Supplementary Material for
“Curvilinear Distance Metric Learning”

Abstract

This supplementary document contains all technical proofs for Theorem 2, Theo-
rem 3, and Theorem 4 in the NeurIPS_2019 paper entitled “Curvilinear Distance
Metric Learning”. It is indeed the appendix section of the paper.

A Proof of Theorem 2 (Fitting Capability)

We introduce the following LemmalT] for proving our Theorem 2}
Lemma 1. Assume that s1,82,--- ,5x > 0and t; = j + rs(j)A for j = 1,2,--- , H, where

Ks

H = Zfil s; and ks(j) denotes the maximal integer satisfying Zi:(lj) s; < j. Then for the
Vandermonde matrix

1t -t
Vitran(A) = . [ e RUFDXUTFD, (A.1)
1ty - tH

the limitation of (V¢, 4, ... ¢ (A)) 7! exists as A — +oo0.

Proof. As1=1t; <ty <---<tpg,itholds that
det(Vie, ta s (A) =[] (t; —ti) #0, (A2)

which implies that the matrix V¢, ¢, ... 1,(A) is invertible. Then we denote the adjoint matrix of
Vi tooo tn(A) as V€ RUEFDXEHAD) "and we have
V*

Vl 2, tH A)~t = ’
Visstar el D) = 40w, (@)

where V5 = (—1)"7V (i, ) and V (i, j) € R is the cofactor of V'y, 4, ... 1, (A) w.rt. i-th row and
j-column. According to the definition of determinant, det(V¢, ¢, ... 1+, (A)) can be written as

1<i<j<H

(A.3)

Q
det(Vi o, (A) = Y7 A, (A4)
where the polynomial order ) < H, and the polynomial coefficients u = (ug, u1, - - - ,uQ)T. For
the cofactor V' (i, 7), we have that
- PO (i5) Ak
Vi, j) = Zk:o v Ak (A.5)

and the polynomial order P(*7) < @ can be directly obtained from the definition of the cofactor, in
which the polynomial coefficients v(1) = (v o9 ... 4D YT Then for Eq. (A.3), we have

» Up(ing)
, S
lim i ‘: lim = lim |F2e 1 (A6)
Astoo [det(Viyy ity 6y (A)) | Amoo ’ZkQ:OukAk‘ Astoo | uQAd
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and o
0, if Phd) < Q,

(i) AP
(i,9)
, if PO =Q.

lim |22
A—+oo UQAQ

Y p(i.g)

uQ

(A7)

where 4,7 € Ny 1. Therefore, the limitation of (V4 4, ... 15 (A)) ™! exists as A — +oo. O

Theorem 2. For given Amain > 0, there exist m,c € N and .7\\/4 e Rm>dxe sych that
Dist 1 (3, B) — Dist (@, &) > Apargin, (A.8)
where (o, @) € Xsimitar and (8, B) € Xbissimilar-

Proof. We first convert the point pair sets Xsipitar and Xpjssimilar to point sets Ay, Ag, - -+, Ag of K
categories. Specifically, the pair sets can be written as

{Xsnnila: =UK, (4 x A)),

(A9)
XDissimi]ar = Ui#j (A’L X A]) 5

where “x” denotes the Cartesian Product [2] of two sets. Assume that
A= {agl),af),“- ,ag‘AlD € R7},
(@ A
A2:{aé)7aé)7... 7019 2|) ERd}7 (AIO)
Ag = {a(lp,ag), e ,ag(AKl) € R7}.
where | A;| denotes the cardinality of the set A; for¢ =1,2,--- , K. Lett; = j + k(j)A ancﬂ

(b1, by) = (@l -.alMP all. . alAeD .o glh . glArDy (A11)

where b; € R?, j €Ng, A>0, H:E£1|Ai\. We further denote that to = 0, by = 0 € R? and
construct the following Vandermonde matrix

1ty -t 1 0 - 0
1 ¢ - tH 1t -t
Vistotn (D)= . . . = b erEFDXEHID (A 12)
1 tyg - tg 1 tyg - tg
Then we have
Aet(Vi i (A) =TI,y (5 = i) # 0. (A.13)
Therefore, the equation group Vy, 4, ... ¢, (D), = (bok, b1k, - - ,br) " has the unique solu-
tion wy, = (fkos k1, , k), in which bji denotes the k-th element of the vector b; and
k =1,2,---,d. It implies that the polynomial function f,, () = Zflzo iit® crosses the points
(to,bok), (t1,b1k), - -+, (tm, bmk) successively for k =1,2,---  d.
Without loss of generality, we assume that there exist real numbers 1, to, - - - ,ts ¢ {to,t1, - ,tr}
and function [(j) such that
(Foar E): Fuay (8 Fua (8)) = (i bugiyes - - bugiya—))» (A.14)
where j € Ng. Since the H-order polynomial equation exists H real roots at most, we can easily
obtain S < H(H—1). Then we assume that {t1, %2, -+ ,ts} = {t],t5, -t/ YU{t] &5, -t}

which satisfies

2 (A.15)

fud(,tvj) =byya, forj=1,2,---,U,
fu,(t5) # bigya, for j=1,2,---,V.

"Here (j) denotes the maximal integer satisfying ngl) |Aj] <.



We construct the following function

- 1 H 14 -
us® = O+ e T [[_ -]l _t-5) «i6

which satisfies

f:l-l'd(t):fll»d(t)7 te{thtla"'7tH}U{§1_)§2_7'”7§\_/}7 (A17)
fu, () # fu, @), t & {to,tr, - tgtU{t] t5, - iy}

It is easy to verify that for any j € Ng, we have

Fua @) # bigga- (A.18)
According to Eq. (A.14) and Eq. (A.18), it follows that for t € {%Vl,%vg, e ,fs
(Fan (0 Fua (0 Fra (8 Fuay (D)7 @ {b0, b1, -+ b} (A.19)

Furthermore, for t € R\{ﬁ,fg, o tgoto b, ,tm }, it holds tha

(Fur (), Fuay (8), s Fray (), Fuy ()T ¢ {bo, b1, -+, brr}. (A.20)
In summary, for any ¢t € R, we have

(ful(t)7fug(t)7"' ﬂfud(t%};Hd(t))Te{bmbl»'" ubH}v ift e {toatla"' th}v (A21)
(ful(t)vf;tQ(t)"" afud(t)vfud(t))T¢{b07bl7'" abH}7 ift ¢ {tovtla"’ 7tH}' ‘

Namely we have that (fy,, (¢), fu,(t), -, fu, (1), JTMd(t))T € {bg,by,--- ,by}ifand only if t €
{to,tl, e ,tH}. Let
(1) = (fiuy (0 Fiay (07 s Frag (0, Fiay (1) (A.22)

then we thus have that w(t) is invertible at t = to,t1,- -+ ,tg, i.e, t; = w (b;) fori =0,1,---  H.
We denote DT and D~ as

Dt =  max Length,(a, @),
(o, &) € Xsimilar R (A.23)
D™= min Length (8, 3), ’
(B, B) € Xbigsimilar
then we have
max(Te (), Tw (&) max(w™(a),w ™ (@)
DT=  max W' (t)]|2dt= max W' (t)]|2dt,
(ava)EXSilnilur‘rmiIl(Tw(a)va(a)) ()12 (a,a)GXsamnmjmiﬂ(w’l(a)w’l(a)) )1l
(A.24)
and
min(7%(8),7w (B)) max(w ™! (8),w ™ (B))
D™= min _ _ |’ (t)|l2dt= min . _ W' (t)]]2dt.
(B, B) € Xbisimilar min (7. (8),7w (8)) (B, B) € Xbissimilar min(w=*(8),w=1(8))
(A.25)
By Lemmal[l] it follows that for k € Ny
Hm g, = (Vi g 15 (A) " bog, b1k, -+ bak) T = . (A.26)

A—+oco

2Due t0 (fuy (), fup (5)s - fuay (6)) = (01651, bicsyes 5 bigiy(a—1)) and fuuy (55) # bigjya-

3There is no function 1(7) satisfying (fpu, (t5)s fus (t5)s - < Fua_1 (85)) = (b1, iggyzs -+ bugiya—1))-



According to Eq. (A.22), it follows that the coefficients of the polynomial function g(t) = ||w’(t)||3
converge as A — +00. Then we have

D+
li
A—lg-r&-looD
max(w ™ (a),w
(avar?él}fqimum fmm(“" Ha),w=1( cx)) \/7dt
Tt | (@ (B)w
oo max(w ™ ,w
(8, ﬁ)neli.lmmuar min(w=1(8),w™~ 1(6)) th
max(w ™ (a),w
(a arglgj\(-’ﬁmu.rjmm("" Ha)w™ 1(a)) th
= (e 1@ B)
—+oo . max(w— -
(ﬁ’ﬁ)rgié[l)issmmm J‘min(w_l(ﬁ)vw_l(a))'i‘% |w_1(ﬁ)—w—1(ﬁ)| \/ﬁdt
<(a fax JwH (@) wl(aﬂ) 9(ta)
< lim ) Similar
A—+oo

(8B, B) € Xbissimitar

min  Slw=1(8) —w1<fa>|> Vo G lta — b))

o (gggf{AkQ\/ ( )

T Aseo 34 9 (3 [t1as+1 —ta])

2 (&%’;'A” - 1) J(K —1)A+ H)
< lim T T

2 <max |Ar| — 1> (2(K —1))%/?
. keNg
< lim

A—+oco A

=0, (A.27)

where ¢ is the order of the polynomial function g(t) = ||w’(t)||3 and satisfies 0 < ¢ < 2(H +
S) < 2(H + H(H — 1)). Further using the non-negative properties of D™ and D™, it holds that

Ahm D*/D~ = 0. Therefore there exists the sufficiently large number A > 0 such that
— 400

Dt 1
<=z <= A28
0= D- — 2 ( )
2 —
Letm = [(IM?H;W) —‘ and M,;..(t) = w(t) fori =1,2,--- ,m, we obtai
Dist (8, B) — Dist (cx, &)
= \/mLengthi(O, 1)Length? (3, E) - \/mLengthi(O, 1)Length? (o, @)
> y/mLength (0, 1)(D~ — D7)
> /mLength (0, 1)D*
Amargin
> Length (0, 1) D"
~ DTLength, (0, 1) ength,, (0, 1)
= Amargim (A29)
which completes the proof. O

B Proof of Theorem 3 (Generalization Bound)

We firstly introduce the following lemmas for proving our Theorem [3].

*Here the operator [a] denotes the smallest integer that is not smaller than a.



Lemma 2 (McDiarmid’s Inequality [3]]). Consider independent random variables vy, vs,- - -, v, € V
and a function ¢ : V™ — R. Suppose that for all vi,vs,- - -, v, and v, € V (i = 1,2,--- ,n), the
function satisfies

‘¢(,U1;"' 7vi717vi;vi+17“‘ ;vn) - ¢(Ul7"' 7”’&717@27{02?#17' o 7'Un)| g Ci, (Bl)

and then it holds that

242
P{¢(Ula Vo, avn) - ]Evl,vg,m JUn, (¢(U1, Vo, ,Un)) > /-L} S e Tis Cg . (Bz)
Lemma 3. Let M* € R™X9X¢ be the solution to the optimization objective
1 N
M* e in — L(Disthy(x;, ;); y;) + A| M]3, B.3
Jgmin < > LDisti(x, @5); y;) + AlIMIIE (B.3)

then there exists a bounded tensor set F(\) such that

M*eF(\) = {M|M”ke[,/co \/a zeNm,jeNmandkeN} (B.4)

where the constant Cy > 0 is not dependent on \.

Proof. According to the optimality of M™, it follows that
1 N . ~ *
i Zj_ L(Disthy- (x5, &;); y;) + A M* — 0| ]F

< NZJ_ (Dist3 (2. 2,): ;) + A0 — O]

< — ¥ ZJ_ (Distg (x5, Z;); y;)- (B.3)
We denote that Lo, = M*eRdeigf,‘jzlj,m ’N,C(Disti,ﬁ (x4, ;); y;), and have that
Al — 0]
1 N .9 A 1 N .9 ~
< N 2y LDisto(x5, ) 45) — ijl L(Distay (x5, T;); y;)
1 N NP -
< N 2o L(Distg(x;, ;); y;) — N Zj:1 Lmin
= Cy, (B.6)
where Cy > 0. Finally, we have
C
(Mijr)? < 70 (B.7)
which completes the proof. O

The proof of Theorem 3]is given as follows.
Theorem 3. Assume that R(M) = [ M|z =3, ; ,(Mijk)? and M* € R is the solution

to CDML. Then, we have that for any 0 < § < 1 with probability 1 — §
e(M*) —Ex(M™) < X*\/2In(1/6)/N + ByRn (L), (B.3)

where By — 0 as A — +o0o. Here Ry (L) is the Rademacher complexit}E] of the loss function L
related to the space R™* ¢ for N training pairs, and X* = maxgen, |£(Dist_2M* (g, Tr); Yr) |

>The Rademacher complexity of the hypothesis f over the space F is defined as Rn(f) =
Exya[supME}-%Z;V:lmf(M)],where X ={(z;,x;)~D|jeNn},and P{o;=—1}=P{o;=1}=0.5
for j€Nn.



Proof. Firstly, we denote that
o N 1 . N ) N .
Ex (M) =Ex(M") — N(ﬁ(Dlstf\A(ack,wk);yk) — E(Dlsti,t(w,w);y(a:,x))), (B.9)

where (,Z) € {(z;,%;)|j € Ny} and y(x,Z) € {0,1} is the similarity label for (x,z). By
Lemma/[3] it follows that

(E(M7) —Ex(M7)) = ((M7) —Ex k(M)
< [E(MT) —Ex i (MT)]

1 . ~ . ~ ~
=~ |£(Dlst3\4*(wk,wk);yk) - E(Dlst_%\,t*(:p,w);y(w,z)”
1 . ~ . ~ N
< N (|£(Disthy- (zi, Zi); i) | + | L(Disthy- (2, 2); y(x, 2))))
2
< Zx+ .
< NX , (B.10)

where X* = maxpen, |£(Dist3\4* (k, T1); Yr) |- Then we apply Lemmato the term e(M™) —
Zx (M) and have that with probability 1 — § it holds that

e(M*)—Ex (M) < Ex [e(M*)—Zx(M*)] + X*/2In(1/3)/N. (B.11)

Now we only need to estimate the first term of the right-hand side of the above inequality. Specifically,
there holds

Ex[e(M")—ex(M")]=Ex[Ez(Ez(M")) —x (M) <Ex z[Fz(M")—Ex(M")], (B.12)

where Z = {(21,%21),(22,22), -+ ,(2n,2n)|(25,2;) ~ D,j € Ny} are independent
identically distributed (i.i.d.) samples which are independent of X = {(x1,Z1), (z2,Z2),
-, (&n,ZN)|(x;,Z;) ~ D, j € Ny}. By Lemma[3] we know that there exists the bounded

tensor set F () such that
—\/%,,/% ,i€N,, j €Ng, andkeNC}, (B.13)

where Cy > 0 is a constant. Let the function

M 6.7:(/\) = {M|M”k S

By =2Ex =

sup gg(M) —Ex(M)] /Egg)g
MeF(N)

sup gz(M) - Ex<M)] . (B.14)

MeR?nXch

By Levi’s Monotone Convergence Theorem [1]], we have

lim EX z
A—=4oo

sup €z(M) — Ex(M)]
MEF(N)

=Ex z

lim sup z(M)— sup Ex(M)
A= oM eF(N) MEF(X)

=Ex z[2(0) — Ex(0)]
=Ez[Ez(0)] — Ex [Ex(0)]
. (B.15)



Therefore, we obtain \ lim By = 0. By standard symmetrization techniques for i.i.d. Rademacher
—+o0

variables & = (01,09,--- ,0n) ", it follows that

Exz[Ez(M") —ex(M")]

<Ex:z sup gz(M) —Ex(M)
MEF(1/Co/A,31/Co/N)
B
= TAE;QZ sup Ez(M)— €X(M)]
MeRmxdxc

N

B)\ . .2 ~ . .2 ~
= WEX,ZJ [M*esﬂggmm ijl o; (L(Distyy (x5, %;)) — L(Distay(z5,%;)))

By N . 9 -
) ) L(Dis (2,3,
N e lM*esugEmc jo TEDIs (@ :c]))]

= B\Ry(L), (B.16)
where o; € {—1,1} fori =1,2,--- ,n, and Ry (L) is the Rademacher complexity of £. Finally,
combining the above inequality with Eq. (B.TT) and Eq. (B.12) completes the proof. O

C Proof of Theorem 4 (Topological Property)

We firstly introduce the following Lemma @] for proving our Theorem [4]

Lemma 4. If the function Lengthy (z, ) satisfies triangle property for i € N,,, then the curvilinear
distance Distg (x, ) satisfies triangle property, where © =(01,05,--- ,0,,).
Proof. Fori € N,, and at, 3,7 € R¢, we assume that
Lengthy (v, B) < Lengthy (c, ) + Lengthy (v, 3), (C.1

and obtain that

Lengthgi (e, B) §Length3i (a, ) +Length¢29i (v,8) +2Lengthy (c, v)Lengthy, (v,8), (C2)
Accordingly, we have

Dist5 (c, B)

= Z:n:l e, -Length?,i (e, )

< Zj; s, Length?,i (a,'y)JrsoiLengthgi ('y,ﬂ)+259iLength‘29i (a, 'y)Lengthzi (v, 8)

= Distd (e, 7) + Disth (7, 8) + 2> (v/5a, Lengthg, (cx,)) (v/5, Lengthy, (v, 3))

m m
< Dist2@(o¢7 ¥) + Dist?a(v, B) + 2\/Zi_1 seiLengthzi (e, 'y)\/zi_1 seiLengthgi (v,8)
= Disté(a, ) + Dist2@(’7, 3) + 2Distg (a, v)Diste (v, 3)
= (Diste (a, ) + Diste (v, 8))*, (C.3)

where the last “<” is based on the Cauchy Inequality [2]. Therefore, we obtain Distg (a, 3) <
Distg (e, v) + Distg (v, 3), which completes the proof. O

Theorem 4. For any learned curvilinear distance Diste (x, T) and its corresponding parameter O,
we denote @' (1) = (07(11), 05(72), -+ , 0., (Tm)) € R™ and have that

1). Distg(x, &) is a pseudo-metric for any © € F,,;

2). Diste(x, Z) is a metric, if @' (T) is full row rank for any T = (11,72, ,Tpn) ' € R™,



Proof.

1). According to the definition of curvilinear distance, it is obvious that Distg (x, &) satisfies the
non-negativity. The symmetry property can also be validated, because switching x and  will not
change the lower and upper limit of the integral, i.e.,

max(Tg.(w) To, (@), 2 S
Distg (x, ) \/Zl 56, mm(Te N |9i(t)||2dt) = Diste (T, x). (C4)

By invoking Lemma , we only need to demonstrate the triangle property of Length, (x, ). Actually,
for any a, B, v € R, there exist the following 3 cases and their corresponding results.

(case-1). Tg,(v) < min{7e, (cx), Te,(B)}:
Lengthy (e, 7) + Lengthy, (v, 5)

max (7, (a0, To, () To, (),
= ' ' 0;(t)|2dt + dt
win(Ta, (@) Ty () 1002 f (7o, (1), T, (8) QLR
To, (o)
0;(t)]2 dt 0;(t)]2 dt
KON 0T MO TACT R

max(Te, (o), T, (B))

> dt
Josncrs (0.7 1© <>||2
= Lengthy (o, B). (C.5)

(CCZS@-Z). mm{’ﬁ)l (a)a 7-91 (ﬁ)} < 7-91 (7) < ma’X{%i (a)77—0i (ﬁ)}

Lengthy (e, ) + Lengthy (v, B)
max (7o, (a), To, (7)) x(Te, (), Te, (B))

= N O ade+ [T 6n (1) |2 d

min(Te, (), To, (7)) min(7g, (), Te,; (8))

To, () max(To, (o), To, (8))
=1 0;(t)]]2 dt + ' ' 0;(t)]|2 dt

e, (.75, 1 EE D2+ [ CHOIP
= Lengthy (c, B). (C.6)

(case-3). To, (7) = max{Te, (), To, (B)}:

Lengthei (aa 7) + Lengthe,- (77 /6)

max(7To, (@), To, (7)) max(To, (7). Te
= ' ' 0;(t)]|2 dt ' 0;(t)]|2 dt

min(Tay (@) Ty () 1002 +f‘(frei<v> To.(8)) QLR

Te, (7)

' dt 16;(t)||2d
N O M TACT

max (e, (), To, (B))

> dt
jmm(%i(am(ﬁ» o <>||2
= Lengthy (o, B). (C.7

From the results of above 3 cases, we know that the triangle property is satisfied for any ® € F,,, and
thus the proof is completed.

2). It is obvious that for any =,z € R,
x =% = Diste(z, ) = 0. (C.8)

We just need to prove that = Z for Distg (x, ) = 0. Assume that Rank(©@’ (7)) = d, we obtain
0;(5) # 0. The scale value Lengthg (0, 1) satisfies

Length, (0, 1) f 165(t) ||2dt>j " 1165(t)l2dt > 0, (C.9)

where 0 < € < 7 is a sufficiently small number such that 8;(t) # 0 for ¢ € (5 — €, 5 + €). We thus
have

Distg (x, ) = 0 = Lengthy (0, 1)Lengthy (z, Z) = 0 = Lengthy (x, ) =0, (C.10)



where i € N,,,. Therefore, we have Tg,(x) = Tg,(Z). According to the definition of the calibration
point, it follows that

To. () € arg min [|0,(t) — z|f3, (C.11)
teR
and
To,(Z) € argmin ||0;(t) — Z||3. (C.12)
teR
Namely, it holds that
To,(z) € {t[ (0:(t) — =) T 0;(t) = 0}, (C.13)
and
To,(®) € {t| (6:(t) — )T 0;(t) = 0}. (C.14)

Since T, (x) = To,(Z) = 7;, we have the following equation group

(0;(1:) —x) T 0(7:;) = 0,
{(01'(7'1') —2)"0)(r;) =0. (C.15)
The equation difference of Eq. (C.15) gives that

For i € N,,,, we thus have the linear equation group w.r.t. € — &

(

6 (1),
As Rank(@'(7)) = Rank (07 (71), 05(72), -+ ,0,,(7m)) = d, we know that the above Eq. (C.17)
has the unique solution @ — Z = 0. Therefore, = Z holds for Distg (x, ) = 0, which completes
the proof. [

71),05(r2), -+, 00 (7)) (& —T) = 0. (C.17)
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