
A Proof of Theorem 3.3436

Theorem 3.3. Let A be a proper procedure for testing property P as defined in Definition 3.2.
Suppose the expected number of test samples, s, is bounded from below:

s ≥ Θ

⎛

⎝
n′ ·

√
EF

[[[
min

(
∥p(F )∥22, ∥q(F )∥22

)]]]

ϵ2
+

√
n′∆(Z)

ϵ
√
ξ

⎞

⎠ .

Then Algorithm 1 is ξ-differentially private (ϵ, 3/4)-tester for testing property P .437

Proof: First, we prove that the algorithm is ξ-differentially private. Note that the statistic we use is438

Ẑ which is equal to Z, as defined in Equation 2, plus a Laplace random variable with mean ∆(Z)/ξ.439

According to the Laplace mechanism Ẑ is a ξ-differentially private quantity, so the output of the440

algorithm is private.441

Now, we prove that the algorithm is an (ϵ, 3/4) tester as well. At a high level, the expected value442

of Z is zero when p = q; whereas it is larger than Θ(τ) when p and q are ϵ-far from each other.443

By analyzing the variance of Z, and using Chebyshev’s inequality, we show that Z is close to its444

expectation. More specifically, we prove the following claims:445

• Completeness case: If p is equal to q, then Z at most than τ/2 with high probability.446

• Soundness case: If p is ϵ-far from q, then Z is at least 3 τ/2 with high probability.447

In addition, the magnitude of the of the Laplace noise we add to Z is small with high probability. Set
τ , the threshold we used in the algorithm, to be 2c0s2ϵ2/n′. Using the CDF of Laplace distribution,
we have

Pr
[[[
|Ẑ − Z| ≥ τ

2

]]]
≤ exp

(
c0 s2ϵ2ξ

n′∆(Z)

)
≤ 0.01

where the last inequality is true if s is bounded from below as follows for a sufficiently large constant
c2:

s ≥ c2 ·

√
n′∆(Z)

ϵ
√
ξ

.

If |Ẑ − Z| is less than τ/2, then our claim above is sufficient to prove that the algorithm is (ϵ, 3/4)-448

tester. In the completeness case, with high probability, we will have Ẑ < Z + τ/2 ≤ τ , and in the449

soundness case, with high probability, we will have Ẑ > Z − τ/2 ≥ τ . Thus, in both case, the Ẑ450

will be on the correct side of the threshold. Hence, for the rest of the proof, we focus on the proof451

of the two claims we state.452

To show the bounds for Z, we introduce an auxiliary random variable W . We analyze the expected453

value, and the variance of W , and show that with high probability W is around its expectation by454

Chebyshev’s inequality. Then, we use this fact about W to prove that Z must be around its expected455

value as well, and achieve the desired bound for Z with hight probability.456

More specifically, for a given X and a given π, we define W as:

W = Z − s2 · ∥p(F ) − q(F )∥22 ,

where F is the set of flattening samples, xπ(ŝ+1), xπ(ŝ+2) . . . , xπ(ŝ+k̂). We can similarly define W457

as well:458

W (X) := Eπ,r[[[W |X ]]] .

We analyze the expected value and the variance of W . First, we define the following notations, d(F )
max459

and d(F )
min to indicate the maximum and the minimum of the two quantities ∥p(F )∥22 and ∥q(F )∥22460

respectively. The expected value and the variance of Z, as defined in Equation 1, is given in the461

proof of Proposition 3.1 [19], if we fix the set of flattening samples F :462

ET,r[[[Z|F ]]] = s2∥p(F )−q(F )∥22 , and VarT,r[[[Z|F ]]] ≤ 8s3
√
d(F )
max∥p(F )−q(F )∥24+8s2d . (6)
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Using the above equation, we compute the expected value and the variance of W . Note that since463

samples in X are i.i.d, the order of the samples can change neither the expected value nor the464

variance. Thus, by symmetrization, we can fix an order of the samples, namely π0. As mentioned465

before, the first ŝ samples in X are the test samples, and we denote them by T , and the next k̂466

samples for the flattening samples and are denoted by F . Since T and F are completely separated467

and independent, by Equation 6, we have:468

EX

[[[
W
]]]
= EX[[[Eπ,r[[[W |X ]]]]]] = EX[[[Er[[[W |X,π0 ]]]]]]

= EF

[[[
ET,r

[[[
Z − s2 · ∥p(F ) − q(F )∥22

∣∣∣F
]]]]]]

= 0
(7)

Moreover, given the variance bound in the Equation 6, we obtain the following bound for the vari-469

ance of W , we have:470

VarX
[[[
W
]]]
= VarX[[[Eπ,r[[[W |X ]]]]]] = VarX

[[[
∑

π

Er[[[W |X,π ]]] ·Pr[[[π ]]]

]]]

=
∑

π1

∑

π2

Pr[[[π1 ]]] ·Pr[[[π2 ]]] ·CovX(((Er[[[W |X,π1 ]]], Er[[[W |X,π2 ]]])))

≤ 1

2

∑

π1

∑

π2

Pr[[[π1 ]]] ·Pr[[[π2 ]]] ·
(
VarX[[[Er[[[W |X,π1 ]]]]]] +VarX[[[Er[[[W |X,π2 ]]]]]]

)

= VarX[[[Er[[[W |X,π0 ]]]]]] = VarF,T [[[Er[[[W |F, T ]]]]]]

= EF

[[[
VarT [[[Er[[[W |F ]]]]]]

]]]
+VarF [[[ET,r[[[W |F ]]]]]]

≤ EF

[[[
8 s3 ·

√
d(F )
max · ∥p(F ) − q(F )∥24 + 8 s2 · d(F )

max

]]]
.

Using Chebyshev’s inequality, W cannot be far from its expectation which is zero. More pre-471

cisely, given a constant c0, we prove that there exists a sufficiently large constant c2 such that472

PrX
[[[
|W | ≥ c0 · s2ϵ4

n

]]]
is at most 0.01 assuming we have:473

s ≥ c2 ·
n′ ·

√
EF

[[[
d(F )
min

]]]

ϵ2
. (8)

We consider the soundness case and the completeness case below separately.474

Completeness Case: If p is equal to q, no matter what F and the bucketing are, ∥p(F ) − q(F )∥22475

is zero. Therefore, W is always equal to Z just by definition of W . In fact, we have Z = W =476

W − EX

[[[
W
]]]
. Also, the ℓ2-norms of p(F ) and q(F ) are the same. Thus, the minimum and the477

maximum of ∥p(F )∥22 and ∥q(F )∥22 are equal. Thus, the probability of Z be above τ/2 is bounded478

by 0.01 using the Chebyshev inequality :479

PrX
[[[
Z ≥ τ

2

]]]
≤ PrX

[[[
|W −EX

[[[
W
]]]
| ≥ c0 s2ϵ2

n′

]]]
≤

n′2 ·EF

[[[
8s2d(F )

max

]]]

c20 s
4 ϵ4

= Θ

⎛

⎝
n′2 ·EF

[[[
d(F )
min

]]]

s2ϵ4

⎞

⎠ ≤ 0.01 ,

where the last inequality is true assuming Equation 8 for a sufficiently large constant c2.480

Soundness Case: In this case p is ϵ-far from q. Before showing that W is close to zero with high
probability, we establish two inequalities as below. First, observe that flattening does not change the
ℓ1-distance between two distributions due to the following:

∥p− q∥1 =
n∑

i=i

|p(i)− q(i)| =
n∑

i=1

bi∑

j=1

|p(i)− q(i)|
bi

= ∥p(F ) − q(F )∥ .
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Thus, we have the following lower bound for the ℓ2-distance between p(F ) and q(F ) for any F :481

ϵ2

n′ ≤
∥p− q∥21

n′ ≤ ∥p
(F ) − q(F )∥21

n′ ≤ ∥p(F ) − q(F )∥22 .

Therefore, the above inequality is true in expectation as well:482

EF

[[[
∥p(F ) − q(F )∥22

]]]
≥ ϵ2

n′ . (9)

Second, we provide the following lemma to show a bound for EF

[[[
d(F )
max

]]]
.483

Lemma A.1. Assume F is a random set of samples to be used for flattening. Then, we have:484

EF

[[[
d(F )
max

]]]
≤ Θ

(
EF

[[[
d(F )
min

]]]
+EF

[[[
∥p(F ) − q(F )∥22

]]])

For the proof of the lemma, see Section D.485

By the Chebyshev inequality and the above lemma, we show that W is close to its expectation, i.e.,486

zero, with high probability. Using Jensen’s inequality, Equation 5, Equation 9, and Lemma A.1, we487

have:488

PrX
[[[
|W −EX

[[[
W
]]]
| ≥ c0 ·EF

[[[
s2∥p(F ) − q(F )∥22

]]]]]]

≤
EF

[[[
8s3
√
d(F )
max∥p(F ) − q(F )∥24 + 8s2 d(F )

max

]]]

c20 ·EF

[[[
s2∥p(F ) − q(F )∥22

]]]
2

≤ Θ

⎛

⎜⎜⎝

√
EF

[[[
d(F )
max

]]]
·
√

EF

[[[
∥p(F ) − q(F )∥44

]]]

s ·EF

[[[
∥p(F ) − q(F )∥22

]]]2 +
EF

[[[
d(F )
max

]]]

s2 ·EF

[[[
∥p(F ) − q(F )∥22

]]]
2

⎞

⎟⎟⎠

≤ Θ

⎛

⎜⎜⎝

√
EF

[[[
d(F )
max

]]]

s ·EF

[[[
∥p(F ) − q(F )∥22

]]] +
EF

[[[
d(F )
max

]]]

s2 ·EF

[[[
∥p(F ) − q(F )∥22

]]]
2

⎞

⎟⎟⎠

≤ Θ

⎛

⎜⎜⎝

√
EF

[[[
d(F )
max

]]]

s ·EF

[[[
∥p(F ) − q(F )∥22

]]]

⎞

⎟⎟⎠

≤ Θ

⎛

⎜⎜⎝

√
EF

[[[
d(F )
min

]]]
+
√

EF

[[[
∥p(F ) − q(F )∥22

]]]

s ·EF

[[[
∥p(F ) − q(F )∥22

]]]

⎞

⎟⎟⎠

≤ 0.01

where the last inequality is true when s is larger than the bound given in Equation 8 below for a489

sufficiently large constant, c2.490

s ≥ c2 ·

⎛

⎜⎜⎝
n′ ·

√
EF

[[[
d(F )
min

]]]

ϵ2

⎞

⎟⎟⎠ ≥ Θ

⎛

⎜⎜⎝
n′ ·

√
EF

[[[
d(F )
min

]]]

ϵ2
+

√
n′

ϵ

⎞

⎟⎟⎠ ≥

≥ Θ

⎛

⎜⎜⎝

√
EF

[[[
d(F )
min

]]]

EF

[[[
∥p(F ) − q(F )∥22

]]] + 1√
EF

[[[
∥p(F ) − q(F )∥22

]]]

⎞

⎟⎟⎠
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Now, by definition of Z and Equation 4, we show Z has to be at least 3 τ/2 with high probability.491

Therefore, with high probability have:492

Z = W +Eπ

[[[
s2∥p(F ) − q(F )∥22

]]]
≥ −c0 ·EF

[[[
s2∥p(F ) − q(F )∥22

]]]
+ 4 c0 ·EF

[[[
s2∥p(F ) − q(F )∥22

]]]

≥ 3 c0 ·EF

[[[
s2∥p(F ) − q(F )∥22

]]]
≥ 3 c0 s2ϵ2

n′ .

By taking the union bound, the probability of having too large Laplace noise or a too large |W | is493

at most 0.02. Moreover, Equation 5 and Equation 4 do not hold with probability at most 0.1. Thus,494

with probability at least 3/4, the algorithm output the correct answer. !495

B Testing Closeness of Distributions with Unequal Sample Sizes496

In this section, we prove that the non-private algorithm for testing closeness using unequal sample497

sizes, provided in [25] with a small modification, is a proper procedure. Therefore, we can turn it into498

a private tester using our approach provided in Section 3. We also analyze the sample complexity of499

the tester.500

Assume A is the non-private procedure for testing closeness of p and q using unequal sample sizes.501

First, we explain how A works. To generate a sample from p (or q) the algorithm simply draw an502

i.i.d. sample from p (or q). Assume k1, k2, and s are three parameters that we determine later. k̂1,503

k̂2, and ŝ indicate three Poisson random variables with mean k1, k2 and s respectively. A draws504

ŝ+ k̂1 from p and ŝ+ k̂2 samples from q. For the number of buckets, A uses the following process.505

Let F be the number of a set of k̂1 samples from p and k̂2 samples from q. The number of buckets506

for element i is determined by the number of instances of i in F plus one.507

Theorem B.1. There exists a ξ-differentially private algorithm508

that uses k1 = Ω(max(n2/3/ϵ4/3,
√
n/ϵ
√
ξ)) samples from p,509

Θ(max(n/(ϵ2
√

min(n, k1)),
√
n/ϵ2,

√
n/ϵ
√
ξ, 1/ϵ2ξ)) from both p and q and distinguishes510

the following cases with probability at least 0.8:511

• Completeness case: p = q512

• Soundness case: ∥p− q∥1 > ϵ.513

Proof: The goal is to transform the problem to the generate tester we provided in Section 3. First,514

in Lemma B.2 we show that the non-private algorithm in [25] is a “proper procedure". Using Theo-515

rem 3.3, the existence of the tester with the sample complexity s for the test part is immediate where516

s is at least the bound bellow517

s ≥ Θ

⎛

⎝
n′ ·

√
EF

[[[
min

(
∥p(F )∥22, ∥q(F )∥22

)]]]

ϵ2
+

√
n′∆(Z)

ϵ
√
ξ

⎞

⎠ . (10)

We first show the relationship between s above and the rest of the parameters we have. Then we set
the parameters k1, k2, and s and analyze the sample complexity. Without loss of generality assume
k1 ≥ k2. Note that after flattening the size of the domain increases to n′ = Θ(n+k1+k2) with high
probability. Then, in Lemma B.5, we show that the proposed statistic, Z, has a bounded sensitivity:

∆(Z) ≤ Θ

(
k1

k1 + s
·
(
s+ k2
k2

)2
)

.

In addition, it is shown in [25] that the probability of the expected ℓ2-norm of p after flattening is
at most 1/k1. Moreover, adding more flattening samples does not increase this quantity. Hence, we
have:

EF

[[[
min

(
∥p(F )∥22, ∥q(F )∥22

)]]]
≤ 1

k1

We consider the following cases:518
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• case 1: ϵ = Ω(n−1/4) and ϵ2ξ = Ω(n−1): In this case, we have the following properties:

Θ

(√
n

ϵ2

)
≤ Θ

(
n2/3

ϵ4/3

)
≤ Θ(n), and Θ

(
1

ϵ2ξ

)
≤ Θ

( √
n

ϵ
√
ξ

)
≤ Θ(n) .

Let k1 be a number in the range below:

Θ

(
max

(
n2/3

ϵ4/3
+

√
n

ϵ
√
ξ

))
≤ k1 ≤ Θ(n) .

Hence, n′ is Θ(n). Then, we set s and k2 as follows:

k2 := s := Θ

(
max

(
n

ϵ2
√
k1

,

√
n

ϵ
√
ξ

))

∆(Z) is O(1) in this case. Therefore, s is Ω(n/ϵ2
√
k1 +

√
n∆(Z)/(ϵ

√
ξ)) and the condi-519

tion in Equation 10 holds.520

• case 2: ϵ = o(n−1/4): In this case,
√
n/ϵ2 is Ω(n). Thus, we cannot avoid sample com-

plexity of Ω(n). We set k1 and k2 to be equal to n, and we set s to be the following:

s := Θ

(
max

(√
n

ϵ2
,
1

ϵ2ξ

))
.

Clearly n′ is still Θ(n), and s is Ω(n/
√
k1ϵ2). In this case ∆(Z) is Θ(s/n). Hence, in521

order to have s at least Ω
√

n′∆(Z)/ϵ
√
ξ, it suffices to have s = Ω(1/ϵ

√
ξ).522

!523

B.1 Non-Private Closeness Tester Is a Proper Procedure524

Lemma B.2. Procedure A explained above is a proper procedure according to Definition 3.2.525

Proof: First, we show the number of samples we generate is not too far from their expectation.526

Hence X can be a set with a bounded number of samples. In the following lemma we show if the527

means are larger than a fixed constant, then with probability 0.01 we can assume the number of528

samples from each of distributions is at most three times larger than their means.529

Lemma B.3. Assume random variable x is drawn from Poi(λ). If λ is at least 1.5 · ln(1/c), then530

the probability of x being larger than 3λ is at most 1− c.531

Now, we only need to show that inequalities in Equation 4 and Equation 5 are correct. Before532

proving the equations, we provide an insightful information about the distribution over the bi’s. It is533

clear that for a fixed i, bi− 1 is an independent Poisson random variable with mean k1p(i)+ k2q(i).534

More precisely, we can think of bi − 1 as the sum of two random variables bi,1 ∼ Poi(k1p(i)) and535

bi,2 ∼ Poi(k2q(i)) plus one. However, assume a random set of samples, X , is given to us with ti,1536

instances of i from p, and ti,2 instances of i from q. Then, considering a random permutation of537

samples, then bi,j is a binomial random variable from Bin(ti,j , kj/(kj + s)) for j = 1, 2.538

Now, we focus on proving Equation 4. Fix a set of sample X and a domain element i. Using Jensen’s539

inequality, we have540

Eπ

[[[
1

bi(X,π)

]]]
= Ebi,1,bi,2

[[[
1

bi

]]]
≥ 1

Ebi,1,bi,2[[[bi ]]]
=

1

ti,1 k1/(k1 + s) + ti,2 k2/(k2 + s) + 1
.

Note that by Markov’s inequality the probability of any of ti,1 or ti,2 being 50 times3 larger than541

their expectations is at most 0.04. Therefore, with probability 0.96 assume they are at most 50 times542

their expectation. Since ti,1 and ti,2 are two Poisson random variables with means p(i)(k1 + s) and543

q(i)(k2 + s), we can bound the above quantity as follows:544

Eπ

[[[
1

bi(π)

]]]
≥ 1

50 p(i)k1 + 50 q(i)k2 + 1
=

1

50λ+ 1

3Needless to say, we are not optimizing constants here.
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where we use λ to denote p(i)k1 + q(i)k2. On the other hand, the expected value of 1/bi when X
has not be observed is the following:

EF

[[[
1

bi

]]]
= Ex∼Poi(λ)

[[[
1

x+ 1

]]]
=

1− e−λ

λ
≤ 65

50λ+ 1
.

Putting all of the above facts together, we conclude:545

Prti,1,ti,2

[[[
Eπ

[[[
(p(i)− q(i))2

bi(π)

]]]
≥ 1

65
·EF

[[[
(p(i)− q(i))2

bi

]]]]]]
≥ 0.96 . (11)

We define a random variable xi over the randomness of ti,1 and ti,2 to be the following:

xi := Eπ

[[[
(p(i)− q(i))2

bi(π)

]]]

Note that by the Poissonization method, all the number of instances of a particular element are546

independent form the rest. Hence, xi’s are independent given the independence of ti,j’s. In addition,547

we prove the following lemma, to bound the sum of xi’s from below:548

Lemma B.4. Assume we have n independent random variables x1, x2, . . . , xn in the range [0,+∞).549

Suppose each xi is at least Ai with probability p ≥ 0.95 where Ai is a fixed number. Then, with550

probability at least 0.9,
∑n

i=1 xi is at least 0.1
∑n

i=1 Ai.551

For the proof of the lemma, see Section D.552

Using Equation 11, and Lemma B.4, with probability 0.9 we have:553

Eπ

[[[
∥p(F ) − q(F )∥22

]]]
= Eπ

[[[
(p(i)− q(i))2

bi(π)

]]]
≥ 1

650
·

n∑

i=1

EF

[[[
(p(i)− q(i))2

bi

]]]

= 4c0 ·EF

[[[
∥p(F ) − q(F )∥22

]]]
2 .

where c0 = 1/26000. Hence, the proof of Equation 4 is complete.554

Now, we focus on proving Equation 5. To prove the inequality, it suffices to show that EF

[[[
1/b3i

]]]
is555

O
(
EF [[[ 1/bi ]]]2

)
. Note one can think of bi to be equal to x+1 where x is a Poisson random variable556

with mean λ′ = p(i)k1 + q(i)k2. Thus, we have:557

EF

[[[
1

b3i

]]]
= Ex∼Poi(λ′)

[[[
1

(x+ 1)3

]]]
≤ E

[[[
6

(x+ 1)(x+ 2)(x+ 3)

]]]
≤ 6 ·

∞∑

x=0

e−λ′
λ′x

(x+ 3)!

=
6

λ′3

∞∑

y=3

e−λ′
λ′y

y!
=

6 (1− e−λ′ − e−λ′
λ′ − e−λ′

λ′2/2)

λ′3 ≤ 6 ·
(
1− e−λ′

λ′

)2

.

(12)

On the other hand, we can compute the expected value of 1/bi as follows:558

(
EF

[[[
1

bi

]]])2

=

( ∞∑

x=0

e−λ′
λ′x

(x+ 1)!

)2

=

(
1

λ′

∞∑

y=1

e−λ′
λ′y

y!

)2

=

(
1− e−λ′

λ′

)2

.

Putting these two equations together, one can conclude the Equation 5:559

EF

[[[
∥p(F ) − q(F )∥44

]]]
=

n∑

i=1

EF

[[[
(p(i)− q(i))4

b3i

]]]
≤ 6 ·

n∑

i=1

(
EF

[[[
(p(i)− q(i))2

bi

]]])2

≤ 6 ·
(

n∑

i=1

EF

[[[
(p(i)− q(i))2

bi

]]])2

= 6 ·EF

[[[
∥p(F ) − q(F )∥22

]]]
2 .

Therefore, the statement of the lemma is concluded. !560
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B.2 Bounding the Sensitivity561

In this section, we provide an upper bound for the amount that the statistic changes if we change562

one sample in the input. In other words, we find an upper bound for the sensitivity of Z as define in563

Equation 2.564

We start off with defining the notation we use in this section. Let X = (X1, X2) be a set of samples565

consist of m1 samples from p and m2 samples from q. As we had before, k̂j = Poi(kj) and566

ŝ = Poi(s) to denote the number of samples for test and the flattening respectively. Note that now567

that m1 = k̂j + ŝ is observed, then k̂j is a binomial random variable, Bin(m, kj/(kj + s)). Let F1568

and F2 denote the set of sample from distribution p and q we use for the flattening. Given X , F1569

and F2 are determined by the k̂j’s, and the order of the samples which is determined by π. Although570

the Fj’s are two sets of ordered samples, the order of the element in them does not matter. We may571

consider them equivalent to set of indices Ij , such that the r-th sample is in Fj if and only if r is572

in Ij . In this sense, we can define the probability of an index set Ij to be the probability of taking573

a flattening set Fj , such that Fj is equivalent to Ij . The randomness in this probability is taken574

over the choice of the permutation π and k̂j . In addition, for each element i, we use the following575

notation:576

• ti,j is the number of instances of element i in the set Xj .577

• ki,j is the number of instances of element i in the set Fj .578

• si,j is the number of instances of element i in the set Xj \ Fj .579

Based on these notations, the statistic Z is the following, we use the equivalent intermediate statistic580

as indicated in Lemma ??, and denote it by zi(X, I1, I2)581

Z = Eπ,r[[[Z ]]] =
∑

I1,I2

Pr[[[I1 ]]] ·Pr[[[I2 ]]] ·
n∑

i=1

zi(X, I1, I2)

=
∑

I1,I2

Pr[[[I1 ]]] ·Pr[[[I2 ]]] ·
n∑

i=1

(si,1 − si,2)2 − si,1 − si,2
ki,1 + ki,2 + 1

Assume X ′ = (X ′
1, X

′
2) is also a set of samples such that it differs in exactly one sample compared582

to X . We similarly define all the notation for X ′ as well by adding the prime notation to each letter.583

Without loss of generality, we assume that the r-th sample in X1, namely xr, is different from the584

r-th sample in X ′
1, namely x′

r, and all other samples are the same. Now, we are ready to bound the585

sensitivity of Z in the following lemma:586

Lemma B.5. For two neighboring sample sets, X1, X2, and X ′
1, X

′
2, and for fixed k1 and k2, we

have:

|Z − z′| ≤ Θ

(
k1

k1 + s
·
(
s+ k2
k2

)2

+
k2

k2 + s
·
(
s+ k1
k1

)2
)
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Proof: By the definition of Z, by the triangle inequality and Bayes’ law, we can find an upper bound587

for the difference of the statistics as follows:588

|Z − z′| =

∣∣∣∣∣∣

∑

I1,I2

Pr[[[I1 ]]] ·Pr[[[I2 ]]] ·
n∑

i=1

zi(X, I1, I2)− z′i(X
′, I1, I2)

∣∣∣∣∣∣

≤
n∑

i=1

∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1 ]]] · |zi(X1, X2, I1, I2)− z′i(X
′
1, X

′
2, I1, I2)|

≤
n∑

i=1

∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1|r ∈ I1 ]]] ·Pr[[[r ∈ I1 ]]] · |zi(X, I1, I2)− z′i(X
′, I1, I2)|

+
n∑

i=1

∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1|r ̸∈ I1 ]]] ·Pr[[[r ̸∈ I1 ]]] · |zi(X, I1, I2)− z′i(X
′, I1, I2)| .

(13)

It is clear that if i is a domain element which none of its instances in the sample set is changed, then589

the number of occurrences of i remains unchanged in the same subsets of the Xj’s and the X ′
j’s.590

Thus, zi − z′i is equal to zero for i ̸∈ {xr, x′
r}. For now, we assume i is equal to xr. One can591

replicate the same bound when i = x′
r.592

It is clear that ti,1 = t′i,1 + 1. Fix a subset of indices, I2 ⊆ [m2]. Since X2 and X ′
2 are the same,593

then si,2 = s′i,2 and ki,2 = k′i,2. Let ℓ be an index in {1, 2} such that ti,ℓ denotes the maximum594

of ti,1 and ti,2. Observe that we always have si,j = ti,j − ki,j by definition. Now, we rewrite the595

difference of the zi and z′i as below using the triangle inequality:596

|zi(X, I1, I2)− z′i(X
′, I1, I2)| =

∣∣∣∣∣
(si,1 − si,2)2 − si,1 − si,2

ki,1 + ki,2 + 1
−

(s′i,1 − s′i,2)
2 − s′i,1 − s′i,2

k′i,1 + k′i,2 + 1

∣∣∣∣∣

=

∣∣∣∣∣
(si,1 − si,2)2 − si,1 − si,2

ki,1 + ki,2 + 1
−

(s′i,1 − si,2)2 − s′i,1 − si,2
k′i,1 + ki,2 + 1

∣∣∣∣∣

≤

∣∣∣∣∣
(si,1 − si,2)2 − si,1 − si,2

ki,1 + ki,2 + 1
−

(s′i,1 − si,2)2 − s′i,1 − si,2
ki,1 + ki,2 + 1

∣∣∣∣∣

+

∣∣∣∣∣
(s′i,1 − si,2)2 − s′i,1 − si,2

ki,1 + ki,2 + 1
−

(s′i,1 − si,2)2 − s′i,1 − si,2
k′i,1 + ki,2 + 1

∣∣∣∣∣

Note that if r is in I1, the number of instance of xr in the flattening set changes. More precisely,597

ki,1 is k′i,1 +1. However, si,1 remains equal to s′i,1 and the changed sample does not affect it, so the598

second to the last line above is zero. Similarly, if r is not in I1, then ki,1 remains the same as k′i,1,599

and si,1 = s′i,1 + 1, so the last line above will be zero. si,j and ki,j are at most ti,j by definition600

Therefore, if we use the fact that si,j and ki,j are at most ti,j by definition, then we have:601

∑

I1

Pr[[[I1 ]]] · |zi(X, I1, I2)− z′i(X
′, I1, I2)|

≤
∑

I1

Pr[[[I1|r ∈ I1 ]]] ·Pr[[[r ∈ I1 ]]] · 2 t2i,ℓ ·

∣∣∣∣∣
1

ki,1 + ki,2 + 1
− 1

k′i,1 + ki,2 + 1

∣∣∣∣∣

+
∑

I1

Pr[[[I1|r ̸∈ I1 ]]] ·Pr[[[r ̸∈ I1 ]]] ·
2 ti,ℓ·

ki,1 + ki,2 + 1
.

Using the properties of the Poissonization method, given that we observed ti,j = ki,j + si,j , then602

ki,j is Binomial random variable: Bin(ti,j , kj/(kj + s)). Given this fact, the probability of r ∈ I603
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is k1/(k1 + s). Therefore, we have:604

∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1 ]]] · |zi(X, I1, I2)− z′i(X
′, I1, I2)|

=
∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1|r ∈ I1 ]]] ·
k1

k1 + s
·

2 t2i,ℓ
(k′i,1 + ki,2 + 2) · (k′i,1 + ki,2 + 1)

+
∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1|r ̸∈ I1 ]]] ·
s

k1 + s
· 2 ti,ℓ
ki,1 + ki,2 + 1

≤
2 k1 t2i,ℓ
k1 + s

·
∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1|r ∈ I1 ]]] ·
1

(k′i,ℓ + 2) · (k′i,ℓ + 1)

+
2 s ti,ℓ
k1 + s

·
∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1|r ̸∈ I1 ]]] ·
1

ki,ℓ + 1

≤
2 k1 t2i,ℓ
k1 + s

·Ek′
i,ℓ∼Bin(ti,j−1,k1/(k1+s))

[[[
1

(k′i,ℓ + 2)(k′i,j + 1)

]]]

+
2 s ti,ℓ
k1 + s

·Eki,ℓ∼Bin(ti,j−1,k1/(k1+s))

[[[
1

ki,ℓ + 1

]]]
.

Using Lemma D.2 and Lemma D.3, we have:605

∑

I2

Pr[[[I2 ]]] ·
∑

I1

Pr[[[I1 ]]] · |zi(X, I1, I2)− z′i(X
′, I1, I2)|

≤ 2 k1
k1 + s

·
(
s+ kℓ
kℓ

)2

+
2 s

k1 + s
· s+ kℓ

kℓ
.

Note that ℓ can be one or two. Also, the upper bound for Z − z′ is twice as above, since we have606

to consider the case when i = x′
r. Moreover, the bound we get is based on this assumption that the607

changed sample is in X1, so to find the upper bound we need to consider both cases. Hence, we608

have the following bound:609

|Z − z′| ≤ Θ

(
k1

k1 + s
·
(
s+ k2
k2

)2

+
k2

k2 + s
·
(
s+ k1
k1

)2
)

and the proof is complete. !610

C Testing independence of two random variables611

In this section, we provide a ξ-differentially private tester for testing independence of two random612

variables. The idea is to reduce the optimal non-private tester, delivered in [25], to a private one613

using the technique we explained in Section 3.614

We start off with defining the problem and the non-private procedure A that reduces testing inde-615

pendence to the testing closeness of two distributions. Assume p is a distribution over [n] × [m].616

Without loss of generality, we assume m ≤ n. Suppose we receive samples (x, y) from p. We say617

distribution p is an independent distribution, if the x’s and the y’s are independent from each other.618

The goal is to distinguish whether p is an independent distribution or is it ϵ-far from any independent619

distribution over [n] × [m]. It is known that if p is an independent distribution, then p is equal to620

p1×p2, and if p is epsilon-far from being independent, then p is ϵ/3-far from p1×p2 where p1 and621

p2 are the marginal distributions of p. Using this fact, the non-private tester reduces the problem to622

testing the closeness of p and q := p1 × p2 [6].623

Here, we describe a proper procedure, say A, for reducing testing independence of p to the testing624

closeness of p and q, so it can be turned into a private algorithm using the method explained in625

Section 3. First, we describe the sampling scheme of the procedure: For every sample that the626

algorithm needs, it draws two samples, and puts them in a block. We denote a block of two samples627
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(x1, y1) and (x2, y2) by ⟨(x1, y1), (x2, y2)⟩. We can use the samples in block to obtain a sample628

from p, p1, p2, and q as follows. To get a sample from p, we always take the first samples, (x1, y1),629

in the block. We take x1, y2 as two the samples from p1 and p2. In addition, since x1 and y2630

are two independent random variables, (x1, y2) is a sample from q. Also, we use “dot notation" to631

indicate an arbitrary element in the domain. For example, for a given x, (x, .) is a sample that its first632

coordinate is x and the second coordinate can be any y in [m]. Similarly, we use the same notation633

to refer to a block, for example for a given x and y, ⟨(x, .), (., y)⟩ indicates a block that the first634

coordinate of the first sample is x and the second coordinate of the second sample is y, and the two635

other coordinates can be arbitrary elements in [m] and [n]. Let X denotes the set of all blocks that636

are available to the procedure. We use f to denote a frequency of the blocks with a certain format637

in X ., e.g., f⟨(x,.),(.,.)⟩ is the number of blocks in X that the first coordinate of the first sample is x.638

For the rest of this section, we focus on blocks and use them accordingly to extract a sample.639

Suppose we have sample access to p, and we can draw blocks of samples from it. Procedure A640

uses the blocks for the following purposes: the flattening samples are used to determine the number641

of buckets for each domain element. They are designed to make sure that the ℓ2-norm of q after642

flattening is low. Also, the test samples are used to generate samples from two distributions p and q,643

which we test their closeness. Below is how the algorithm will determine these samples. For now,644

assume k(p1), k(p2), k(p), k(q), and s are parameters that we determine later.645

Flattening samples and the number of buckets: We flatten distribution p using samples from646

the marginal distributions p1 and p2, and also samples from p itself. More specifically, we draw four647

sets of blocks from p, namely F (p1), F (p2), F (p), F (q), which contain Poi
(
k(p1)

)
, Poi

(
k(p2)

)
,648

Poi
(
k(p)

)
, Poi

(
k(q)

)
blocks respectively. We refer to the samples in these sets as flattening sam-649

ples, and denote the collection of them by F . As we discuss earlier, we extract samples from the650

blocks in these sets to obtain samples from p1, p2, p, and q. More specifically, we use the following651

notation for the number of occurrences of each sample obtained from each set:652

• k(p1)
x denotes the number of occurrences of the blocks of the form ⟨(x, .), (., .)⟩ in the653

flattening set F (p1).654

• k(p2)
y denotes the number of occurrences of the blocks of the form ⟨(., .), (., y)⟩ in the655

flattening set F (p2).656

• k(p)(x,y) denotes the number of occurrences of the blocks of the form ⟨(x, y), (., .)⟩ in the657

flattening set F (p).658

• k(q)(x,y) denotes the number of occurrences of the blocks of the form ⟨(x, .), (., y)⟩ in the659

flattening set F (q).660

Our procedure uses b(x,y) many buckets for a domain element (x, y), where b(x,y) is defined as
follows:

b(x,y) = (k(p1)
x + 1)(k(p2)

y + 1) + k(p)(x,y) + k(q)(x,y) .

It is worth to note that k(p1)
x is always determined by the first samples in the blocks, whereas k(p2)

y is661

determined by the second samples in the blocks. Therefore, for all x’s and y’s, these quantities are662

independent of each other.663

Test samples: To determine the test samples, we draw two sets of blocks T (p) and T (q). Each set664

contains Poi(s) many blocks. The samples in T (p) and T (q) are our test samples, and we denote665

the collection of these two sets by T . The blocks in T (p) are used to obtain samples form p, and the666

blocks in T (q) are used to collect samples from q. In particular, we use the following notation for667

the number of occurrences of each domain element (x, y).668

• s(p)(x,y) denotes the number of occurrences of the blocks of the form ⟨(x, y), (., .)⟩ in the test669

set T (p).670

• s(q)(x,y) denotes the number of occurrences of the blocks of the form ⟨(x, .), (., y)⟩ in the test671

set T (q).672
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Now, that we showed how procedure A determines the number of samples, we prove it yields to a673

ξ-differentially private tester as well. At a high level, we first show that A is a proper procedure for674

testing independence (Section C.1), then use our general closeness tester to achieve a ξ-differentially675

private tester. Since the sample complexity of the private tester depends on the sensitivity of the676

statistic we are using, we analyze the sensitivity of the statistic (Section C.2). In particular, we show677

if the number of occurrences of certain blocks in the sample set is "as expected," then the sensitivity678

is low, which results in a nearly optimal sample complexity for the private tester. Next, we develop679

a framework to extend the input domain of the private algorithm to any sample set (Section C.3).680

More formally, we have the following theorem:681

Theorem C.1. Let p be a distribution over [n]× [m]. There exists a ξ-differentially private (ϵ, 2/3)
tester for the testing independence of p that uses Θ(s) samples where s is:

s = Θ

(
n2/3m1/3

ϵ4/3
+

(mn)1/2

ϵ2
+

(mn log n)1/2

ϵ
√
ξ

+
log n

ϵ2ξ

)
.

Proof: We first set up the parameters we use:682

k(p2) = m, k(p1) = min(n, n2/3m1/3/ϵ4/3), k(p) = k(q) = min(m · n, s),

and s = c ·
(
n2/3m1/3

ϵ4/3
+

(mn)1/2

ϵ2
+

(mn log n)1/2

ϵ
√
ξ

+
log n

ϵ2ξ

)
.

where c is a large constant. For sufficiently large m and n, with probability 0.99 the number of683

blocks in each set in S = {F (p1), F (p2), F (p), F (q), T (p), T (q)} is within a constant factor of its684

expectation via Lemma B.3. Now, we show that A that we describe above is a proper procedure:685

Lemma C.2. Procedure A explained above is a proper procedure according to Definition 3.2 for686

testing independence of two random variable.687

The proof of the above Lemma is in Section C.1. Now, using Theorem 3.3, there exists a ξ-688

differentially private tester for the independence property which uses the following number of test689

samples:690

s′ := Θ

⎛

⎝
n′ ·

√
EF

[[[
min

(
∥p(F )∥22, ∥q(F )∥22

)]]]

ϵ2
+

√
n′∆(Z)

ϵ
√
ξ

⎞

⎠ .

Here, we show that s ≥ s′, thus the number of samples that the procedure provides is enough by691

bounding n′, EF

[[[
min

(
∥p(F )∥22, ∥q(F )∥22

)]]]
, and ∆(Z). Note that n′ is the new domain size which692

is equal to
∑

(x,y) b(x,y) = Θ(mn). The expected of minimum of the ℓ2-norm of p and q is bounded693

using the result in Lemma 2.6 in [25].694

EF (p1),F (p2),F (p)

[[[
min

(
∥p(F )∥22, ∥q(F )∥22

)]]]
≤ EF

[[[
∥q(F )∥22

]]]
≤

n∑

x=1

m∑

y=1

q(x, y)2

b(x,y)

≤
n∑

x=1

m∑

y=1

p1(x)2 p2(y)2

(k(p1)
x + 1) · (k(p2)

y + 1)
≤ ∥p(F

(p1))
1 ∥ · ∥p(F

(p2))
2 ∥ ≤ 1

k(p1) k(p2)
.

Moreover, in Section C.2, we provide the following bound for the sensitivity of the statistic:695

Lemma C.3. Given that the size of all flattening and test samples are within the constant factor of696

their expections, the sensitivity of the statistic Z is bounded as follows:697

Θ

(
s

k(q)
+

s

k(p)
+

s

k(p)
·

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

)

To get a bound on sensitivity, for now, suppose all the input block sets X has a desired property that698

the ratio between f⟨(.,b),(.,.)⟩ and f⟨(.,.),(.,b)⟩ + 1 are bounded:699
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X ∈ X ∗ :=

{
X :

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

≤ τ

}

where τ = 1200 lnn. Thus, using the fact that X is in X ∗, one can obtain:700

∆(Z) ≤ Θ

(
s log n

mn
+ log n

)

Now, we are ready to show that s′ ≤ s implying that we have enough samples for the ξ-private tester.701

It is not hard to see that we have the following bounds (up to a constant factors):702

s′ ≤ Θ

⎛

⎝
n′ ·

√
EF

[[[
min

(
∥p(F )∥22, ∥q(F )∥22

)]]]

ϵ2
+

√
n′∆(Z)

ϵ
√
ξ

⎞

⎠

≤ Θ

⎛

⎝ mn

ϵ2
√
k(p1) k(p2)

+

√
mn∆(Z)

ϵ
√
ξ

⎞

⎠

≤ Θ

(
mn

ϵ2
√
m min(n, n2/3m1/3/ϵ4/3)

+

√
mn

ϵ
√
ξ

·
√

s log n

mn
+ log n

)

≤ Θ

(
n2/3m1/3

ϵ4/3
+

(mn)1/2

ϵ2
+

√
mn

ϵ
√
ξ

·
√

s log n

mn
+ log n

)

≤ s

Thus, given that X is in X ∗, there exists a ξ-differentially private tester that outputs the right answer703

with probability 0.8. This is sufficient to show that there exists an ξ-differentially private algorithm704

with asymptotically the same number of samples via Lemma C.6. !705

C.1 Non-Private Independence Tester is a proper procedure706

Lemma C.2. Procedure A explained above is a proper procedure according to Definition 3.2 for707

testing independence of two random variable.708

Proof: Let X be the set of all blocks we received. Since the number of blocks in each of the709

flattening set and the test set is Poisson random variable, by Lemma B.3, we can conclude with710

probability 1-0.01 we draw at most three times more samples than what is expected. Hence X is a711

set with a bounded number of samples.712

We start proving Equation 4 by recalling a fact about the Poissonization method. The number of713

blocks of a certain form in one of the flattening and test sets is a Binomial random variable with714

the bias that is proportional to the expected size of each set. For example, if X contains t blocks715

of the form ⟨(x, .), (., y)⟩, the number of the blocks of the form ⟨(x, .), (., y)⟩ in T (q), namely r, is716

Bin(t, s/(k(p1) + k(p2) + k(p) + 2s)). Moreover, the probability of getting a block of this type is717

q(x, y) = p1(x)·p2(y), so t is a Poisson random variable with mean q(x, y)·(k(p1)+k(p2)+k(p)+2s)718

over the randomness of X . By Markov’s inequality, with probability 1− 1/c, we may assume t is at719

most c times its expectation. As a consequence, E[[[r ]]] is at most c ·E[[[ t]]] · s/(k(p1) + k(p2) + k(p) +720

2s) = c q(x, y) s. Note that we can extend this example further to any type of block and any test or721

flattening sets.722
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Given X , for a domain element (x, y), the following holds using Jensen’s inequality:723

Eπ

[[[
1

b(x,y)(X,π)

]]]
= E

k
(p1)
x ,k

(p2)
y ,k(p)

(x,y)

[[[
1

b(x,y)

]]]
≥ 1

E
k
(p1)
x ,k

(p2)
y ,k(p)

(x,y)

[[[
b(x,y)

]]]

=
1

(E
[[[
k(p1)
x

]]]
+ 1) · (E

[[[
k(p2)
y

]]]
+ 1) +E

[[[
k(p)(x,y)

]]]

≥ 1

(50 p1(x) k(p1) + 1) · (50 p2(y) k(p2) + 1) + 100 p(x, y) k(p)

≥ 1

2500
· 1

(p1(x) k(p1) + 1) · (p2(y) k(p2) + 1) + p(x, y) k(p)
.

where the second to last inequality holds with probability 0.95.724

On the other hand, we find an upper bound of E
[[[
1/b(x,y)

]]]
over the randomness of all variables.725

Note that now that X has not been observed, so the number of each block type in each set is an726

Poisson random variable, and it is independent from the rest. Let F denote the set of all flattening727

blocks. We denote p1(x) k(p1), p2(y) k(p2), and p(x, y) k(p) by λ1, λ2, and λ3 respectively. The728

expected value of 1/b(x,y) can be rewritten as:729

EF

[[[
1

b(x,y)

]]]
= EF

⎡

⎣

⎡

⎣

⎡

⎣ 1

(k(p1)
x + 1)(k(p2)

y + 1) + k(p)(x,y)

⎤

⎦

⎤

⎦

⎤

⎦

≤ EF

⎡

⎣

⎡

⎣

⎡

⎣min

⎛

⎝ 1

(k(p1)
x + 1)(k(p2)

y + 1)
,

1

k(p)(x,y) + 1

⎞

⎠

⎤

⎦

⎤

⎦

⎤

⎦

≤ min

⎛

⎝EF

[[[
1

k(p1)
x + 1

]]]
·EF

[[[
1

k(p2)
y + 1

]]]
,EF

⎡

⎣

⎡

⎣

⎡

⎣ 1

k(p)(x,y) + 1

⎤

⎦

⎤

⎦

⎤

⎦

⎞

⎠

≤ min

(
1− e−λ1

λ1
· 1− e−λ2

λ2
,
1− e−λ3

λ3

)
≤ min

(
4

(λ1 + 1)(λ2 + 1)
,

2

λ3 + 1

)

≤ 8

(λ1 + 1)(λ2 + 1) + λ3

=
8

(p1(x) k(p1) + 1) · (p2(y) k(p2) + 1) + p(x, y) k(p)

Governed by the previous equations, we obtain:730

PrX

[[[
Eπ

[[[
1

b(x,y)(X,π)

]]]
≥ 1

20000
·EF

[[[
1

b(x,y)

]]]]]]
≥ 0.96 ,

which is equivalent to731

PrX

[[[
Eπ

[[[
(p(x, y)− q(x, y))2

b(x,y)(X,π)

]]]
<

1

20000
·EF

[[[
(p(x, y)− q(x, y))2

b(x,y)

]]]]]]
≤ 0.04 .

To prove Equation 4, we need to show that the above equation holds even for the sum of the quantities732

over all (x, y) with high probability. We show the claim in the following lemma. The proof is in733

Section D:734

Lemma C.4. Let x1, x2, . . . , xn be n non-negative random variables. Suppose there exist two
constants c and p, both at most one, such that for each random variable xi, we have:

Pr[[[xi < c ·E[[[xi ]]]]]] ≤ p ,

Then, one can show:

Pr

[[[
n∑

i=1

xi <
c ·
∑n

i=1 E[[[xi ]]]

10

]]]
≤ 10 p

9
.
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Now, we focus on proving Equation 5. To prove the inequality, it suffices to show that EF

[[[
1/b3(x,y)

]]]

is O
(
EF

[[[
1/b2(x,y)

]]]
2
)

. Again, note that we can think of b(x,y) to be equal to (X + 1)(Y + 1) +

Z where X , Y and Z are three Poisson random variables with means λ1 = p1(x)k(p1), λ2 =
p2(y)k(p2), and λ3 = respectively. In Equation 12 we show that:

EW∼Poi(λ)

[[[
1

W 3

]]]
≤ 6 ·

(
1− e−λ

λ

)2

Thus, we obtain an upper bound for the expected value of 1/b3(x,y) as follows:735

EF

[[[
1

b3(x,y)

]]]
= EX,Y,Z

[[[
1

((X + 1) · (Y + 1) + Z)3

]]]
≤ EX,Y,Z

[[[
min

(
1

(X + 1)3
· 1

(Y + 1)3
,

1

(Z + 1)3

)]]]

≤ min

(
EX

[[[
1

(X + 1)3

]]]
·EY

[[[
1

(Y + 1)3

]]]
,EZ

[[[
1

(Z + 1)3

]]])

≤ 36 min

((
1− e−λ1

λ1

)2

·
(
1− e−λ2

λ2

)2

,

(
1− e−λ3

λ3

)2
)

.

Note that in the case that one of the lambda’s is equal to zero, one can replace 1 − e−λ/λ by one736

in the rest of the proof. On the other hand, we can find a lower bound for 1/b(x,y) by Jensen’s737

inequality:738

(
EF

[[[
1

b(x,y)

]]])2

≥
(

1

EF [[[bi ]]]

)2

=

(
1

(λ1 + 1)(λ2 + 1) + λ3

)2

≥
(
1

2
min

(
1

λ1 + 1
· 1

λ2 + 1
,

1

λ3 + 1

))2

≥ 1

4
min

((
1

λ1 + 1
· 1

λ2 + 1

)2

,

(
1

λ3 + 1

)2
)

≥ 1

64
min

((
1− e−λ1

λ1
· 1− e−λ2

λ2

)2

,

(
1− e−λ3

λ3

)2
)

where the last inequality is due to the fact that (1 − e−t)/t is at most 2/(t + 1) for a non-negative739

number t. Putting these two equations together, one can conclude Equation 5:740

EF

[[[
∥p(F ) − q(F )∥44

]]]
=

n∑

x=1

m∑

y=1

EF

[[[
(p(x, y)− q(x, y))4

b3(x,y)

]]]
≤ 36 · 64 ·

n∑

x=1

m∑

y=1

(
EF

[[[
(p(x, y)− q(x, y))2

bx,y

]]])2

≤ 2304 ·
(

n∑

x=1

m∑

y=1

EF

[[[
(p(x, y)− q(x, y))2

bx,y

]]])2

= 2304 ·EF

[[[
∥p(F ) − q(F )∥22

]]]
2 .

Therefore, the statement of the lemma is concluded. !741

3742

C.2 sensitivity of the statistic for the independence problem743

In this section, we give an upper bound for the sensitivity of the independence statistic: the amount744

that the statistic changes if we change one sample in the input.745

Let X denote a set of block that the algorithm received as the input. Assume we permute the blocks
in X using a permutation π. Note that if we fix the size of each flattening set and sample set, ŝ1, ŝ2,
etc., one can deterministically find s(p)(x,y), s

(q)
(x,y), etc.. Thus, given X , π, and sizes of sets, one can

compute the following statistic:

Z(X,π) :=
m∑

x=1

n∑

y=1

(s(p)(x,y) − s(q)(x,y))
2 − s(p)(x,y) − s(q)(x,y)

(k(p1)
x + 1)(k(p2)

y + 1) + k(p)(x,y) + k(q)(x,y)
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We denote the average of Z over all π by Z(X). Our goal here is to calculate

∆Z = maxX,X ′|Z(X)− Z(X ′)|

where X and X ′ are two neighboring data sets that they differ in exactly one element.746

Through this section, we use an important property of Poissonization method: Let A and B be two747

sets with n̂1 = Poi(n1) and n̂2 = Poi(n2) samples. Given that there are k instance of element748

i in A and B together, the number of instances of element i in A is a Binomial random variable:749

Bin(n̂1 + n̂2, n1/(n1 + n2)).750

Lemma C.3. Given that the size of all flattening and test samples are within the constant factor of751

their expections, the sensitivity of the statistic Z is bounded as follows:752

Θ

(
s

k(q)
+

s

k(p)
+

s

k(p)
·

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

)

Proof: In this proof, we assume X and X ′ are fully given, and X and X ′ are only different in the
r-th block of the samples. Note that when we permute the elements in X and X ′, we only permute
the blocks and do not change the order of the samples within each block. The expectations in the this
proof are taken over the random choice of a permutation π. As we mentioned earlier, we partition
the blocks into the following sets, and the number of occurrences of each block types in each set
determines the statistic:

S =
{
F (p1), F (p2), F (p), F (q), T (p), T (q)

}

We can separate our calculation based on where the r-th block is:753

∆(Z) = |Z(X)− Z(X ′)|
=
∣∣Eπ[[[Z(X,π)− Z(X ′,π)]]]

∣∣≤ Eπ[[[ |Z(X,π)− Z(X ′,π)|]]]

=
∑

S∈S
Prπ[[[r ∈ S ]]] ·

∣∣Eπ[[[ |Z(X,π)− Z(X ′,π)| | r ∈ S ]]]
∣∣

Now, we consider each term separate.754

1. Block rrr is in F (p1)F (p1)F (p1): Suppose the types of the r-th block in X and X ′ are ⟨(a, .), (., .)⟩755

and ⟨(a′, .), (., .)⟩ respectively. If a and a′ are equal, then the statistic will remains un-756

changed. Otherwise, k(p1)
a and k′(p1)

a′ is changed by one. First, we simplify the term757

|Z(X,π)− Z(X ′,π)| for a given π:758

|Z(X,π)− Z(X ′,π)| =

∣∣∣∣∣∣

n∑

x=1

m∑

y=1

(s(p)(x,y) − s(q)(x,y))
2 − s(p)(x,y) − s(q)(x,y)

(k(p1)
x + 1)(k(p2)

y + 1) + k(p)(x,y) + k(q)(x,y)

−
n∑

x=1

m∑

y=1

(s′(p)(x,y) − s′(q)(x,y))
2 − s′(p)(x,y) − s′(q)(x,y)

(k′(p1)
x + 1)(k′(p2)

y + 1) + k′(p)(x,y) + k′(q)(x,y)

∣∣∣∣∣∣

≤
∑

x∈{a,a′}

∣∣∣∣∣∣

m∑

y=1

(s(p)(x,y) − s(q)(x,y))
2 − s(p)(x,y) − s(q)(x,y)

(k(p1)
x + 1)(k(p2)

y + 1) + k(p)(x,y) + k(q)(x,y)

−
(s′(p)(x,y) − s′(q)(x,y))

2 − s′(p)(x,y) − s′(q)(x,y)

(k′(p1)
x + 1)(k′(p2)

y + 1) + k′(p)(x,y) + k′(q)(x,y)

∣∣∣∣∣∣
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For the rest of the proof, we focus on the term above when x = a. The other term can be759

upper bounded similarly, and at the end we multiply our final bound by two.760

∣∣∣∣∣

m∑

y=1

(s(p)(a,y) − s(q)(a,y))
2 − s(p)(a,y) − s(q)(a,y)

(k(p1)
a + 1)(k(p2)

y + 1) + k(p)(a,y) + k(q)(x,y)

−
(s′(p)(a,y) − s′(q)(a,y))

2 − s′(p)(a,y) − s′(q)(a,y)

(k′a(p1) + 1)(k′(p2)
y + 1) + k′(p)(a,y) + k′(q)(x,y)

∣∣∣∣∣∣

≤
m∑

y=1

∣∣∣∣∣∣

(s(p)(a,y) − s(q)(a,y))
2 − s(p)(a,y) − s(q)(a,y)

(k′(p1)
a + 2)(k(p2)

y + 1) + k(p)(a,y) + k(q)(x,y)

−
(s(p)(a,y) − s(q)(a,y))

2 − s(p)(a,y) − s(q)(a,y)

(k′a(p1) + 1)(k(p2)
y + 1) + k(p)(a,y) + k(q)(x,y)

∣∣∣∣∣∣

≤
m∑

y=1

(
k(p2)
y + 1

)
·
∣∣∣(s(p)(a,y) − s(q)(a,y))

2 − s(p)(a,y) − s(q)(a,y)

∣∣∣
(
(k′(p1)

a + 2)(k(p2)
y + 1) + k(p)(a,y) + k(q)(x,y)

)
·
(
(k′a(p1) + 1)(k(p2)

y + 1) + k(p)(a,y) + k(q)(x,y)

)

≤
m∑

y=1

(
k(p2)
y + 1

)
·
(
(s(p)(a,y))

2 + (s(q)(a,y))
2
)

(
(k′(p1)

a + 2)(k(p2)
y + 1) + k(p)(a,y) + k(q)(x,y)

)
·
(
(k′a(p1) + 1)(k(p2)

y + 1) + k(p)(a,y) + k(q)(x,y)

)

≤
m∑

y=1

1

k(p1)
a + 1

·
(s(p)(a,y))

2

k(p)(a,y) + 1
+

1

k(p1)
a + 1

·
(s(q)(a,y))

2

k(q)(a,y) + 1

For brevity’s sake, let v denote the following expectation:

v := Eπ

⎡

⎣

⎡

⎣

⎡

⎣
m∑

y=1

1

k(p1)
a + 1

·
(s(p)(a,y))

2

k(p)(a,y) + 1
+

1

k(p1)
a + 1

·
(s(q)(a,y))

2

k(q)(a,y) + 1

∣∣∣∣∣∣
r ∈ F (p1)

⎤

⎦

⎤

⎦

⎤

⎦

Using the tower rule, we achieve:761

v ≤ EF (p1)

⎡

⎣

⎡

⎣

⎡

⎣ 1

(k(p1)
a + 1)

·Eπ

⎡

⎣

⎡

⎣

⎡

⎣
m∑

y=1

(s(p)(a,y))
2

(k(p)(a,y) + 1)

∣∣∣∣∣∣
r ∈ F (p1), F (p1)

⎤

⎦

⎤

⎦

⎤

⎦

∣∣∣∣∣∣
r ∈ F (p1)

⎤

⎦

⎤

⎦

⎤

⎦

+EF (p1)

⎡

⎣

⎡

⎣

⎡

⎣ 1

k(p1)
a + 1

·Eπ

⎡

⎣

⎡

⎣

⎡

⎣
m∑

y=1

(s(q)(a,y))
2

k(q)(a,y) + 1

∣∣∣∣∣∣
r ∈ F (p1), F (p1)

⎤

⎦

⎤

⎦

⎤

⎦

∣∣∣∣∣∣
r ∈ F (p1)

⎤

⎦

⎤

⎦

⎤

⎦

Let f⟨(a,y),(.,.)⟩, f⟨(a,.),(.,y)⟩, and f⟨(a,.),(.,.)⟩ be the numbers of blocks of the forms762

⟨(a, y), (., .)⟩, ⟨(a, .), (., y)⟩, and ⟨(a, .), (., .)⟩ in X respectively. Using Lemma D.4, one763

can bound the terms inside the expectations as below:764

E

⎡

⎣

⎡

⎣

⎡

⎣
(s(p)(a,y))

2

(k(p)(a,y) + 1)

⎤

⎦

⎤

⎦

⎤

⎦ ≤ min

(
2 (s− 1) f⟨(a,y),(.,.)⟩

(k(p) + 1)
, 2 f2

⟨(a,y),(.,.)⟩

)
+ f⟨(a,y),(.,.)⟩

≤ min

((
2 (s− 1)

(k(p) + 1)
+ 1

)
· f⟨(a,y),(.,.)⟩ , 3 f2

⟨(a,y),(.,.)⟩

)
,

765

E

⎡

⎣

⎡

⎣

⎡

⎣
(s(q)(a,y))

2

(k(q)(a,y) + 1)

⎤

⎦

⎤

⎦

⎤

⎦ ≤ min

(
2 (s− 1) f⟨(a,.),(.,y)⟩

(k(q) + 1)
, 2 f2

⟨(a,.),(.,y)⟩

)
+ f⟨(a,.),(.,y)⟩

≤ min

((
2 (s− 1)

(k(q) + 1)
+ 1

)
· f⟨(a,.),(.,y)⟩ , 3 f2

⟨(a,.),(.,y)⟩

)
.
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Observe that
∑

y f⟨(a,y),(.,.)⟩ and
∑

y f⟨(a,.),(.,y)⟩ are equal to f⟨(a,.),(.,.)⟩. Thus, using766

Lemma D.5, and Lemma D.6, we have:767

v ≤ EF (p1)

[[[
1

(k(p1)
a + 1)

∣∣∣∣∣r ∈ F (p1)

]]]
·

m∑

y=1

min

((
2 (s− 1)

(k(p) + 1)
+ 1

)
· f⟨(a,y),(.,.)⟩ , 3 f2

⟨(a,y),(.,.)⟩

)

+EF (p1)

[[[
1

k(p1)
a + 1

∣∣∣∣r ∈ F (p1)

]]]
·

m∑

y=1

min

((
2 (s− 1)

(k(q) + 1)
+ 1

)
· f⟨(a,.),(.,y)⟩ , 3 f2

⟨(a,.),(.,y)⟩

)

≤ min

(
1,

|X|
f⟨(a,.),(.,.)⟩ k(p1)

)
·
(

2 (s− 1)

(k(p) + 1)
+ 1

)
· f⟨(a,.),(.,.)⟩

+min

(
1,

|X|
f⟨(a,.),(.,.)⟩ k(p1)

)
·
(

2 (s− 1)

(k(q) + 1)
+ 1

)
· f⟨(a,.),(.,.)⟩

≤ Θ

(
|X|
k(p1)

·
( s

k(p)
+

s

k(q)

))

Using the above calculation, it is not hard to see that the following holds768

Prπ
[[[
r ∈ F (p1)

]]]
·
∣∣∣Eπ

[[[
|Z(X,π)− Z(X ′,π)| | r ∈ F (p1)

]]]∣∣∣

≤ 2 · k
(p1)

|X| ·
(

|X|
k(p1)

·
( s

k(p)
+

s

k(q)

))

≤ Θ
( s

k(p)
+

s

k(q)

)
.

2. Block rrr is in F (p2)F (p2)F (p2): Suppose the the r-th block in X and X ′ are of the forms ⟨(., .), (., b)⟩769

and ⟨(., .), (., b′)⟩ respectively. Using the symmetry of this case and the previous case, we770

take the same approach.771

Eπ

⎡

⎣

⎡

⎣

⎡

⎣
n∑

x=1

1

k(p2)
b + 1

·
(s(p)(x,b))

2

k(p)(x,b) + 1
+

1

k(p2)
b + 1

·
(s(q)(x,b))

2

k(q)(x,b) + 1

∣∣∣∣∣∣
r ∈ F (p2)

⎤

⎦

⎤

⎦

⎤

⎦

≤ EF (p2)

⎡

⎣

⎡

⎣

⎡

⎣ 1

k(p2)
b + 1

·Eπ

⎡

⎣

⎡

⎣

⎡

⎣
n∑

x=1

(s(p)(x,b))
2

k(p)(x,b) + 1

∣∣∣∣∣∣
r ∈ F (p2), F (p2)

⎤

⎦

⎤

⎦

⎤

⎦

∣∣∣∣∣∣
r ∈ F (p2)

⎤

⎦

⎤

⎦

⎤

⎦

+EF (p2)

⎡

⎣

⎡

⎣

⎡

⎣ 1

k(p2)
b + 1

·Eπ

⎡

⎣

⎡

⎣

⎡

⎣
n∑

x=1

(s(q)(x,b))
2

k(q)(x,b) + 1

∣∣∣∣∣∣
r ∈ F (p2), F (p2)

⎤

⎦

⎤

⎦

⎤

⎦

∣∣∣∣∣∣
r ∈ F (p2)

⎤

⎦

⎤

⎦

⎤

⎦

≤ EF (p2)

[[[
1

k(p2)
b + 1

∣∣∣∣∣r ∈ F (p2)

]]]
·

n∑

x=1

min

((
2 (s− 1)

(k(p) + 1)
+ 1

)
· f⟨(x,b),(.,.)⟩ , 3 f2

⟨(x,b),(.,.)⟩

)

+EF (p2)

[[[
1

k(p2)
b + 1

∣∣∣∣∣r ∈ F (p2)

]]]
·

n∑

x=1

min

((
2 (s− 1)

(k(q) + 1)
+ 1

)
· f⟨(x,.),(.,b)⟩ , 3 f2

⟨(x,.),(.,b)⟩

)

≤ min

(
1,

|X|
f⟨(.,.),(.,b)⟩ k(p2)

)
·
(

2 (s− 1)

(k(p) + 1)
+ 1

)
· f⟨(.,b),(.,.)⟩

+min

(
1,

|X|
f⟨(.,.),(.,b)⟩ k(p2)

)
·
(

2 (s− 1)

(k(q) + 1)
+ 1

)
· f⟨(.,.),(.,b)⟩

≤ |X|
k(p2)

·
(

2 (s− 1)

(k(p) + 1)
+ 1

)
·

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

+
|X|
k(p2)

·
(

2 (s− 1)

(k(q) + 1)
+ 1

)

≤ Θ

(
|X|
k(p2)

·
(

s

k(p)
·

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

+
s

k(q)

))
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where the last inequality is due to the fact that minx>0(α/x, x) ≤
√
α.772

Prπ
[[[
r ∈ F (p2)

]]]
·
∣∣∣Eπ

[[[
|Z(X,π)− Z(X ′,π)| | r ∈ F (p2)

]]]∣∣∣

≤ 2 · k
(p2)

|X| ·Θ
(

|X|
k(p2)

·
(

s

k(p)
·

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

+
s

k(q)

))

≤ Θ

(
s

k(p)
·

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

+
s

k(q)

)

3. Block rrr is in F (p)F (p)F (p) or F (q)F (q)F (q) : Here we assume r is in F (p). Very similar calculation, yield773

the same bound if r is in F (q). Suppose the the r-th block in X and X ′ are of the forms774

⟨(a, b), (., .)⟩ and ⟨(a′, b′), (., .)⟩ respectively. Note that in this case, only two terms will be775

different, so we have:776

|Z(X,π)− Z(X ′,π)| ≤
∑

(x,y)∈
{(a,b),(a′,b′)}

∣∣∣∣∣∣

(s(p)(x,y) − s(q)(x,y))
2 − s(p)(x,y) − s(q)(x,y)

(k(p1)
x + 1)(k(p2)

y + 1) + k(p)(x,y) + k(q)(x,y)

−
(s′(p)(x,y) − s′(q)(x,y))

2 − s′(p)(x,y) − s′(q)(x,y)

(k′(p1)
x + 1)(k′(p2)

y + 1) + k′(p)(x,y) + k(q)(x,y)

∣∣∣∣∣∣

Now, we focus on the term where (x, y) is equal to (a, b). The other term can be bounded777

similarly.778

∣∣∣∣∣∣

(s(p)(a,b) − s(q)(a,b))
2 − s(p)(a,b) − s(q)(a,b)

(k(p1)
a + 1)(k(p2)

b + 1) + k(p)(a,b) + k(q)(a,b)

−
(s′(p)(a,b) − s′(q)(a,b))

2 − s′(p)(a,b) − s′(q)(a,b)

(k′(p1)
a + 1)(k′(p2)

b + 1) + k′(p)(a,b) + k′(q)(a,b)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

(s(p)(a,b) − s(q)(a,b))
2 − s(p)(a,b) − s(q)(a,b)

(k(p1)
a + 1)(k(p2)

b + 1) + k(p)(a,b) + k(q)(a,b)

−
(s(p)(a,b) − s(q)(a,b))

2 − s(p)(a,b) − s(q)(a,b)

(k(p1)
a + 1)(k(p2)

b + 1) + k(p)(a,b) + k(q)(a,b) + 1

∣∣∣∣∣∣

≤
(s(p)(a,b))

2 + (s(q)(a,b))
2

(
(k(p1)

a + 1)(k(p2)
b + 1) + k(p)(a,b) + k(q)(a,b)

)
·
(
(k(p1)

a + 1)(k(p2)
b + 1) + k(p)(a,b) + k(q)(a,b) + 1

)

≤
(s(p)(a,b))

2

k(p)(a,b) (k
(p)
(a,b) + 1)

+
(s(q)(a,b))

2

k(q)a (k(q)a + 1)

Now, using Lemma D.6, we bound the expected value of the above quantity from above:779

Eπ

⎡

⎣

⎡

⎣

⎡

⎣
(s(p)(a,b))

2

k(p)(a,b) (k
(p)
(a,b) + 1)

+
(s(q)(a,b))

2

k(q)a (k(q)a + 1)

∣∣∣∣∣∣
r ∈ F (p)

⎤

⎦

⎤

⎦

⎤

⎦

≤ f2
⟨(a,b),(.,.)⟩ ·Eπ

⎡

⎣

⎡

⎣

⎡

⎣ 1

k(p)(a,b) (k
(p)
(a,b) + 1)

∣∣∣∣∣∣
r ∈ F (p)

⎤

⎦

⎤

⎦

⎤

⎦

+ f2
⟨(a,.),(.,b)⟩ ·Eπ

[[[
1

k(q)a (k(q)a + 1)

∣∣∣∣∣r ∈ F (p)

]]]

≤ |X|(|X|+ 1)

k(p) (k(p) + 1)
+

|X|(|X|+ 1)

k(q) (k(q) + 1)
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Using the above equation, and the fact that |X| = Θ(s), it is not hard to see that780

Prπ
[[[
r ∈ F (p)

]]]
·
∣∣∣Eπ

[[[
|Z(X,π)− Z(X ′,π)| | r ∈ F (p)

]]]∣∣∣

≤ 2 · k
(p)

|X| ·Θ
(

|X|(|X|+ 1)

k(p) (k(p) + 1)
+

|X|(|X|+ 1)

k(q) (k(q) + 1)

)

≤ Θ
( s

k(p)
+

s

k(q)

)

Note that the factor of two in the above inequality, comes from including the symmetric781

term for (a′, b′).782

4. Block rrr is in T (p)T (p)T (p) or T (q)T (q)T (q): Suppose the the r-th block in X and X ′ are of the forms783

⟨(a, b), (., .)⟩ and ⟨(a′, b′), (., .)⟩ respectively. Note that in this case, only two terms will be784

different for the two datasets, so we have:785

|Z(X,π)− Z(X ′,π)| ≤
∑

(x,y)∈
{(a,b),(a′,b′)}

∣∣∣∣∣∣

(s(p)(x,y) − s(q)(x,y))
2 − s(p)(x,y) − s(q)(x,y)

(k(p1)
x + 1)(k(p2)

y + 1) + k(p)(x,y) + k(q)(x,y)

−
(s′(p)(x,y) − s′(q)(x,y))

2 − s′(p)(x,y) − s′(q)(x,y)

(k′(p1)
x + 1)(k′(p2)

y + 1) + k′(p)(x,y) + k′(q)(x,y)

∣∣∣∣∣∣

Below, we assume r is in T (p). However, the calculation will be the same if r was in T (q).786

Now, we focus on the term where (x, y) is equal to (a, b). The other term can be bounded787

similarly.788

∣∣∣∣∣∣

(s(p)(a,b) − s(q)(a,b))
2 − s(p)(a,b) − s(q)(a,b)

(k(p1)
a + 1)(k(p2)

b + 1) + k(p)(a,b) + k(q)(a,b)

−
(s′(p)(a,b) − s′(q)(a,b))

2 − s′(p)(a,b) − s′(q)(a,b)

(k′(p1)
a + 1)(k′(p2)

b + 1) + k′(p)(a,b) + k′(q)(a,b)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

(s(p)(a,b) − s(q)(a,b))
2 − s(p)(a,b) − s(q)(a,b)

(k(p1)
a + 1)(k(p2)

b + 1) + k(p)(a,b) + k(q)(a,b)

−
(s(p)(a,b) − 1− s(q)(a,b))

2 − (s(p)(a,b) − 1)− s(q)(a,b)

(k(p1)
a + 1)(k(p2)

b + 1) + k(p)(a,b) + k(q)(a,b)

∣∣∣∣∣∣

≤
2s(p)(a,b) + 2s(q)(a,b)

(k(p1)
a + 1)(k(p2)

b + 1) + k(p)(a,b) + k(q)(a,b)

≤
2s(p)(a,b)

k(p)(a,b) + 1
+

2s(q)(a,b)

k(q)a + 1

Now, using Lemma D.5 , we bound the expected value of the above quantity from above:789

Eπ

⎡

⎣

⎡

⎣

⎡

⎣
2s(p)(a,b)

k(p)(a,b) + 1
+

2s(q)(a,b)

k(q)a + 1

∣∣∣∣∣∣
r ∈ F (p)

⎤

⎦

⎤

⎦

⎤

⎦

≤ 2 f⟨(a,b),(.,.)⟩ ·Eπ

⎡

⎣

⎡

⎣

⎡

⎣ 1

k(p)(a,b) + 1

∣∣∣∣∣∣
r ∈ F (p)

⎤

⎦

⎤

⎦

⎤

⎦

+ 2 f⟨(a,.),(.,b)⟩ ·Eπ

[[[
1

k(q)a + 1

∣∣∣∣r ∈ F (p)

]]]

≤ |X|
k(p) + 1

+
|X|

k(q) + 1

Using the above equation, and the fact that |X| = Θ(s), it is not hard to see that790

Prπ
[[[
r ∈ F (p)

]]]
·
∣∣∣Eπ

[[[
|Z(X,π)− Z(X ′,π)| | r ∈ F (p)

]]]∣∣∣

≤ 2 · k
(p)

|X| ·Θ
(

|X|
k(p) + 1

+
|X|

k(q) + 1

)
≤ Θ (1)

Note that the factor of two in the above inequality, comes from including the symmetric791

term for (a′, b′).792
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Putting all the terms computed above together, we obtain:793

|Z(X)− Z(X ′)| =
∑

S∈S
Prπ[[[r ∈ S ]]] ·

∣∣Eπ[[[ |Z(X,π)− Z(X ′,π)| | r ∈ S ]]]
∣∣

≤ Θ

(
s

k(q)
+

s

k(p)
+

s

k(p)
·

f⟨(.,b),(.,.)⟩
f⟨(.,.),(.,b)⟩ + 1

)

!794

C.3 Stretching the domain of a private algorithm795

In this section, we investigate whether we can extend the domain of a differentially private tester
under certain conditions. We start off by defining the domains. The input of a differential private
tester is a sample set from a universe Ω. Suppose we have a dataset X of 2s samples from [n] that are
arranged in two rows each of size s (namely top and bottom rows). Let the domain of a differential
algorithm, denoted by X , be the set of all such pairs of rows, namely [n]2s. We denote the frequency
of an element i ∈ [n] in the top row by ti(X), and in the bottom row by bi(X). A desired property
of a dataset is that the ratio of the frequencies in the row is bounded by a fixed parameter A ≥ 2.
More precisely, we define the subset of X which contains the data sets with this property as:

X ∗ =

{
X

∣∣∣∣∀i ∈ [n] :
ti(X)

bi(X) + 1
≤ A

}

Let A be a tester that receives a set of samples, X , as its input, and outputs A(X) which is known796

to be correct with probability at least 1− δ. Suppose A is ξ-differentially private when X is in X ∗.797

Our goal here is to design a Θ(ξ)-differentially private algorithm, namely B, that takes X ∈ X as798

its input, and outputs B(X) which is incorrect with probability slightly larger than δ.799

At a high level, we implement B by using A as a blackbox as follows: We first look at the input800

X ∈ X . If X is already in X ∗, we output A(X). Otherwise, if X is in X \ X ∗, we pass X through801

a “filter" and turn it into another dataset Y which is in X ∗. Then, we output A(Y ).802

To show that B is the desired algorithm, we have few challenges: (1) we need to show the mapping803

does not affect the correctness probability by too much. (2) B is Θ(ξ)-differentially private although804

its input may be from X \ X ∗. Overcoming the second challenge is closely related to the design805

of the mapping. If two datasets have Hamming distance one, then we need to make sure they will806

remain “close". In the following section, we explain the mapping, and in the next section, we prove807

that B is a ξ-differentially private algorithm with large correctness probability.808

C.4 Mapping datasets in X \ X ∗ to datasets in X ∗809

In this section, we provide a randomized mapping that takes X ∈ X as the input, and maps it to810

randomly selected Y in X ∗ with two important properties stated in the following Lemma:811

Lemma C.5. There exists a randomized mapping that takes X,X ′ ∈ X and maps them to Y, Y ′ ∈812

X ∗ respectively with the following property:813

• If X is in X ∗, then it will always be mapped to itself. : Y = X .814

• If the Hamming distance between X and X ′ is one, then there exists a coupling C between815

the random outputs of the mapping, Y and Y ′, where for any (Y, Y ′) drawn from C, the816

Hamming distance between Y and Y ′ is at most a constant c = 4 (independent of A).817

Proof: The main idea is to decrease the ratio ti(X)/(bi(X) + 1) by replacing a subset of samples
in the bottom row with the copies of i to decrease the ratio without introducing new elements that
violate the ratio condition. For a dataset X , we look at each element i ∈ [n], and see how many
copies of i are needed to “fix" the ratio. It is not hard to see that if for each element i, ri(X) many
copies is sufficient where ri(X) is defined as below:

ri(X) := max

(⌈
ti(X)

A

⌉
− bi(X)− 1, 0

)
.
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Let R be a multiset that contains ri(X) copies of i. We find |R| slots in the bottom row, and replace
the samples in those slots with an element in R. If we carefully select the slots and do not replace
any copy of i in the bottom row, the new ratio will be: ti(X)/(bi(X) + ri(X) + 1) which is at
most A. Now, we focus on finding the slots in the bottom row. We can select a slot containing an
instance of i, only if the replacement of i does not increase the ratio of the frequencies above A. For
an element i, we may remove at most si(X) samples where

si(X) := max

(
bi(X) + 1−

⌈
ti(X)

A

⌉
, 0

)
.

For each element i, we mark si(X) many slots which contains copy of i in the bottom row as818

“available" preferring the slots with the smaller index. Observe that we always have at least |R|819

many slots since A is at least two:820

|R| =
n∑

i=1

ri(X) ≤
n∑

i=1

ti(X)

A
≤ s

A
≤ (A− 1)

s

A
= s−

n∑

i=1

ti(X)

A
≤ s−

n∑

i=1

(⌈
ti(X)

A

⌉
− 1

)

≤ s−
n∑

i=1

bi(X)− si(X) =
n∑

i=1

si(X)

We choose the first |R| available slots (i.e. with the smaller indices), and replace the bottom samples821

in them by the samples in R randomly. After the replacements, it is clear that we did not remove a822

sample where its ratio could go above A, and we fixed all those elements with the ratio above A as823

well. Thus, the dataset we get after this process is surely in X ∗. Furthermore, if X is already in X ∗,824

then R is an empty set, and the mapping does not change it, so Y = X .825

Now, we focus on the proof of the existence of the coupling. Let S be the indices of the |R| available826

slots we select. First note that we consider all the elements in R to be distinct. (even though they827

might be different copies of the same sample, we can index ri(X) copies of i by 1, 2, . . . , ri(X).)828

Thus, there are |R|! for assigning the samples in R into the slots in S, and each assigning has829

probability 1/|R|!. Suppose two datasets, X and X ′, differ in exactly one sample: X has an extra830

copy of i, and X ′ instead has an extra copy of j. Also, let R′ and S′ be the equivalents of R and S831

respectively for X ′. Clearly, we have |R| = |S|, and |R′| = |S′|. This discrepancy between X and832

X ′ happens in either on the top row or the bottom row. Since the frequency of i and j changes by833

at most one, ri(X), si(X), rj(X), and sj(X) will change by at most. Without loss of generality, if834

we consider all possible cases, it is not hard to see that one of the two following cases happens:835

Case 1: R and R′ has the same size, and |R∩R′| and |S∩S′| is at least |R|−1. It is not hard to see836

that there is a bijection between Y and Y ′. Assume there exists a set of replacement that837

turns X into Y . We construct the corresponding Y ′ accordingly. We start off with X ′. We838

apply the same set of replacements with only two exceptions: Suppose we want to replace839

the sample in the slot ℓ with k according to the original set of replacement, then we see if840

k is not in R′, we carry on the replacement with k′ = R′ \ k. Also, if the ℓ is not in S′,841

we will choose slot ℓ′ = S′ \ S, pick the slot ℓ′ for the replacement. After performing all842

the replacement we get Y ′ which has Hamming distance at most four to Y . It is not hard843

to see that we can map Y ′ to Y similarly, so there exists a matching between the Y ’s, and844

the Y ′’s. We define the coupling C to be a probability distribution over X ∗ × X ∗, where845

the probability of (Y, Y ′) according to the above definition is 1/|R|!, and it is zero for the846

rest of the pairs.847

Case 2: R and S have one extra member: R′ = R ∪ {k}, and S′ = S ∪ {ℓ}. Assume there exists a848

set of replacements that turns X into Y . We construct |R|+1 sets of replacements that turn849

X ′ into Y ′
1 , Y

′
2 , . . . , Y

′
|R|+1. We start off with X ′. We choose one of the replacement in the850

set which replaces the sample in slot ℓ′ by k′. Then, we perform all the replacements on X ′851

except the one that is left out. Now, we do the following: We replace the sample in slot ℓ by852

k′ and the sample in slot ℓ′ by k. Clearly, we found an assignment between R′ and S′, so853

we construct Y ′
1 , . . . , Y

′
|R|. We also perform all the replacement in the set, and in addition854

to that, we replace the sample in slot ℓ by k to obtain Y ′
|R|+1. It is not hard to see that given855

Y ′, we can construct Y as well, so there is a matching between Y and the Y ′
t ’s. Also, Y856

and the Y ′’s have a Hamming distance of at most three. Now, we define the coupling C.857
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Algorithm 2 A private procedure for extending the domain
1: procedure PRIVATE TESTER(X,A)
2: R,S ← ∅ .
3: for i = 1, 2, . . . , n do
4: if ri(X) ≥ 1 then
5: R← R ∪ {ri(X) copies of i}
6: if si(X) ≥ 1 then
7: Si ← Set of the smallest si(X) indices of the entries in the bottom row of X which

contains i .
8: S ← S ∪ Si .
9: S ← |R| smallest element in S .

10: for each k ∈ R do
11: ℓ← a random element in S .
12: S ← S \ {ℓ} .
13: X−bottom(ℓ)← k .
14: Output A(X) .

We set the probability of the pairs (Y, Y ′
t ) to be 1/(|R| + 1)! for t = 1, . . . , |R| + 1. It is858

clear that each Y appears with probability (|R|+1)/(|R|+1)! = 1/|R|!. Thus, the desired859

coupling exists.860

Note that in both case, there exists a coupling C such that each pair drawn from C have a Hamming861

distance of at most four. Hence the proof is complete. !862

C.5 Proving privacy guarantee after extending the domain863

As we describe B at a high level before, now we formally described it in Algorithm 2. Below, we864

formally show that the algorithm is differentially private as well.865

Lemma C.6. Assume A is a ξ/4-differentially private algorithm over X ∗ with parameter A ≥866

12 lnn/δ′ that output the correct answer with probability at least 1 − δ. Algorithm 2 is a ξ-867

differentially private algorithm over X . which outputs the correct answer with probability at least868

1− δ − δ′.869

Proof: First, we claim that the algorithm changes X with probability at most δ′. Assume s is a870

Poisson random variable with parameter λ, and let X be the set of 2 s samples from a distribution871

p. Using Poissonization method, we can think of ti(X) and bi(X) as two Poisson random variables872

with mean λi := p(i) ·λ. Now, we bound the probability that ti(X)/(bi(X)+1) become larger than873

one. If λi is zero, then ti(X) and bi(X) must be zero, so the ratio is below A. Let B = bi(X)/λi.874

We consider the following cases for λi:875

Case 1: λi ≤ A/2. By the concentration of a Poisson random variables, we have the following:876

Pr

[[[
ti(X)

bi(X) + 1
≥ A

]]]
≤ Pr[[[ ti(X)− λi ≥ A− λi ]]] ≤ exp

(
− (A− λi)2

2A

)

≤ exp

(
−A

8

)

Case 2: λi > A/2. Clearly, we have:877

Pr

[[[
ti(X)

bi(X) + 1
≥ A

]]]
≤ Pr[[[ ti(X) ≥ A · bi(X) +A]]] = Pr[[[ ti(X) ≥ A ·B · λi +A]]]

Now, if A ·B ≥ 2, we obtain:878

Pr

[[[
ti(X)

bi(X) + 1
≥ A

]]]
≤ Pr[[[ ti(X)− λi ≥ λi +A]]] ≤ exp

(
− (A+ λi)2

2 (A+ 2λi)

)

≤ exp

(
− λ2

i

6λi

)
≤ exp

(
− A

12

)
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If A ·B = Abi(X)/λi < 2, it means that bi(X)is at most 2λi/A. Thus, we have:879

Pr

[[[
ti(X)

bi(X) + 1
≥ A

]]]
≤ Pr

[[[
bi(X) ≤ 2λi

A

]]]
= Pr

[[[
λi − bi(X) ≥ (A− 2) · λi

A

]]]

≤ exp

(
− (A− 2)2 λ2

i

2A2
(
2A−2

A · λi

)
)

= exp

(
− (A− 2)2

2A (2A− 2)
· λi

)

≤ exp

(
−λi

6

)
≤ exp

(
− A

12

)

where the second to last inequality is true when A ≥ 10.880

In all of the cases above, The probability that the ratio associated with element i goes above A is at881

most exp(−A/12) ≤ δ′/n. By union bound, the probability of having at least one i with the ratio882

above A is at most δ′. Observe that if all the ratios are below A, all the ri(X)’s will be zero. Thus,883

the algorithm does not change X with probability 1− δ′. Also, if A outputs the correct answer with884

probability at least 1− δ, then B outputs the correct answer with probability at least 1− δ − δ′.885

Now, we show that B is private. In Lemma C.5, we show our mapping has the following property:886

Let X and X ′ in X be two datasets with Hamming distance at most one. Let Y and Y ′ be the887

randomized datasets that X and X ′ are mapped to. There exists a coupling C between Y and Y ′888

where the Hamming distance between any (Y, Y ′) with non-zero probability in C is at most four.889

The existence of the coupling and the fact that A is an ξ/4 private algorithm help us to prove the890

privacy guarantee for B. Let O be an arbitrary output for B. In the context of our paper O can be891

accept or reject. Below, we show the probability of outputting O on two neighboring dataset X and892

X ′ with Hamming distance one, is the same up to a eξ factor.893

Pr[[[B(X) = O ]]] =
∑

Y

Pr[[[A(Y ) = O ]]] ·Pr[[[X is mapped to Y ]]]

=
∑

Y,Y ′

Pr[[[A(Y ) = O ]]] · C(Y, Y ′)

≤
∑

Y,Y ′

e(ξ/c)·|Y−Y ′|Pr[[[A(Y ′) = O ]]] · C(Y, Y ′)

≤
∑

Y,Y ′

eξPr[[[A(Y ′) = O ]]] · C(Y, Y ′)

≤
∑

Y ′

eξPr[[[A(Y ′) = O ]]] ·Pr[[[X ′ is mapped to Y ′ ]]]

= eξPr[[[B(X ′) = O ]]]

Therefore, B is ξ-private on X . !894

D Proof of the Lemmas895

D.1 Proof of Lemma 3.1896

Lemma 3.1. Suppose r, bi, si,1, si,2, vi,j,1, and vi,j,2 are quantities defined above. Then, we have:897

Er

⎡

⎣

⎡

⎣

⎡

⎣
bi∑

j=1

(vi,j,1 − vi,j,2)
2 − vi,j,1 − vi,j,2

∣∣∣∣∣∣
bi, si,1, si,2

⎤

⎦

⎤

⎦

⎤

⎦ =
(si,1 − si,2)2 − si,1 − si,2

bi
.

Proof: Observe that given bi, si,1, and si,2, the number of instances of element i in each bucket,898

vi,j,1, is random variables drawn from a binomial distribution Bin(si,1, 1/bi) . Similarly, vi,j,2 is899
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drawn from Bin(si,2, 1/bi). Thus, we have:900

E[[[vi,j,1 ]]] =
si,1
bi

, E
[[[
v2i,j,1

]]]
= Var[[[vi,j,1 ]]] +E[[[vi,j,1 ]]]

2 = si,1 ·
(
1− 1

bi

)
· 1

bi
+

s2i,1
b2i

=
si,1
bi

+
s2i,1 − si,1

b2i
,

E[[[vi,j,2 ]]] =
si,2
bi

, E
[[[
v2i,j,2

]]]
= Var[[[vi,j,2 ]]] +E[[[vi,j,2 ]]]

2 = si,2 ·
(
1− 1

bi

)
· 1

bi
+

s2i,2
b2i

=
si,2
bi

+
s2i,2 − si,2

b2i
.

Since vi,j,1 is independent from vi,j,2, then we have:901

E

⎡

⎣

⎡

⎣

⎡

⎣
bi∑

j=1

(vi,j,1 − vi,j,2)
2 − vi,j,1 − vi,j,2

∣∣∣∣∣∣
bi, si,1, si,2

⎤

⎦

⎤

⎦

⎤

⎦

=
bi∑

j=1

E
[[[
(vi,j,1 − vi,j,2)

2 − vi,j,1 − vi,j,2|bi, si,1, si,2
]]]

= bi ·
(
E
[[[
u2
i,1 + v2i,1 − 2 · vi,j,1 · vi,j,1 − vi,j,1 − vi,j,2|bi, si,1, si,2

]]])

= bi ·
(
s2i,1 − si,1

b2i
+

s2i,2 − si,2
b2i

− 2 · si,1
bi

· si,2
bi

)

=
(si,1 − si,2)2 − si,1 − si,2

bi
.

which completes the proof. !902

Lemma A.1. Assume F is a random set of samples to be used for flattening. Then, we have:903

EF

[[[
d(F )
max

]]]
≤ Θ

(
EF

[[[
d(F )
min

]]]
+EF

[[[
∥p(F ) − q(F )∥22

]]])

Proof: Given a random set F , we the ℓ2-norm of p and q are two random variables: ∥p(F )∥ and904

∥p(F )∥. Recall that d(F )
max and d(F )

min are the minimum and the maximum of ∥p(F )∥ and ∥p(F )∥905

respectively. Consider an event, namely E, over the randomness of F that indicates d(F )
max is at most906

3 · d(F )
min. Also, let E indicate the complimentary event, when d(F )

max is greater than 3 · d(F )
min. Using907

Observation D.1, in this latter case, there exists a constant c such that d(F )
max is at most c · ∥p(F ) −908

q(F )∥22.909

Hence, we have:910

EF

[[[
d(F )
max

]]]
= EF

[[[
d(F )
max

∣∣∣E
]]]
·PrF [[[E ]]] +EF

[[[
d(F )
max

∣∣∣E
]]]
·PrF

[[[
E
]]]

≤ 3 ·EF

[[[
d(F )
min

∣∣∣E
]]]
·PrF [[[E ]]] + c ·EF

[[[
∥p(F ) − q(F )∥22

∣∣∣E
]]]
·PrF

[[[
E
]]]

≤ 3 ·EF

[[[
d(F )
min

∣∣∣E
]]]
·PrF [[[E ]]] + 3 ·EF

[[[
d(F )
min

∣∣∣E
]]]
·PrF

[[[
E
]]]

+ c ·EF

[[[
∥p(F ) − q(F )∥22

∣∣∣E
]]]
·PrF [[[E ]]] + c ·EF

[[[
∥p(F ) − q(F )∥22

∣∣∣E
]]]
·PrF

[[[
E
]]]

= Θ
(
EF

[[[
d(F )
min

]]]
+EF

[[[
∥p(F ) − q(F )∥22

]]])

Therefore, the proof is complete. !911

Observation D.1. If ∥p∥22 ≥ C · ∥q∥22 for a constant C > 1, then ∥p− q∥22 = Θ(∥p∥22).912
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Proof: By the Cauchy-Schwarz inequality, we have:913

(
∑

i

(pi − qi)
2

)
·
(
∑

i

(pi + qi)
2

)
≥
(
∑

i

(pi − qi)(pi + qi)

)2

⇒

∥p− q∥22 ·
(
2 +

2

C

)
· ∥p∥22 ≥ ∥p− q∥22 ·

(
∑

i

2(p2i + q2i )

)
≥ ∥p− q∥22 ·

(
∑

i

(pi + qi)
2

)2

≥
(
∑

i

p2i − q2i

)2

⇒

∥p− q∥22 ·
(
2 +

2

C

)
· ∥p∥22 ≥

(
∑

i

p2i − q2i

)2

≥
(
1− 1

C

)2

· ∥p∥42. ⇒

∥p− q∥22 ≥
(
(1− 1/C)2

2 + 2/C

)
· ∥p∥22 = Ω(∥p∥22) .

On the other hand, we have:914

∥p− q∥22 =
∑

i

(pi − qi)
2 ≤

∑

i

p2i + q2i ≤
(
1 +

1

C

)
· ∥p∥22 = O

(
∥p∥22

)
.

!915

Lemma B.3. Assume random variable x is drawn from Poi(λ). If λ is at least 1.5 · ln(1/c), then916

the probability of x being larger than 3λ is at most 1− c.917

Proof: We use the tail bound for the Poisson distribution we have:918

Prx[[[x ≥ λ+ 2λ]]] ≤ exp

(
− (2λ)2

2 · (2 + 1) · λ

)
≤ exp(−2λ/3) ≤ c .

Thus, the proof is complete. !919

Lemma B.4. Assume we have n independent random variables x1, x2, . . . , xn in the range [0,+∞).920

Suppose each xi is at least Ai with probability p ≥ 0.95 where Ai is a fixed number. Then, with921

probability at least 0.9,
∑n

i=1 xi is at least 0.1
∑n

i=1 Ai.922

Proof: We define another set of random variables, yi’s, as follows:

yi =

{
Ai with probability p
0 with probability 1-p

Clearly, the expected value of
∑n

i=1 yi is p ·
∑n

i=1 Ai. Note that we can see yi as Ai multiplied by
a Bernoulli random variable with bias p. Thus, the variance of

∑n
i=1 yi is:

Var

[[[
n∑

i=1

yi

]]]
=

n∑

i=1

Var[[[yi ]]] =
n∑

i=1

A2
iVar[[[Ber(p)]]] = p(1− p) ·

n∑

i=1

A2
i .

Now, by the Chebyshev inequality, we can bound the probability of being far from their expectation:923

Pr

[[[
n∑

i=1

yi ≤ 0.1 ·E
[[[

n∑

i=1

yi

]]]]]]
≤ Pr

[[[∣∣∣∣∣

n∑

i=1

yi −E

[[[
n∑

i=1

yi

]]]∣∣∣∣∣≥ 0.9 ·E
[[[

n∑

i=1

yi

]]]]]]

≤
Var[[[

∑n
i=1 yi ]]]

0.92 ·E[[[
∑n

i=1 yi ]]]
2
≤

p(1− p)
∑n

i=1 A
2
i

0.92 p2 · (
∑n

i=1 Ai)
2 ≤

p(1− p)

0.92 p2
≤ 0.1 .

Observe that yi’s are defined such that the probability of
∑n

i=1 xi > a for any number a is at least
the probability of

∑n
i=1 yi > a. Thus, we have:

Pr

[[[
n∑

i=1

xi ≥ 0.1
n∑

i=1

Ai

]]]
≥ Pr

[[[
n∑

i=1

yi ≥ 0.1
n∑

i=1

Ai

]]]
≥ 0.9 .

Hence, the proof is complete. !924
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Lemma C.4. Let x1, x2, . . . , xn be n non-negative random variables. Suppose there exist two
constants c and p, both at most one, such that for each random variable xi, we have:

Pr[[[xi < c ·E[[[xi ]]]]]] ≤ p ,

Then, one can show:

Pr

[[[
n∑

i=1

xi <
c ·
∑n

i=1 E[[[xi ]]]

10

]]]
≤ 10 p

9
.

Proof: At a high level, we expect each random variable xi to “contributes" to the sum of xi’s by925

E[[[xi ]]]. If a random variable xi is at least cE[[[xi ]]], it is contributing “enough" to the sum. While926

otherwise, the sum “misses" a contribution of amount E[[[xi ]]]. The main idea is to show that total927

amount that the sum misses is not too large.928

More Formally, for each i, we define an auxiliary random variables yi as below. Roughly speaking
yi indicates how much the sum is missing due to a low xi:

yi =

{
E[[[xi ]]] if xi < c ·E[[[xi ]]]
0 otherwise

First, we claim that the sum of yi’s is not too large since we have:929

E

[[[
n∑

i=1

yi

]]]
=

n∑

i=1

E[[[xi ]]] ·Pr[[[xi < c ·E[[[xi ]]]]]] ≤ p ·
n∑

i=1

E[[[xi ]]] .

Using Markov’s inequality, the sum of yi’s cannot be larger than 0.9 ·
∑n

i=1 E[[[xi ]]] with probability930

more than 10 p/9. Hence, with probability 1 − 10 p/9, we may assume
∑n

i=1 yi is at most 0.9 ·931 ∑n
i=1 E[[[xi ]]].932

Now, we show that the sum of xi’s cannot be too small when the sum of yi’s is less than 0.9 ·933 ∑n
i=1 E[[[xi ]]]. Too see this, let I be the set of indices i for which xi ≥ c · E[[[xi ]]]. Then, one can934

obtain:935

n∑

i=1

xi ≥
∑

i∈I

xi ≥ c ·
∑

i∈I

E[[[xi ]]] = c ·

⎛

⎝
n∑

i=1

E[[[xi ]]]−
∑

i ̸∈I

E[[[xi ]]]

⎞

⎠

= c ·

⎛

⎝
n∑

i=1

E[[[xi ]]]−
∑

i ̸∈I

yi

⎞

⎠ = c ·
(

n∑

i=1

E[[[xi ]]]−
n∑

i=1

yi

)

≥
c ·
∑n

i=1 E[[[xi ]]]

10
,

which concludes the lemma. !936

Lemma D.2. Assume x is binomial random variable with n trials and bias p. Then, the following
is true.

Ex

[[[
1

x+ 1

]]]
≤ min

(
1

p · (n+ 1)
, 1

)

Proof:937

Ex

[[[
1

x+ 1

]]]
=

1

p · (n+ 1)

n∑

x=0

n+ 1

x+ 1

(
n

x

)
px+1(1− p)n−x

=
1

p · (n+ 1)

n∑

y=1

(
n+ 1

y

)
py(1− p)(n+1)−y =

1− (1− p)n+1

p · (n+ 1)

≤ min

(
1

p · (n+ 1)
, 1

)

!938
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Lemma D.3. Assume x is binomial random variable with n trials and bias p. Then, the following
is true.

Ex

[[[
1

(x+ 2)(x+ 1)

]]]
≤ min

(
1

p2 · (n+ 1)(n+ 2)
, 1

)

Proof:939

Ex

[[[
1

(x+ 2)(x+ 1)

]]]
=

1

p2 · (n+ 1)(n+ 2)

n∑

x=0

(n+ 2)(n+ 1)

(x+ 2)(x+ 1)

(
n

x

)
px+2(1− p)n−x

=
1

p2 · (n+ 1)(n+ 2)

n∑

y=2

(
n+ 2

y

)
py(1− p)(n+1)−y

=
1− (1− p)n+2 − (n+ 2) p(1− p)n+1

p2 · (n+ 1)(n+ 2)

≤ min

(
1

p2 · (n+ 1)(n+ 2)
, 1

)

!940

Lemma D.4. Suppose we have a bin with m balls where exactly t of them are red. We draw balls
from the bin without replacement. Let X be the number of red balls in the first s trials and let Y be
the number of red balls in the next k trials. Then, we have:

E

[[[
X2

Y + 1

]]]
≤ min

(
2 (s− 1)t

(k + 1)
, 2 t2

)
+ t .

Proof: We write the expectation explicitly:941

E

[[[
X2

Y + 1

]]]
≤
∑

a

∑

b

a2

b+ 1
·Pr[[[X = a]]] ·Pr[[[Y = b]]] =

∑

a

∑

b

a2

b+ 1
·
(s
a

)(k
b

)(m−s−k
t−a−b

)
(m
t

)

=
∑

a≥2

∑

b

2 a (a− 1)

b+ 1

(s
a

)(k
b

)(m−s−k
t−a−b

)
(m
t

) + s ·
∑

b

1

b+ 1

(k
b

)(m−s−k
t−1−b

)
(m
t

)

=
∑

a≥2

∑

b

2 a (a− 1)

b+ 1

(s
a

)(k
b

)(m−s−k
t−a−b

)
(m
t

) + s ·
∑

b

1

b+ 1

(k
b

)(m−s−k
t−1−b

)
(m
t

)

=
2 s(s− 1) t

(k + 1)m

∑

a≥2

∑

b

(s−2
a−2

)(k+1
b+1

)(m−s−k
t−a−b

)
(m−1
t−1

) +
s

k + 1
·
∑

b

(k+1
b+1

)(m−s−k
t−1−b

)
(m
t

)

We define the two sums in the last line as A and B:

A :=
∑

a≥2

∑

b

(s−2
a−2

)(k+1
b+1

)(m−s−k
t−a−b

)
(m−1
t−1

) , B :=
∑

b

(k+1
b+1

)(m−s−k
t−1−b

)
(m
t

) .

We claim A and B are two probabilities of the following randomized processes, so we can bound942

them. Suppose we have an urn with m − 1 balls, t − 1 of them are red. A is the probability that943

we get at least one red ball if we draw k + 1 balls from the bin without replacement. Let Z be the944

number of red balls we draw after k + 1 draws. Using Markov’s inequality, we get:945

A = Pr[[[Z ≥ 1]]] ≤ min(1,E[[[Z ]]]) ≤ min

(
1,

(t− 1) · (k + 1)

(m− 1)

)

Furthermore, we can define B as the following probability: Assume we have an urn of m balls
including t red balls. If we draw (s− 1) + (k+ 1) balls from the urn without replacement. B is the
probability that non of the s − 1 draws are red, and there is at least one red draw in the next k + 1
draws. This is clearly smaller than the probability of seeing at least one red ball in the k + 1 draws.
Thus, similar to the above, we have:

B ≤ min

(
1,

t · (k + 1)

m

)
.

38



Now, putting all these together, and using the fact that s ≤ m, we obtain:

E

[[[
X2

Y + 1

]]]
≤ min

(
2 (s− 1)t

(k + 1)
, 2 t2

)
+ t .

!946

Lemma D.5. Assume X is a random variable drawn from HG(m, t, k), then

EX

[[[
1

(X + 1)

]]]
≤ min

(
1,

(m+ 1)

(t+ 1)(k + 1)

)
.

Proof: Clearly, the expectation cannot be larger than one since X ≥ 0. For the other term, by the947

definition, we can achieve the following bound:948

Ex

[[[
1

x+ 1

]]]
=

min(t,k)∑

x=max(0,k−(m−t))

HG(x;m, t, k) · 1

x+ 1
=
∑

x

(t
x

)(m−t
k−x

)
(m
k

) · 1

x+ 1

=
∑

x

m+ 1

(t+ 1)(k + 1)

t+1
x+1

(t
x

)(m−t
k−x

)

m+1
k+1

(m
k

) =
∑

x

m+ 1

(t+ 1)(k + 1)
·

(t+1
x+1

)((m+1)−(t+1)
(k+1)−(x+1)

)
(m+1
k+1

)

≤ m+ 1

(t+ 1)(k + 1)
·
∑

x

HG(x+ 1;m+ 1, t+ 1, k + 1) ≤ m+ 1

(t+ 1)(k + 1)

where the last line is true because the sum of the probabilities according to a distribution is at most949

one. !950

Lemma D.6. Assume X is a random variable drawn from HG(m, t, k), then

EX

[[[
1

(X + 2)(X + 1)

]]]
≤ min

(
1,

(m+ 2)(m+ 1)

(t+ 2)(t+ 1)(k + 2)(k + 1)

)
.

Proof: Clearly, the expectation cannot be larger than one since X ≥ 0. For the other term, by the951

definition, we can achieve the following bound:952

EX

[[[
1

(X + 2)(X + 1)

]]]
=
∑

X

HG(X;m, t, k) · 1

(X + 2)(X + 1)

=
∑

X

( t
X

)(m−t
k−X

)
(m
k

) · 1

(X + 2)(X + 1)

=
(m+ 2)(m+ 1)

(t+ 2)(t+ 1)(k + 2)(k + 1)
·
∑

X

(t+2
x+2

)((m+2)−(t+2)
(k+2)−(x+2)

)
(m+2
k+2

)

=
(m+ 2)(m+ 1)

(t+ 2)(t+ 1)(k + 2)(k + 1)

∑

x

HG(x;m+ 2, t+ 2k + 2)

≤ (m+ 2)(m+ 1)

(t+ 2)(t+ 1)(k + 2)(k + 1)

where the last line is true, because the sum of the probabilities in a distribution is at most one. !953
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