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Abstract

We study the task of semi-supervised learning on multilayer graphs by taking into
account both labeled and unlabeled observations together with the information
encoded by each individual graph layer. We propose a regularizer based on the
generalized matrix mean, which is a one-parameter family of matrix means that
includes the arithmetic, geometric and harmonic means as particular cases. We
analyze it in expectation under a Multilayer Stochastic Block Model and verify
numerically that it outperforms state of the art methods. Moreover, we introduce a
matrix-free numerical scheme based on contour integral quadratures and Krylov
subspace solvers that scales to large sparse multilayer graphs.

1 Introduction

The task of graph-based Semi-Supervised Learning (SSL) is to build a classifier that takes into
account both labeled and unlabeled observations, together with the information encoded by a given
graph[4, 27]. A common and successful approach is to take a suitable loss function on the labeled
nodes and a regularizer which provides information encoded by the graph [2, 15, 30, 32, 35]. Whereas
this task is well studied, traditionally these methods assume that the graph is composed by interactions
of one single kind, i.e. only one graph is available.

For the case where multiple graphs, or equivalently, multiple layers are available, the challenge is to
boost the classification performance by merging the information encoded in each graph. The arguably
most popular approach for this task consists of finding some form of convex combination of graph
matrices, where more informative graphs receive a larger weight [1, 13, 14, 23, 28, 29, 31, 33].

Note that a convex combination of graph matrices can be seen as a weighted arithmetic mean of
graph matrices. In the context of multilayer graph clustering, previous studies [19–21] have shown
that weighted arithmetic means are suboptimal under certain benchmark generative graph models,
whereas other matrix means, such as the geometric [20] and harmonic means [19], are able to discover
clustering structures that the arithmetic means overlook.

In this paper we study the task of semi-supervised learning with multilayer graphs with a novel
regularizer based on the power mean Laplacian. The power mean Laplacian is a one-parameter family
of Laplacian matrix means that includes as special cases the arithmetic, geometric and harmonic mean
of Laplacian matrices.We show that in expectation under a Multilayer Stochastic Block Model, our
approach provably correctly classifies unlabeled nodes in settings where state of the art approaches fail.
In particular, a limit case of our method is provably robust against noise, yielding good classification
performance as long as one layer is informative and remaining layers are potentially just noise. We
verify the analysis in expectation with extensive experiments with random graphs, showing that our
approach compares favorably with state of the art methods, yielding a good classification performance
on several relevant settings where state of the art approaches fail.
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name minimum harmonic mean geometric mean arithmetic mean maximum
p p→ −∞ p = −1 p→ 0 p = 1 p→∞

mp(a, b) min{a, b} 2
(
1
a
+ 1

b

)−1 √
ab (a+ b)/2 max{a, b}

Table 1: Particular cases of scalar power means

Moreover, our approach scales to large datasets: even though the computation of the power mean
Laplacian is in general prohibitive for large graphs, we present a matrix-free numerical scheme based
on integral quadratures methods and Krylov subspace solvers which allows us to apply the power
mean Laplacian regularizer to large sparse graphs. Finally, we perform numerical experiments on
real world datasets and verify that our approach is competitive to state of the art approaches.

2 The Power Mean Laplacian

In this section we introduce our multilayer graph regularizer based on the power mean Laplacian.
We define a multilayer graph G with T layers as the set G = {G(1), . . . , G(T )}, with each graph
layer defined as G(t) = (V,W (t)), where V = {v1, . . . , vn} is the node set and W (t) ∈ Rn×n+ is the
corresponding adjacency matrix, which we assume symmetric and nonnegative. We further denote
the layers’ normalized Laplacians as L(t)

sym = I − (D(t))−1/2W (D(t))−1/2, where D(t) is the degree
diagonal matrix with (D(t))ii =

∑n
j=1W

(t)
ij .

The scalar power mean is a one-parameter family of scalar means defined as

mp(x1, . . . , xT ) = ( 1
T

∑T
i=1 x

p
i )

1/p

where x1, . . . , xT are nonnegative scalars and p is a real parameter. Particular choices of p yield
specific means such as the arithmetic, geometric and harmonic means, as illustrated in Table 1.

The Power Mean Laplacian, introduced in [19], is a matrix extension of the scalar power mean
applied to the Laplacians of a multilayer graph and proposed as a more robust way to blend the
information encoded across the layers. It is defined as

Lp =
(

1
T

∑T
i=1(L

(i)
sym)p

)1/p
where A1/p is the unique positive definite solution of the matrix equation Xp = A. For the case
p ≤ 0 a small diagonal shift ε > 0 is added to each Laplacian, i.e. we replace L(i)

sym with L(i)
sym + ε, to

ensure that Lp is well defined as suggested in [3]. In what follows all the proofs hold for an arbitrary
shift. Following [19], we set ε = log10(1 + |p|) + 10−6 for p ≤ 0 in the numerical experiments.

3 Multilayer Semi-Supervised Learning with the Power Mean Laplacian

In this paper we consider the following optimization problem for the task of semi-supervised learning
in multilayer graphs: Given k classes r = 1, . . . , k and membership vectors Y (r) ∈ Rn defined by
Y

(r)
i = 1 if node vi belongs to class r and Y (r)

i = 0 otherwise, we let

f (r) = argmin
f∈Rn

‖f − Y (r)‖2 + λfTLpf . (1)

The final class assignment for an unlabeled node vi is yi = argmax{f (1)i , . . . , f
(k)
i }. Note that the

solution f of (1), for a particular class r, is such that (I+λLp)f = Y (r). Equation (1) has two terms:
the first term is a loss function based on the labeled nodes whereas the second term is a regularization
term based on the power mean Laplacian Lp, which accounts for the multilayer graph structure. It is
worth noting that the Local-Global approach of [32] is a particular case of our approach when only
one layer (T = 1) is considered. Moreover, not that when p = 1 we obtain a regularizer term based
on the arithmetic mean of Laplacians L1 = 1

T

∑T
i=1 L

(i)
sym. In the following section we analyze our

proposed approach (1) under the Multilayer Stochastic Block Model.
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4 Multilayer Stochastic Block Model

In this section we provide an analysis of semi-supervised learning for multilayer graphs with the
power mean Laplacian as a regularizer under the Multilayer Stochastic Block Model (MSBM). The
MSBM is a generative model for graphs showing certain prescribed clusters/classes structures via
a set of membership parameters p(t)in and p(t)out, t = 1, . . . , T . These parameters designate the edge
probabilities: given nodes vi and vj the probability of observing an edge between them on layer t is
p
(t)
in (resp. p(t)out), if vi and vj belong to the same (resp. different) cluster/class. Note that, unlike the

Labeled Stochastic Block Model [11], the MSBM allows multiple edges between the same pairs of
nodes across the layers. For SSL with one layer under the SBM we refer the reader to [12, 22, 26].

We present an analysis in expectation. We consider k clusters/classes C1, . . . , Ck of equal size
|C| = n/k. We denote with calligraphic letters the layers of a multilayer graph in expectation
E(G) = {E(G(1), . . . , E(G(T ))}, i.e. W(t) is the expected adjacency matrix of the tth-layer. We
assume that our multilayer graphs are non-weighted, i.e. edges are zero or one, and hence we have
W(t)
ij = p

(t)
in , (resp.W(t)

ij = p
(t)
out) for nodes vi, vj belonging to the same (resp. different) cluster/class.

In order to grasp how different methods classify the nodes in multilayer graphs following the MSBM
we analyze two different settings. In the first setting (Section 4.1) all layers have the same class
structure and we study the conditions for different regularizers Lp to correctly predict class labels.
We further show that our approach is robust against the presence of noise layers, in the sense that it
achieves a small classification error when at least one layer is informative and the remaining layers
are potentially just noise. In this setting we distinguish the case where each class has the same
amount of initial labels and the case where different classes have different number of labels. In the
second setting (Section 4.2) we consider the case where each layer taken alone would lead to a large
classification error whereas considering all the layers together can lead to a small classification error.

4.1 Complementary Information Layers

A common assumption in multilayer semi-supervised learning is that at least one layer encodes
relevant information in the label prediction task. The next theorem discusses the classification error
of the expected power mean Laplacian regularizer in this setting.
Theorem 1. Let E(G) be the expected multilayer graph with T layers following the multilayer SBM

with k classes C1, . . . , Ck of equal size and parameters
(
p
(t)
in , p

(t)
out

)T
t=1

. Assume the same number of
labeled nodes are available per class. Then, the solution of (1) yields zero test error if and only if

mp(ρε) < 1 + ε , (2)

where (ρε)t = 1− (p
(t)
in − p

(t)
out)/(p

(t)
in + (k − 1)p

(t)
out) + ε, and t = 1, . . . , T .

This theorem shows that the power mean Laplacian regularizer allows to correctly classify the nodes
if p is such that condition (2) holds. In order to better understand how this condition changes when p
varies, we analyze in the next corollary the limit cases p→ ±∞.
Corollary 1. Let E(G) be an expected multilayer graph as in Theorem 1. Then,

• For p→∞, the test error is zero if and only if p(t)out < p
(t)
in for all t = 1, . . . , T .

• For p→−∞, the test error is zero if and only there exists a t∈{1, . . . , T} such that p(t)out < p
(t)
in .

This corollary implies that the limit case p→∞ requires that all layers convey information regarding
the clustering/class structure of the multilayer graph, whereas the case p → −∞ requires that at
least one layer encodes clustering/class information, and hence it is clear that conditions for the limit
p→ −∞ are less restrictive than the conditions for the limit case p→∞. The next Corollary shows
that the smaller the power parameter p is, the less restrictive are the conditions to yield a zero test
error.
Corollary 2. Let E(G) be an expected multilayer graph as in Theorem 1. Let p ≤ q. If Lq yields
zero test error, then Lp yields a zero test error.

The previous results show the effectivity of the power mean Laplacian regularizer in expectation.
We now present a numerical evaluation based on Theorem 1 and Corollaries 1 and 2 on random
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Figure 1: Average classification error under the Stochastic Block Model computed from 100 runs.
Top Row: Particular cases with the power mean Laplacian. Bottom Row: State of the art models.

graphs sampled from the SBM. The corresponding results are presented in Fig. 1 for classification
with regularizers L−10, L−1, L0, L1, L10 and λ = 1. We first describe the setting we consider: we
generate random multilayer graphs with two layers (T = 2) and two classes (k = 2) each composed
by 100 nodes (|C| = 100). For each parameter configuration (p

(1)
in , p

(1)
out, p

(2)
in , p

(2)
out) we generate 10

random multilayer graphs and 10 random samples of labeled nodes, yielding a total of 100 runs per
parameter configuration, and report the average test error. Our goal is to evaluate the classification
performance under different SBM parameters and different amounts of labeled nodes. To this end,
we fix the first layer G(1) to be informative of the class structure (p(1)in − p

(1)
out = 0.08), i.e. one can

achieve a low classification error by taking this layer alone, provided sufficiently many labeled nodes
are given. The second layer will go from non-informative (noisy) configurations (p(2)in < p

(2)
out, left

half of x-axis) to informative configurations (p(2)in > p
(2)
out, right half of x-axis), with p(t)in +p

(t)
out = 0.1

for both layers. Moreover, we consider different amounts of labeled nodes: going from 1% to 50%
(y-axis). The corresponding results are presented in Figs. 1a,1b,1c,1d, and 1e.

In general one can expect a low classification error when both layers G(1) and G(2) are informative
(right half of x-axis). We can see that this is the case for all power mean Laplacian regularizers here
considered (see top row of Fig. 1). In particular, we can see in Fig. 1e that L10 performs well only
when both layers are informative and completely fails when the second layer is not informative,
regardless of the amount of labeled nodes. On the other side we can see in Fig. 1a that L−10 achieves
in general a low classification error, regardless of the configuration of the second layer G(2), i.e. when
G(1) or G(2) are informative. Moreover, we can see that overall the areas with low classification
error (dark blue) increase when the parameter p decreases, verifying the result from Corollary 2. In
the bottom row of Fig. 1 we present the performance of state of the art methods. We can observe
that most of them present a classification performance that resembles the one of the power mean
Laplacian regularizer L1. In general their classification performance drops when the level of noise
increases, i.e. for non-informative configurations of the second layer G(2), and they are outperformed
by the power mean Laplacian regularizer for small values of p.

Unbalanced Class Proportion on Labeled Datasets. In the previous analysis we assumed that
we had the same amount of labeled nodes per class. We consider now the case where the number
of labeled nodes per class is different. This setting was considered in [35], where the goal was to
overcome unbalanced class proportions in labeled nodes. To this end, they propose a Class Mass
Normalization (CMN) strategy, whose performance was also tested in [34]. In the following result
we show that, provided the ground truth classes have the same size, different amounts of labeled
nodes per class affect the conditions in expectation for zero classification error of (1). For simplicity,
we consider here only the case of two classes.
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