS Comp. Biol. 11,
e1004439 (2015).

[8] Abu-Mostafa, Y. S. & St Jacques, J. Information capacity of the Hopfield model. IEEE
Trans. Inf. Theory 31, 461–464 (1985).

[9] Gardner, E. & Derrida, B. Optimal storage properties of neural network models. J.
Phys. A 21, 271 (1988).

[10] Treves, A. & Rolls, E. T. What determines the capacity of autoassociative memories in
the brain? Network: Comp. Neural 2, 371–397 (1991).

[11] Hamming, R. W. Error detecting and error correcting codes. Bell Syst. Tech. J. 29,
147–160 (1950).

[12] Tanner, R. M. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory
27, 533–547 (1981).

[13] MacKay, D. Information Theory, Inference, and Learning Algorithms (Cambridge Uni-
versity Press, 2004).

[14] Sourlas, N. Spin-glass models as error-correcting codes. Nature 339, 693–695 (1989).

[15] Sourlas, N. Statistical mechanics and capacity-approaching error-correcting codes. Phys-
ica A 302, 14–21 (2001).

[16] Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A. & Spielman, D. A. Improved low-
density parity-check codes using irregular graphs. IEEE Trans. Inf. Theory 47, 585–598
(2001).

[17] Binder, K. & Young, A. P. Spin glasses: Experimental facts, theoretical concepts, and
open questions. Rev. Mod. Phys. 58, 801 (1986).

[18] Motwani, R. & Raghavan, P. Randomized Algorithms (Cambridge University Press,
1995).

27

