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Abstract

We introduce a temperature into the exponential function and replace the softmax1

output layer of neural nets by a high temperature generalization. Similarly, the2

logarithm in the log loss we use for training is replaced by a low temperature3

logarithm. By tuning the two temperatures we create loss functions that are4

non-convex already in the single layer case. When replacing the last layer of5

the neural nets by our two temperature generalization of logistic regression, the6

training becomes more robust to noise. We visualize the effect of tuning the two7

temperatures in a simple setting and show the efficacy of our method on large8

data sets. Our methodology is based on Bregman divergences and is superior to a9

related two-temperature method using the Tsallis divergence.10

1 Introduction11

The logistic loss, also known as the softmax loss, has been the standard choice in training deep12

neural networks for classification. The loss involves the application of the softmax function on the13

activations of the last layer to form the class probabilities followed by the relative entropy (aka the14

Kullback Leibler divergence) between the true labels and the predicted probabilities. The logistic loss15

is known to be a convex function of the activations (and consequently, the weights) of the last layer.16

Although desirable from an optimization standpoint, convex losses have been shown to be prone17

to outliers [13] as the loss of each individual example unboundedly increases as a function of the18

activations. These outliers may correspond to extreme examples that lead to large gradients, or19

mislabeled training examples that are located far away from the classification boundary. Requiring a20

convex loss function at the output layer thus seems somewhat arbitrary, in particular since convexity21

in the last layer’s activations does not guarantee convexity with respect to the parameters of the22

network outside the last layer. Another issue arises due to the exponentially decaying tail of the23

softmax function that assigns probabilities to the classes. In the presence of mislabeled training24

examples near the classification boundary, the short tail of the softmax probabilities enforces the25

classifier to closely follow the noisy training examples. In contrast, heavy-tailed alternatives for the26

softmax probabilities have been shown to significantly improve the robustness of the loss to these27

examples [7].28

The logistic loss is essentially the logarithm of the predicted class probabilities, which are computed29

as the normalized exponentials of the inputs. In this paper, we tackle both shortcomings of the logistic30

loss, pertaining to its convexity as well as its tail-lightness, by replacing the logarithm and exponential31

functions with corresponding “tempered” versions. We define the function logt : R+ Ñ R with32

temperature parameter t ě 0 as in [14]:33

logt(x) :=
1

1 – t
(x1–t – 1) . (1)
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Figure 1: Tempered logarithm, exponential, and logistic loss: (a) logt function, (b) expt function,
bi-tempered logistic loss when (c) t2 = 1.2 fixed and t1 ď 1, and (d) t1 = 0.8 fixed and t2 ě 1.

The logt function is monotonically increasing and concave. The standard (natural) logarithm is34

recovered at the limit t Ñ 1. Unlike the standard log, the logt function is bounded from below35

by –1/(1 – t) for 0 ď t < 1. This property will be used to define bounded loss functions that are36

significantly more robust to outliers. Similarly, our heavy-tailed alternative for the softmax function37

is based on the tempered exponential function. The function expt : RÑ R+ with temperature t P R38

is defined as the inverse1 of logt, that is,39

expt(x) := [1 + (1 – t) x]1/(1–t)
+ , (2)

where [ ¨ ]+ = max{ ¨ , 0}. The standard exp function is again recovered at the limit t Ñ 1. Compared40

to the exp function, a heavier tail (for negative values of x) is achieved for t > 1. We use this property41

to define heavy-tailed analogues of softmax probabilities at the output layer.42

The vanilla logistic loss can be viewed as a logarithmic (relative entropy) divergence that operates on43

a “matching” exponential (softmax) probability assignment [9, 10]. Its convexity then stems from44

classical convex duality, using the fact that the probability assignment function is the gradient of the45

dual function to the entropy on the simplex. When the logt1 and expt2 are substituted instead, this46

duality still holds whenever t1 = t2, albeit with a different Bregman divergence, and the induced loss47

remains convex2. However, for t1 < t2, the loss becomes non-convex in the output activations. In48

particular, 0 ď t1 < 1 leads to a bounded loss, while t2 > 1 provides tail-heaviness. Figure 1 illustrates49

the tempered logt and expt functions as well as examples of our proposed loss function for a 2-class50

problem expressed as a function of the activation of the first class. The true label is assumed to be51

class one.52

Tempered generalizations of the logistic regression have been introduced before [6, 7, 20, 2]. The53

most recent two-temperature method [2] is based on the Tsallis divergence and contains all the54

previous methods as special cases. However, the Tsallis based divergences do not result in proper55

loss functions. In contrast, we show that the Bregman based construction introduced in this paper is56

indeed proper, which is a requirement for many real life applications.57

1.1 Our replacement of the softmax output layer in neural nets58

Consider an arbitrary classification model with multiclass softmax output. We are given training
examples of the form (x, y), where x is a fixed dimensional input vector and the target y is a probability
vector over k classes. In practice, the targets are often one-hot encoded binary vectors in k dimensions.
Each input x is fed to the model, resulting in a vector z of inputs to the output softmax. The softmax
layer has typically one trainable weight vector wi per class i and

ŷi =
exp(âi)

řk
j=1 exp(âj)

= exp
(

âi – log
k

ÿ

j=1

exp(âj)
)

, for linear activation âi = wi ¨ z for class i.

We first replace the softmax function by a generalized heavy-tailed version, that uses the expt2
function with t2 > 1:

ŷi = expt2

(
âi – λt2 (â)

)
, where λt2 (â) P R is s.t.

k
ÿ

j=1

expt2

(
âj – λt2 (â)

)
= 1 .

1When 0 ď t < 1, the domain of expt needs to be restricted to –1/(1 – t) ď x for the inverse property to hold.
2In a restricted domain when t1 = t2 < 1, as discussed later.
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Figure 2: Logistic vs. robust bi-tempered logistic loss: (a) noise-free labels, (b) small-margin label
noise, (c) large-margin label noise, and (d) random label noise. The temperature values (t1, t2) for the
tempered loss are shown above each figure.

This requires computing the normalization value λt2 (â) (for each example) via a binary search or an59

iterative procedure like the one given in Appendix A. The relative entropy between the true label y60

and prediction ŷ is replaced by the tempered version with temperature 0 ď t1 < 1,61

k
ÿ

i=1

(
yi (logt1 yi – logt1 ŷi) – 1

2–t1
(y2–t1

i – ŷ2–t1
i )
) if y one-hot

= – logt1 ŷc – 1
2–t1

(
1 –

k
ÿ

i=1

ŷ2–t1
i

)
.

where c = argmaxi yi is the index of the one-hot class. We motivate this loss in later sections. When62

t1 = t2 = 1, then it reduces to the vanilla logistic loss for the softmax. On the other hand, when63

0 ď t1 < 1, then the loss is bounded, while t2 > 1 gives the loss function a heavier tail.64

1.2 An illustration65

We provide some intuition on why both boundedness of the loss as well as tail-heaviness of the66

softmax are crucial for robustness. For this, we train a small two layer feed-forward neural net on67

a synthetic binary classification problem in two dimensions. The net has 10 and 5 units in the first68

and second layer, respectively. Figure 2(a) shows the results of the logistic and our bi-tempered69

logistic loss on the noise-free dataset. The network converges to a desirable classification boundary70

(the white stripe in the figure) using both loss functions. In Figure 2(b), we illustrate the effect of71

adding small-margin label noise to the training examples on the two losses. The logistic loss clearly72

follows the noisy examples by stretching the classification boundary. On the other hand, using only73

the tail-heavy softmax function (t2 = 4 while t1 = 1, i.e. KL divergence as the loss) can handle74

the noisy examples by assigning smoother probability distributions. Next, we show the effect of75

large-margin noisy examples in Figure 2(c). The convexity of the logistic loss causes the network to76

be highly affected by the noisy examples that are located far away from the boundary. In contrast,77

only the boundedness of the loss (t1 = 0.2 while t2 = 1, meaning that the outputs are vanilla softmax78

probabilities) reduces the effect of the outliers by allocating at most a finite amount of loss to each79

example. Finally, we show the effect of random label noise that includes both small-margin and80

large-margin noisy examples in Figure 2(d). Clearly, the logistic loss fails to handle the noise, while81

our bi-tempered logistic loss successfully recovers the appropriate boundary. Note that to handle the82

random noise, we exploit both boundedness of the loss (t1 = 0.2 < 1) as well as the tail-heaviness of83

the probability assignments (t2 = 4 > 1).84

The theoretical background as well as our treatment of the softmax layer of the neural networks are85

developed in later sections. In particular, we show that special discrete choices of the temperatures86

result in a large variety of divergences commonly used in machine learning. However, as we show in87

our experiments, tuning the two temperatures as continuous parameters is crucial.88
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1.3 Summary of the experiments89

We perform experiments by adding synthetic label noise to MNIST and CIFAR-100 datasets and90

compare the results of our robust bi-tempered loss to the vanilla logistic loss. Our bi-tempered loss is91

significantly more robust to label noise; it provides 90.33% and 62.55% accuracy on MNIST and92

CIFAR-100, respectively, when trained with 40% label noise (compared to 15.86% and 53.17%,93

respectively, obtained using logistic loss). The bi-tempered loss also yields improvement over94

the state-of-the-art results on the Imagenet-2012 dataset using both the Resnet18 and Resnet5095

architectures (see Table 2).96

2 Preliminaries97

2.1 Convex Duality and Bregman Divergences on the Simplex98

We start by briefly reviewing some basic background in convex analysis. For a continuously-99

differentiable strictly convex function F : D Ñ R, with convex domain D, the Bregman divergence100

between y, ŷ P D induced by F is defined as101

∆F(y, ŷ) = F(y) – F(ŷ) – (y – ŷ) ¨ f (ŷ) ,

where f (ŷ) := ∇F(ŷ) denotes the gradient of F at ŷ (sometimes called the link function of F). Clearly102

∆F(y, ŷ) ě 0 and ∆F(y, ŷ) = 0 iff y = ŷ. Also the Bregman divergence is always convex in the first103

argument and ∇y ∆F(y, ŷ) = f (y) – f (ŷ), but not generally in its second argument.104

Bregman divergence generalizes many well-known divergences such as the squared Euclidean105

∆F(y, ŷ) = 1
2 }y – ŷ}2

2 (with F(y) = 1
2 }y}

2
2) and the Kullback-Leilbler (KL) divergence ∆F(y, ŷ) =106

ř

i(yi log yi
ŷi

–yi + ŷi) (with F(y) =
ř

i(yi log yi –yi)). Note that the Bregman divergence is not symmetric107

in general, i.e., ∆F(y, ŷ) ‰ ∆F(ŷ, y). Additionally, the Bregman divergence is invariant to adding108

affine functions to the convex function F: ∆F+A(y, ŷ) = ∆F(y, ŷ), where A(y) = b + c ¨ y for arbitrary109

b P R, c P Rk.110

For every differentiable strictly convex function F (with domain D Ď Rk
+), there exists a convex111

dual F˚ : D˚ Ñ R function such that for dual parameter pairs (y, a), a P D˚, the following holds:112

a = f (y) and y = f ˚(a) = ∇F˚(a) = f –1(a). However, we are mainly interested in the dual of the113

F function when the domain is restricted to the probability simplex. Let F̌˚ : Ď˚ Ñ R denote the114

convex conjugate of F : D X Sk Ñ R,115

F̌˚(a) = sup
y1PDXSk

(
y1 ¨ a – F(y1)

)
= sup

y1PD
inf
λPR

(
y1 ¨ a – F(y1) + λ (1 –

k
ÿ

i=1

y1i)
)

,

where we introduced a Lagrange multiplier λ P R to enforce the constraint y1 P Sk. At the optimum,116

the following relationships hold between the primal and dual variables:117

f (y) = a – λ(a) 1 and y = f –1(a – λ(a) 1) = f̌ ˚(a) , (3)

where λ(a) is chosen so that y P Sk. Note the dependence of the optimum λ on a.118

2.2 Matching losses119

Next, we recall the notion of a matching loss [9, 10, 3, 15]. It arises as a natural way of defining120

a loss function over activations â P Rk, by first mapping them to a probability distribution using a121

transfer function s : Rk Ñ Sk that assigns probabilities to classes, and then computing a divergence122

∆F between this distribution and the correct target labels. The idea behind the following definition is123

to match the transfer function and the divergence via duality.124

Definition 1 (Matching Loss). Let F : Sk Ñ R a continuously-differentiable, strictly convex125

function and let s : Rk Ñ Sk be a transfer function such that ŷ = s(â) denotes the predicted probability126

distribution based on the activations â. Then the loss function127

LF(â | y) := ∆F(y, s(â)) ,

is called the matching loss for s, if s = f̌ ˚ = ∇F̌˚.128
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This matching is useful due to the following.129

Proposition 1. The matching loss LF(â | y) is always convex w.r.t. the activations â.130

Proof. Note that F̌˚ is a strictly convex function and the following relation holds between the131

divergences induced by F and F̌˚:132

∆F
(
y, ŷ
)

= ∆F̌˚
(
(f̌ ˚)–1(ŷ), (f̌ ˚)–1(y)

)
. (4)

Thus for any â in the range of (f̌ ˚)–1,133

∆F
(
y, f̌ ˚(â)

)
= ∆F̌˚

(
â, (f̌ ˚)–1(y)

)
.

The claim now follows from the convexity of the Bregman divergence ∆F̌˚ w.r.t. its first argument.134

135

The original motivating example for the matching loss was the logistic loss [9, 10]. It can be obtained136

as the matching loss for the softmax function137

ŷi = [f̌ ˚(â)]i =
exp(âi)

řk
j=1 exp(âj)

,

which corresponds to the relative entropy (KL) divergence138

LF(â | y) = ∆F
(
y, f̌ ˚(â)

)
=

k
ÿ

i=1

yi (log yi – log ŷi) =
k

ÿ

i=1

(
yi log yi – yi âi)

)
+ log

( k
ÿ

i=1

exp(âi)
)

,

induced from the negative entropy function F(y) =
řk

i=1(yi log yi – yi). We next define a family139

of convex functions Ft parameterized by a temperature t ě 0. The matching loss LFt (â | y) =140

∆Ft

(
y, f̌ ˚t (â)

)
for the link function f̌ ˚t of F̌˚t is always convex in the activations â. However, by letting141

the temperature t2 of f̌ ˚t2 be larger than the temperature t1 of Ft1 , we construct bounded non-convex142

losses with heavy-tailed transfer functions.143

3 Tempered Bregman divergence144

We start by introducing a generalization of the relative entropy, denoted by ∆Ft , induced by a strictly145

convex function Ft : Rk
+ Ñ R with a temperature parameter t ě 0. The convex function Ft is chosen146

so as its gradient takes the form3 ft(y) := ∇Ft(y) = logt y. Via simple integration, we obtain that147

Ft(y) =
k

ÿ

i=1

(
yi logt yi + 1

2–t (1 – y2–t
i )
)

.

Indeed, Ft is a convex function since ∇2Ft(y) = diag(y–t) ľ 0 for any y P Rk
+. In fact, Ft is strongly148

convex, for 0 ď t ď 1:149

Lemma 1. The function Ft, with 0 ď t ď 1, is B–t–strongly convex over the set {y P Rk
+ : }y}2–t ď B}150

w.r.t. the L2–t-norm.151

See Appendix B for a proof. The Bregman divergence induced by Ft is then given by152

∆Ft (y, ŷ) =
k

ÿ

i=1

(
yi logt yi – yi logt ŷi – 1

2–t y
2–t
i + 1

2–t ŷ
2–t
i

)
=

k
ÿ

i=1

(
1

(1–t)(2–t) y2–t
i – 1

1–t yiŷ1–t
i + 1

2–t ŷ2–t
i

)
.

(5)

The second form may be recognized as β-divergence [4] with parameter β = 2 – t. The divergence (5)153

includes many well-known divergences such as squared Euclidean, KL, and Itakura-Saito divergence154

as special cases. A list of additional special cases is given in Table 3 of Appendix C.155

The following corollary is the direct consequence of the strong convexity of Ft, for 0 ď t < 1.156

3Here, the logt function is applied elementwise.
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Corollary 1. Let max(}y}2–t, }ŷ}2–t) ď B for 0 ď t < 1. Then157

1
2Bt }y – ŷ}2

2–t ď ∆Ft (y, ŷ) ď
Bt

2 (1 – t)2 }y – ŷ}2 (1–t)
2–t .

See Appendix B for a proof. Thus for 0 ď t < 1, ∆Ft (y, ŷ) is upper-bounded by B2–t

(1–t)2 . Note that158

boundedness on the simplex also implies boundedness in the L2–t-ball of radius 1. Thus, Corollary 1159

immediately implies the boundedness of the divergence ∆Ft (y, ŷ) with 0 ď t < 1 over the simplex.160

Alternate parameterizations of the family {Ft} of convex functions and their corresponding Bregman161

divergences are discussed in Appendix C.162

3.1 Tempered transfer function163

Now, let us consider the convex function Ft(y) when its domain is restricted to the probability simplex164

Sk. We denote the constrained dual of Ft(y) by F̌˚t (a),165

F̌˚t (a) = sup
y1PSk

(
y1 ¨ a – Ft(y1)

)
= sup

y1PRk
+

inf
λtPR

(
y1 ¨ a – Ft(y1) + λt

(
1 –

k
ÿ

i=1

y1i
))

. (6)

Following our discussion in Section 2.1 and using (3), the transfer function induced by F̌˚t is4166

y = expt

(
a – λt(a) 1

)
, with λt(a) s.t.

k
ÿ

i=1

expt

(
ai – λt(a)

)
= 1. (7)

3.2 Tempered matching losses167

Finally, we derive the matching loss function LFt . Plugging in (7) into (5), we have

Lt(â | y) = ∆Ft

(
y, expt(â – λt(â))

)
.

Recall that by Proposition 1, this loss is convex in activations â. In general, λt(a) does not have a168

closed form solution. However, it can be easily approximated via an iterative method, e.g., a binary169

search. An alternative (fixed-point) algorithm for computing λt(a) for t > 1 is given in Algorithm 1170

of Appendix A.171

4 Robust Bi-Tempered Logistic Loss172

A more interesting class of loss functions can be obtained by introducing a “mismatch” between173

the temperature of the divergence function (5) and the temperature of the probability assignment174

function (7). That is, we consider loss functions of the following type:175

@ 0ď t1 < 1< t2 : Lt2
t1 (â | y) := ∆Ft1

(
y, expt2 (â–λt2 (â))

)
, with λt(â) s.t.

k
ÿ

i=1

expt

(
ai–λt(a)

)
= 1. (8)

We call this the Bi-Tempered Logistic Loss. Note that for the prescribed range of the two temperatures,176

the loss is bounded and has a heavier-tailed probability assignment function compared to the vanilla177

softmax function. As illustrated in our 2-dimensional example in Section 1, both properties are178

crucial for handling noisy examples. The derivative of the bi-tempered loss are given in Appendix E.179

In the following, we discuss the properties of this loss for classification.180

4.1 Properness and Monte-Carlo sampling181

Let PUK(x, y) denote the (unknown) joint probability distribution of the observed variable x P Rm and182

the class label y P [k]. The goal of discriminative learning is to approximate the posterior distribution183

of the labels PUK(y | x) via a parametric model P(y | x; Θ) parameterized by Θ. Thus the model fitting184

4Note that due to the simplex constraint, the link function y = f̌ ˚
t (a) = ∇F̌˚

t (a) = expt

(
a – λt(a)

)
is different

from f –1
t (a) = f ˚(a) = ∇F˚

t (a) = expt(a), i.e., the gradient of the unconstrained dual.
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can be expressed as minimizing the following expected loss between the data and the model label185

posterior probabilities186

EPUK(x)

[
∆
(
PUK(y | x), P(y | x; Θ)

)]
, (9)

where ∆
(
PUK(y | x), P(y | x; Θ)

)
is any proper divergence measure between PUK(y | x) and P(y | x; Θ).187

We use ∆ := ∆Ft1
as the divergence and P(y = i | x; Θ) := P(i | x; Θ) = expt2 (âi – λt2 (â)), where â188

is the activation vector of the last layer given input x and Θ is the set of all weights of the network.189

Ignoring the constant terms w.r.t. Θ, our loss (9) becomes190

EPUK(x)

[
ÿ

i

(
– PUK(i | x) logt P(i | x; Θ) +

1
2 – t

P(i | x; Θ)2–t)] (10a)

«
1
N

ÿ

n

ÿ

i

(
– PUK(i | xn) logt P(i | xn; Θ) +

1
2 – t

P(i | xn; Θ)2–t) (10b)

«
1
N

ÿ

n

(
– logt P(yn | xn; Θ) +

ÿ

i

1
2 – t

P(i | xn; Θ)2–t) , (10c)

where from (10a) to (10b), we perform a Monte-Carlo approximation of the expectation w.r.t. PUK(x)191

using samples {xn}N
n=1 and in (10c), we approximate the expectation w.r.t. each PUK(i | xn) using a192

single sample yn. Thus, (10c) is an unbiased approximate of the expected loss (9), thus is a proper193

loss [18].194

Following the same approximation steps for the Tsallis divergence, we have195

EPUK(x)

[
–

ÿ

i

PUK(i | x) logt
P(i | x; Θ)
PUK(i | x)

looooooooooooooooomooooooooooooooooon

∆Tsallis
t

(
PUK(y|x), P(y|x;Θ)

)
]
« –

1
N

ÿ

n

logt
P(yn | xn; Θ)
PUK(yn | xn)

,

which, due to the fact that logt
a
b ‰ logt a – logt b in general, requires access to the label posterior196

distribution PUK(y | x). Thus, the approximation – 1
N

ř

n logt P(yn | xn; Θ) proposed in [2] by197

approximating PUK(yn | xn) by 1 is not an unbiased estimator of (9) and therefore, not proper.198

4.2 Bayes-risk consistency199

Another important property of a multiclass loss is the Bayes-risk consistency [17]. Bayes-risk200

consistency of the two-temperature logistic loss based on the Tsallis divergence was shown in [2]. As201

expected, the tempered Bregman loss (8) is also Bayes-risk consistent, even in the non-convex case.202

Proposition 2. The multiclass bi-tempered logistic loss Lt2
t1 (â | y) is Bayes-risk consistent.203

5 Experiments204

We demonstrate the practical utility of the bi-tempered logistic loss function on a wide variety of205

image classification tasks. For moderate size experiments, we use MNIST dataset of handwritten206

digits [12] and CIFAR-100, which contains real-world images from 100 different classes [11]. We207

use Imagenet-2012 [5] for large scale image classification, having 1000 classes. All experiments are208

carried out using the TensorFlow [1] framework. We use P100 GPU’s for small scale experiments209

and Cloud TPU-v2 for larger scale Imagenet experiments.210

5.1 Corrupted labels experiments211

For our moderate size datasets, i.e. MNIST and CIFAR-100, we introduce noise by artificially212

corrupting a fraction of the labels and producing a new set of labels for each level of corruption.213

For all experiments we compare our bi-tempered loss function against the logistic loss. For MNIST,214

we use a CNN with two convolutional layers of size 32 and 64 with a mask size of 5, followed by215

two fully connected layers of size 1024 and 10. We apply max-pooling after each convolutional216

layer with a window size equal to 2 and use dropout during training with keep probability equal217

to 0.75. We use the AdaDelta optimizer [19] with 500 epochs and batch size of 128 for training.218

For the bi-tempered loss, we search through a number of temperature pairs in the range [0.5, 1) and219
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(1.0, 4.0] for t1 and t2 and pick the pair based on the performance on a separate validation set. For220

CIFAR-100 we use a Resnet56 architecture [8] with SGD + momentum optimizer trained for 50k221

steps with batch size of 128. We exhaustively search over a number of temperatures within the range222

[0.5, 1) and (1.0, 4.0] for t1 and t2 respectively and the learning rate. For training, we use the standard223

learning rate stair case decay schedule, and we search over learning rates for each of the experiment.224

Results are presented in Table 1 where we report the top-1 accuracy on a clean test test. As can be225

seen, the bi-tempered loss outperforms the logistic loss for all noise levels (including the noise-free226

case). Using our bi-tempered loss function the model is able to continue to perform well up to 40%227

corruption in labels whereas the accuracy of the logistic loss drops immediately with a much smaller228

level of noise.229

Dataset Loss Label Noise Level

0.0 0.1 0.2 0.3 0.4 0.5

MNIST Logistic 98.08 18.02 16.33 15.55 15.86 15.82

Bi-Tempered (0.5, 4.0) 98.42 98.36 97.91 96.31 90.33 70.87

CIFAR-100 Logistic 74.03 69.94 66.39 63.00 53.17 52.96

Bi-Tempered (0.8, 1.2) 75.30 73.30 70.69 67.45 62.55 57.80

Table 1: Label noise results.

5.2 Large scale experiments230

We train state-of-the-art Resnet-18 and Resnet-50 models on the Imagenet-2012 dataset. We train on231

a 4x4 CloudTPU-v2 device with a batch size of 4096. All experiments were trained for 180 epochs,232

and use the SGD + momentum optimizer with staircase learning rate decay schedule. The results are233

presented in 2. For both architectures we see a significant gain of the robust bi-tempered loss method234

in top-1 accuracy.235

Model Logistic Bi-tempered (0.9,1.05)

Resnet18 71.333˘ 0.069 71.618˘ 0.163

Resnet50 76.332˘ 0.105 76.748˘ 0.164

Table 2: Top-1 accuracy on ImageNet-2012 with Resnet-18 and 50 architectures.

6 Conclusion and Future Work236

Neural networks on large standard datasets have been optimized along with a large variety of variables237

such as: architecture, transfer function, choice of optimizer, and label smoothing to name just a238

few. We proposed a new variant by training the network with tunable loss functions. We do this by239

first developing convex loss functions based on temperature dependent logarithm and exponential240

functions. When both temperatures are the same, then a construction based on the notion of “matching241

loss” leads to loss functions that are convex in the last layer. However by letting the temperature242

of the new softmax function be larger than the temperature of the log function used in the loss,243

we construct tunable losses that are non-convex in the last layer. Our construction remedies two244

issues simultaneously: We construct bounded tempered loss functions that can handle large-margin245

outliers and introduce heavy-tailedness in our new tempered softmax function that seems to handle246

small-margin mislabeled examples. At this point, we simply took a number of benchmark datasets and247

networks for these datasets that have been heavily optimized for the logistic loss paired with vanilla248

softmax and simply replaced the loss in the last layer by our new construction. By simply trying a249

number of temperature pairs, we already achieved significant improvements. We believe that with a250

systematic “joint optimization” of all commonly tried variables, significant further improvements can251

be achieved. This is of course a more long-term goal. We also plan to explore the idea of annealing252

the temperature parameters over the training process.253
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A An Iterative Algorithm for Computing the Normalization306

Algorithm 1 Iterative algorithm for computing λt(a) (from [2])

Input: Vector of activations a, temperature t > 1
µÐ max(a)
ã Ð a – µ
while ã not converged do

Z(ã) Ð
řk

i=1 expt(ãi)
ã Ð Z(ã)1–t(a – µ 1)

end while
Return: λt(a) Ð – logt

1
Z(ã) + µ

B Strong Convexity and Smoothness307

The following material for strong convexity and strong smoothness are adopted from [16].308

Definition 2 (σ-Strong Convexity). A continuous function F is σ-strongly convex w.r.t. the norm309

} ¨ } over the convex set S if S is contained in the domain of F and for any u, v P S, we have310

F(v) ě F(u) + ∇F(u) ¨ (v – u) +
σ

2
}v – u}2 .

Lemma 2. Assume F is twice differentiable. Then F is σ-strongly convex if311 (
∇2F(u) v

)
¨ v ě σ }v}2), @u, v P S .

Lemma 3. Let F be a σ-strongly convex function over the non-empty convex set S . For all u, v P S ,312

we have313
σ

2
}u – v}2 ď ∆F(v, u) .

Proof of Lemma 1. We have ∇2 F(u) = diag(u–t). Applying Lemma 3, note that the function

(∇2Ft(u) ¨ v) ¨ v =
ÿ

i

v2
i

ut
i

,

is unbounded over the set S = {v P Rd
+ : }v}2–t ď B} and the minimum happens at the boundary

{}v}2–t = B}.

min
v

ÿ

i

v2
i

ut
i

+ γ(
ÿ

i

v2–t
i – 1) ñ v = B

u
}u}2–t

,

where γ is the Lagrange multiplier. Plugging in the solution yields
ř

i
v2

i
ut

i
ě 1

Bt }v}2
2–t.314

Definition 3 (σ-Strong Smoothness). A function differentiable function G is σ-strongly smooth w.r.t.315

the norm } ¨ } if316

∆G(v, u) ď
σ

2
}v – u}2 .

Lemma 4. Let F be a closed and convex function. Then F is σ-strongly convex w.r.t. the | ¨ } if and317

only if F˚, the dual of F, is 1
σ -strongly smooth w.r.t. the dual norm } ¨ }˚.318

Proof of Corollary 1. Note that using the duality of the Bregman divergences, we have319

∆Ft (y, ŷ) = ∆F˚t
(ft(ŷ), ft(y)) = ∆F˚t

(logt(ŷ), logt(y)) .

Using the strong convexity of Ft and strong smoothness of F˚t , we have320

1
2Bt }y – ŷ}2

2–t ď ∆Ft (y, ŷ) ď
Bt

2
} logt y – logt ŷ}2

2–t
1–t

.

Note that } ¨ }2–t and } ¨ } 2–t
1–t

are dual norms. Substituting the definition of logt to the right-hand-side,321

we have322

} logt y – logt ŷ}2
2–t =

1
2 (1 – t)2 }y

1–t – ŷ1–t
}2

2–t
1–t

= }y – ŷ}2 (1–t)
2–t .

323
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C Other Tempered Convex Functions324

We begin with a list of interesting temperature choices for the convex function Ft and its induced325

divergence:326

t Ft(y) ∆Ft (y, ŷ) Name

0 1
2}y}

2
2

1
2}y – ŷ}2

2 Euclidean
1
2

1
3

ř

i(4 y
4
3
i – 6 yi + 2)

ř

i(
4
3 y

3
2
i – 2yi

?
ŷi + 3

2 ŷ
3
2
i )

1
ř

i(yi log yi – yi + 1)
ř

i(yi log yi
ŷi

– yi + ŷi) KL-divergence

3
2

ř

i(–4 y
3
2
i + 2 yi + 2) 2

ř

i
(
?

yi–
?

ŷi)2

?
ŷi

Squared Xi on roots

2
ř

i(– log yi + yi)
ř

i(
yi
ŷi

– log yi
ŷi

– 1) Itakura-Saito
3 1

2

ř

i(–
1
yi

+ yi – 2) 1
2

ř

i(
1
yi

– 2
ŷi

+ yi
ŷ2

i
) Inverse

Table 3: Some special cases of the tempered Bregman divergence.

In the construction of the convex function family Ft we used Ft(x) =
ş

logt(x) exploiting the fact that
logt(x) is strictly increasing. We can also define an alternative convex function family rFt by utilizing
the convexity (respectively, concavity) of the logt function for values of t ě 0 (respectively, t ď 0):

rFt(y) = –
1
t

ÿ

i

(logt yi – yi + 1) = –
1

t (1 – t)

ÿ

i

(y1–t
i – yi) .

Note that f̃t(y) := ∇rF(y) = 1–y–t

t and ∇2
rFt(y) = diag(y–(1+t)), thus rFt is indeed a strictly convex327

function. The following proposition shows that the Bregman divergence induced by the original and328

the alternate convex function are related by a temperature shift:329

Proposition 3. For the Bregman divergence induced by the convex function rFt, we have330

@y, ŷ P Rk
+ : ∆

rFt
(y, ŷ) =

1
t

ÿ

i

(logt ŷi – logt yi + (yi – ŷi) ŷ–t
i ) = ∆Ft+1 (y, ŷ) .

The rFt function is also related to the negative Tsallis entropy over the probability measures y P ∆k
+331

defined as332

–HTsallis
t (y) =

1
1 – t

(
1 –

ÿ

i

yt
i

)
= –

ÿ

i

yi logt
1
yi

.

Note that (–HTsallis
t – (1 – t) rF1–t) is an affine function. Thus, the Bregman Divergence induced by rFt,333

and the one induced by –HTsallis
t are also equivalent up to a scaling and a temperature shift. Thus, both334

functions Ft and rFt can be viewed as some generalized negative entropy functions. Note that the335

Bregman divergence induced by –HTsallis
t is different from the Tsallis divergence over the simplex,336

defined as337

∆Tsallis
t (y, ŷ) = –

ÿ

i

yi logt
ŷi

yi
=

ÿ

i

yt
i (logt yi – ŷi) .

D Convexity of the Tempered Matching Loss338

The convexity of the loss function ∆Ft

(
y, expt(â – λt(â)

)
with t ě 1 for â P Rk immediately follows339

from the definition of the matching loss. A more subtle case occurs when 0 ď t < 1. Note that the340

range of the combined function logt ˝ expt does not cover all Rk as the logt function is bounded from341

below by – 1
1–t . Therefore, range(logt ˝ expt) = {a1 P Rk | – 1

1–t ď a1}.342

Remark 1. The normalization function λt(a) satisfies: λt(a + b 1) = λt(a) + b for b P R .343

Proof. Note that344
ÿ

i

expt((ai + b) – λt(a + b 1)) =
ÿ

i

expt

(
ai – (λt(a + b 1) – b)

loooooooomoooooooon

=λt(a)

)
= 1 for @a P Rk .
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The claim follows immediately.345

Proposition 4. The loss function ∆Ft

(
y, expt(â – λt(â)) for 0 ď t < 1 is convex for346

â P {a1 + R 1 | –
1

1 – t
ď a1} .

Proof. Using the definition of the dual function F̌˚ and its derivative f̌ ˚, we can write347

∆Ft (y, ŷ) = Ft(y) – Ft(ŷ) – (y – ŷ) ¨ ft(ŷ)
(
ŷ = expt(â – λt(â) 1)

)
= Ft(y) – Ft(ŷ) – (y – ŷ) ¨ logt ˝ expt(â – λ1)

= Ft(y) – Ft(ŷ) – (y – ŷ) ¨ (â – λt(â) 1)
(
(y – ŷ) ¨ 1 = 1 – 1 = 0

)
= Ft(y) – y ¨ (f̌ ˚t )–1(y)

loooooooooomoooooooooon

–F̌˚t ((̌f˚t )–1(y))

+ y ¨ (f̌ ˚t )–1(y) – Ft(ŷ) + ŷ ¨ â
loooooomoooooon

F̌˚t (â)

– y ¨ â

= F̌˚t (â) – F̌˚t ((f̌ ˚t )–1(y)) – (â – (f̌ ˚t )–1(y)) ¨ y

= ∆F̌˚t
(â, (f̌ ˚t )–1(y)) .

Note that the transition from the second line to the third line requires that the assumption – 1
1–t ď â348

holds. The dual function F̌˚t satisfies349

F̌˚t (a + b 1) = λt(a + b 1) +
1

2 – t

ÿ

i

expt

(
(ai + b) – λt(a + b 1)

)2–t
= F̌˚t (a) + b .

Additionally,350

∆F̌˚t
(â + b 1, (f̌ ˚t )–1(y)) = F̌˚t (â + b 1) – F̌˚t ((f̌ ˚t )–1(y)) – (â + b 1 – (f̌ ˚t )–1(y)) ¨ y = ∆F̌˚t

(â, (f̌ ˚t )–1(y)) .

The claim follows by considering the range of logt ˝ expt and the invariance of the Bregman divergence351

induced by F̌˚t along R 1.352

E Derivatives of Lagrangian and the Bi-tempered Matching Loss353

The gradient of λt(a) w.r.t. a can be calculated by taking the partial derivative of both sides of the354

equality 1 =
ř

j expt(aj – λt(a)) w.r.t. ai:355

0 =
ÿ

j

expt(aj – λt(a)
)t (

δij –
Bλt(a)
Bai

)
= expt

(
ai – λt(a)

)t
–
Bλt(a)
Bai

ÿ

j

expt(aj – λt(a)
)t

, where δii = 1 and δij = 0 for i ‰ j . (11)

Therefore Bλt(a)
Bai

=
expt

(
ai–λt(a)

)t

Zt
, where Zt =

ř

j expt(aj – λt(a))t. We conclude that Bλt(a)
Bai

is the356

“t-escort distribution” of the distribution exp(ai–λt(a))
Z1

.357

Similarly, the second derivative of λt(a) can be calculated by repeating the derivation on (11):358

B2λt(a)
BaiBaj

=
1
Zt

ÿ

j1
t expt

(
aj1 – λt(a)

)2t–1 (
δij1 –

Bλt(a)
Bai

)(
δjj1 –

Bλt(a)
Baj

)
.

Although not immediately obvious from the second derivative, it is easy to show that λt(a) is in359

fact a convex a. Also the derivative of the loss Lt2
t1 (â| y) w.r.t. âi (expressed in terms of y and360

ŷ = expt2 (â – λt2 (â))) becomes361

BLt2
t1

Bâi
=

ÿ

j

B

Bŷj

(
yj logt1 yj – yj logt1 ŷj –

1
2 – t1

y2–t1
j +

1
2 – t1

ŷ2–t1
j

) Bŷj

Bâi

=
ÿ

j

(ŷj – yj) ŷt2–t1
i

(
δij –

ŷt2
j

ř

j1 ŷt2
j1

)
.
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F Proof of Bayes-risk Consistency362

The conditional risk of the multiclass loss l(â) with li := `(â| y = i), i P [k] is defined as363

R(η, l(â)) =
ÿ

i

ηi li ,

where ηi := PUK(y = i| x).364

Definition 4 (Bayes-risk Consistency). A Bayes-risk consistent loss for multiclass classification is365

the class of loss functions ` for which â‹, the minimizer of R(η, l(â)), satisfies366

arg min
i
`(â‹| y = i) Ď argmaxi ηi .

Proof of Proposition 2. For the bi-tempered loss, we have367

li = – logt1 expt2 (âi – λt2 (â)) +
1

2 – t1

ÿ

j

expt2 (âj – λt2 (â))2–t1 .

Note that the second term is repeated for all classes i P [k]. Also,368

R(η, l(â)) = –
ÿ

i

ηi logt1 expt2 (âi – λt2 (â)) +
1

2 – t1

ÿ

i

expt2 (âi – λt2 (â))2–t1 .

The minimizer of R(η, l(â)) satisfies369

ηi = expt2 (â‹i – λt2 (â‹)) .

Since – logt1 is a monotonically decreasing function for 0 ď t1 < 1, we have370

arg min
i
`(â‹| y = i) = arg min

i
– logt1 expt2 (â‹i – λt2 (â‹)) = arg max

i
â‹i Ď arg max

i
ηi .

371
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