
A DeepRole depth-limited CFR

Algorithm 1 DeepRole depth-limited CFR
1: INPUT h (root public game history); b (root public belief); n (# iterations); d (averaging delay);

NN[h] (neural networks that approximate CFVs from h)

Init regrets 8I, rI [a] 0, Init cumulative strategies 8I, sI [a] 0

2: procedure SOLVESITUATION(h, b, n, d)
3: ~u1...p  ~0
4: for i = 1 to n do
5: wi  max(i� d, 0)
6: ~u1...p  ~u1...p+MODIFIEDCFR+(h, b, wi,~11...p)
7: end for
8: return ~u1...p /

P
wi

9: end procedure

10: procedure MODIFIEDCFR+(h, b, w,~⇡1...p)
11: if h 2 Z then
12: return TERMINALCFVS(h, b,~⇡1...p)
13: end if
14: if h 2 NN then
15: return NEURALCFVS(h, b,~⇡1...p)
16: end if
17: ~u1...p  ~0
18: for i 2 P 0(h) do . A strategy must be calculated for all moving players at public history h
19: ~Ii  lookupInfosetsi(h)
20: ~�i  regretMatching+(~Ii)
21: end for
22: for public observation o 2 O(h) do
23: ~a1...p  deduceActions(h, o)
24: for i 2 P 0(h) do
25: ~⇡i  ~�i[~ai]� ~⇡i

26: end for
27: ~u0

1...p  MODIFIEDCFR+(ho, b, w,~⇡1...p)
28: for each player i do
29: if i 2 P 0(h) then
30: ~mi[~ai] ~mi[~ai] + ~ui

31: ~ui  ~ui + ~�i[~ai]� ~u0
i

32: else
33: ~ui  ~ui + ~u0

i
34: end if
35: end for
36: end for
37: for i 2 P 0(h) do . Similar to line 18, we must perform these updates for all moving players
38: for I 2 ~Ii do
39: for a 2 A(I) do
40: rI [a] max(rI [a] + ~mi[a][I]� ~ui[I], 0)
41: sI [a] sI [a] + ~⇡i[I]~�i[I][a]w
42: end for
43: end for
44: end for
45: return ~u1...p

46: end procedure

12



Algorithm 2 Terminal value calculation

1: procedure TERMINALCFVS(h, b,~⇡1...p)
2: ~v1...p[·] 0 . Initialize factual values
3: bterm  CALCTERMINALBELIEF(h, b,~⇡1...p)
4: for i = 1 to p do
5: for ⇢ 2 bterm do
6: ~vi[Ii(h, ⇢)] ~vi[Ii(h, ⇢)] + bterm[⇢]ui(h, ⇢)
7: end for
8: end for
9: return ~v1...p/~⇡1...p . Convert factual to counterfactual

10: end procedure

11: procedure NEURALCFVS(h, b,~⇡1...p)
12: bterm  CALCTERMINALBELIEF(h, b,~⇡1...p)
13: w  

P
⇢ bterm[⇢]

14: ~v1,~v2, . . . ,~vp  NN[h](h, bterm/w) . Call NN with normalized belief
15: return w~v1...p/~⇡1...p . Convert factual to counterfactual
16: end procedure

17: procedure CALCTERMINALBELIEF(h, b,~⇡1...p)
18: for ⇢ 2 b do
19: bterm[⇢] b[⇢]

Q
i ~⇡i(Ii(h, ⇢))

20: bterm[⇢] bterm[⇢](1� {h ` ¬⇢}) . Zero beliefs that are logically inconsistent
21: end for
22: return bterm
23: end procedure

B Value network training

We generate training data for the deep value networks by using CFR to solve each part of the game from a
random sample of starting beliefs. By working backwards from the end of the game, trained networks from later
stages enable data generation using CFR at progressively earlier stages. This progressive back-chaining follows
the dependency graph of proposals shown on the left side of Figure 1. This generalizes the procedure used to
generate DeepStack’s value networks [27].

For each network, we sampled 120, 000 game situations (✓ 2 ⇥) to be used for training and validation. For
each sample, CFR ran for 1500 iterations, skipping the first 500 during averaging. The neural networks were
each trained for 3000 epochs (batch size of 4096) using the Adam optimizer with a mean squared error loss on
~V . Training hyperparameters and weight initializations used Keras defaults. 10% of the data was set aside for
validation. Training on 480 CPU cores, 480 GB of memory, and 1 GPU took roughly 48 hours to produce the
networks for every stage in the game.

C Comparison Agents

CFR CFR denotes an agent using a strategy trained by external sampling MCCFR with a hand-built imperfect-
recall abstraction, used to reduce the size of Avalon’s immense game tree. We bucket information sets for players
based on their initial information set (their role and who they see) and a set of hand-chosen game metrics: the
round number, the number of failed missions each player has participated in, and the number of times a player
has proposed a failing mission. We trained the bot until we observed decayed performance of the bot in self-play.
In total, CFRBot was trained for 6,000,000 iterations.

LogicBot LogicBot is an agent that plays a hand-crafted pre-set strategy derived from our intuition of playing
Avalon with real people. During play, LogicBot keeps a list of possible role assignments that are logically
consistent with the observations it has made. As resistance, it randomly samples an assignment and proposes a
mission using the resistance players in that assignment. It votes up proposals if and only if the proposed players
and the proposer are resistance in a randomly sampled assignment or if it is the final proposal in the round. As
spy, it proposes randomly, votes opposite to resistance players, and selects merlin randomly.

Random Our random agent selects an action uniformly from the available actions.

13



Algorithm 3 Backwards training
1: INPUT P1...n: Dependency-ordered list of game parts.
2: INPUT ⇥1...n: For each game part, a distribution over game situations.
3: INPUT d: The number of training datapoints generated per game partition.
4: OUTPUT N1...n: n trained neural value networks, one for each game part.

5: procedure ENDTOENDTRAIN(P1...n,⇥1...n, d) . Train a neural network for each game
partition

6: for i = 1 to n do
7: x, y GENERATEDATAPOINTS(Pi,⇥i, N1...i�1)
8: Ni  TRAINNN(x, y)
9: end for

10: return N1...n

11: end procedure

12: procedure GENERATEDATAPOINTS(d, S,⇥, N1...k) . Given a game partition, it’s distribution
over game situations, and the NNs needed to limit solution depth, generate d datapoints.

13: for i = 1 to d do
14: ✓i ⇠ ⇥ . Sample a game situation from the distribution
15: vi  SOLVESITUATION(S, ✓i, N1...k) . Solve that game situation for every player’s

values, using previously trained neural networks to solution depth.
16: end for
17: return ✓1...d, v1...d . Return all training datapoints
18: end procedure

Algorithm 4 Game Situation Sampler
1: INPUT s: The number of succeeds.
2: INPUT f : The number of fails.
3: OUTPUT p, b: A random game situation from this game part, consisting of a proposer and a

belief over the roles.

4: procedure SAMPLESITUATION(s, f )
5: I  SAMPLEFAILEDMISSIONS(s, f ) . Uniformly sample f failed missions
6: E  EVILPLAYERS(I) . Calculate evil teams consistent with the missions
7: P (E) ⇠ Dir(~1|E|) . Sample probability of each evil team
8: P (M) ⇠ Dir(~1n) . Sample probability of being Merlin for all players
9: b P (E)

N
P (M) . Create a belief distribution using P (E) and P (M)

10: p ⇠ unif{1, n} . Sample a proposer uniformly over all the players
11: return p, b
12: end procedure

14



Vote R M
(2,3)

… S
(4)

A
(5)

Yes

No

Vote R M
(2,3)

… S
(4)

A
(5)

Yes

No

Vote R M
(2,3)

… S
(4)

A
(5)

Yes

No

Vote R M
(2,3)

… S
(4)

A
(5)

Yes

No

1
[4,3]

[1,5]

[2,3]

1 2 3 4 5

yes
no

majority? no

yes

Proposal 1

Proposal 2

1 5

2 fail
1 fail

succeed

hidden 
actions

NN Terminal

NN Terminal

Proposal R M
(2,3)

… S
(4)

A
(5)

[4, 3] .5 0 .3 0

[1, 5] 1.2 .1 0 4.3

…

[2, 3] 2.1 3.2 0 1

Proposal Regrets

Voting Regrets

Player 1

All players

Vote R M
(2,3)

… S
(4)

A
(5)

Yes .6 .3 .2 1

No 3.2 .1 .1 .3

Mission Regrets

Vote R M
(2,3)

… S
(4)

A
(5)

Yes

No

Mission R M
(2,3)

… S
(4)

A
(5)

Succeed 1.0 1.0 .1 .3

Fail N/A N/A .1 .7

Players 1, 5

Figure 7: An example of the regrets stored at each node in the game tree. During the search phase,
the ModifiedCFR+ algorithm updates these regrets iteratively on a shortened version of the full game
tree, using NeuralCFVs as the leaf evaluators.

ISMCTS & MOISMCTS We also evaluate our bot against opponents playing using the ISMCTS family
of algorithms. Specifically, we evaluate our bot against the single-observer ISMCTS (ISMCTS) algorithm shown
in [11, 12, 43], as well as the improved multiple-observer version of the algorithm (MOISMCTS). Each variant
used 10,000 iterations per move.

D State space calculation

Unlike large two-player games like Poker, Go, or Chess, Avalon’s complexity lies in the combinatorial explosion
that comes with having 5 players, four role types (Spy, Resistance, Merlin, Assassin), and a large number
observable moves. We lower bound the number of information sets by just considering the longest possible
game. The longest possible game lasts five rounds with each round requiring five proposals. Each proposal can
made in 10 different ways by choosing which 2 or 3 players out of 5 should go on the mission. From there, there
are 16 ways proposals 1-4 can be voted down and 16 ways proposal 5 can be voted up. Thus, a lower bound
on the number of information sets is (10 ⇤ 16)5⇤5 ⇡ 1056 which does not consider shorter games or any of the
private information.

E ProAvalon.com

ProAvalon.com is a website where players can play Avalon online in groups of 5 to 10. We’ve integrated
DeepRole in to this website, allowing humans from all around the world to play against 0-4 DeepRole agents.
Fig. 8 shows the game interface for human players on ProAvalon.com. Natural language communication is done
via a publicly visible chat. See the website for more details about the specific interface.

F Human commentary of DeepRole v. Human games.

Some players on ProAvalon.com have uploaded commentary that qualitatively examine the style of play the bots
have. We examine two of these games to show DeepRole effectively cooperating and competing with a human
player.

In the first game we examine (https://www.youtube.com/watch?v=LKdY4Us0Ci4), the human player is
playing as “VT” (“Vanilla Town”, i.e. non-Merlin resistance). After the first two missions fail and the third one
passes, the human player is able to accurately deduce the identities of the spy players. During proposals for the

15

ProAvalon.com
https://www.youtube.com/watch?v=LKdY4Us0Ci4


4th and 5th missions, however, his fellow resistance teammates (including Merlin), seem to be rejecting missions
that he knows to be “clean” (do not contain a spy). While he expresses exasperation that one of his teammates
doesn’t seem to deduce the obvious, these clean missions are eventually approved and succeed. At the end of the
game, resistance win, revealing that the rejecting player was Merlin all along – purposefully rejecting missions
to seem ignorant.

In the second game we examine (https://www.youtube.com/watch?v=9RkUFHYTo_s), the human player is
playing as Merlin. During multiple rounds of the game, the human player “slams clean”, proposing a mission
containing no spies – generally an obvious indicator of Merlin-like knowledge of the spy players. While these
missions are ultimately approved and succeeded, the DeepRole Assassin correctly identifies the human player
due to their obvious play, resulting in a spy victory.

There are more examples of DeepRole v. human games on YouTube, and we encourage readers to check out
other videos with qualitative analysis of DeepRole.

Figure 8: The ProAvalon.com game interface. This shows a completed game between 4 DeepRole
agents and a human player (no affiliation to this work’s authors). The interface consists of a
visualization of a “round table” of players (top), a public chat for each game (bottom left), and the
public game history (bottom right).

16

https://www.youtube.com/watch?v=9RkUFHYTo_s

	Introduction
	The Resistance: Avalon 
	Algorithm: DeepRole 
	CFR with deductive logic
	Value network

	Empirical game-theoretic analysis 
	Human evaluation 
	Discussion 
	DeepRole depth-limited CFR 
	Value network training 
	Comparison Agents 
	State space calculation 
	ProAvalon.com 
	Human commentary of DeepRole v. Human games. 

