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A Proofs1

In this section, we denote z = (x, y) and z ∈ Z for convenience.2

A.1 Proof of Theorem 13

Theorem 1. With the optimal critical network D and the classifier C fixed, the optimization of4

generator G is equivalent to minimize λ · dW (P̂N ,Q)−DKL(Q||Pc).5

Proof. Recall the objective function defined in Eq. (1),6

min
G

max
D,C

U(C,G,D) = λ
(
EP̂N [D(x, y)]− EQ[D(x, y)]

)
− EQ[`(C(x), y)]. (1)

Given the optimal critical network D and classifier C, the generator G is optimized by minimizing7

the function8

VC,D(G) = λ
(
EP̂N [D(x, y)]− EQ[D(x, y)]

)
− EQ[`(C(x), y)]. (2)

As the critical network D is optimized for describe the Wasserstein, which means that9

EP̂N [D(x, y)]− EQ[D(x, y)] = dW (P̂N ,Q). (3)

Then we consider the last term in Eq. (2),10

EQ[`(C(x), y)] = EQ[− log pc(y|x)]

=

∫
pg(x, y) log

pg(x, y)

pc(x, y)pg(y|x)
d(x, y)

=

∫
pg(x, y) log

pg(x, y)

pc(x, y)
+ pg(x, y) log

1

pg(y|x)
d(x, y)

= DKL(pg(x, y)||pc(x, y)) +Hg(y|x).

(4)

Note that the label y is provided to G durning generation progress. As a result, Hg(y|x) is irrelevant11

to G. By concreting Eq. (4) and Eq. (3), The proof of Theorem 1 is completed.12

A.2 Proof of Theorem 213

Theorem 2. Consider x as the input samples of classifier C, and the distribution Q ∈ Bε(P̂N ) lays14

in a Wasserstein ball centered at P̂N with radius ε. Then for any ε ≥ 0 and α ≥ 1 + β, we have15

ε‖∇z`(z)‖α∗
P̂N
− εβ+1‖h(z)‖

α
α−β−1

P̂N
≤ EQ(`(z))− EP̂N (`(z)) ≤ ε‖∇z`(z)‖α∗

P̂N
+ εβ+1‖h(z)‖α∗

P̂N
, (5)

where ‖f(z)‖αP̂N , ( 1
N

∑N
i=1,z∼P̂N (‖f(zi)‖α))1/α, α∗ = α

α−1 , and h(z) is a function and β ∈16

(0, 1] a constant which satisfy ‖∇z`(z1)−∇z`(z2)‖ ≤ h(z2) · ‖z1− z2‖β for any z = (x, y) ∈ Z .17
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In this part, we firstly proof the right part of this theorem which is an upper bound of EQ(`(z))−18

EP̂N (`(z)). Then we provide the proof of a lower bound of it. By combining them, the proof of19

theorem 2 is completed.20

Proof. Considering the inner part of the proposed objective function defined as follows,21

sup
Q∈Bε(P̂N )

EQ[`θ(z)] = inf
λ≥0

λε+ sup
Q∈M(Z)

∫
Z
`θ(z)Q (d(z))− λ · d(Q, P̂N ). (6)

Under the situation that the network D is optimized for calculating the Wasserstein distance, we22

consider the network D is sufficient to describe the Wasserstein distance. Recall that we define the23

Wasserstein distance as24

dW (Q1,Q2) , min
Π∈M(Π)

{∫
Z×Z

s(z1, z2)Π (dz1,dz2)
}
. (7)

Assuming the metric s(·, ·) is induced by some norm ‖ · ‖α, it is easy to be reformulated as follows:25

dW (Q1,Q2) = min
Π∈M(Π)

{∫
Z×Z

‖z1 − z2‖αΠ (dz1,dz2)
}
. (8)

Plugging Eq. (8) into Eq. (6) gives us26

EQ(`(z)) = inf
λ≥0

{
λε+

1

n

n∑
i=1

sup
z∈Z

(
`(z)− λ‖z − z′‖α

)}
(9)

where z ∼ Q and z′ ∼ P̂N , then we consider a upper bound that27

sup
z∈Z
{`(z)− `(z′i)− λ · ‖z − z′i‖α}

≤ sup
z∈Z
{‖∇z`(z

′
i)‖∗ · ‖z − z′i‖+ h(z′i) · ‖z − z′i‖β+1 − λ · ‖z − z′i‖α}

≤ sup
z∈Z
{‖∇z`(z

′
i)‖∗ · ‖z − z′i‖+ h(z′i) · ‖z − z′i‖β+1 − λ · ‖z − z′i‖α + C · ‖z − z′i‖γ+1}

≤ sup
ξ≥0
{‖∇z`(z

′
i)‖∗ · ξ + h(z′i) · ξβ+1 + C · ξγ+1 − λ · ξα},

(10)

where 0 ≤ C, 1 < γ < β and ξ := ‖z − z′i‖. Following Young’s inequality for products that28

ab ≤ ap

p + bq

q , we set p = α−1
α−1−β , q = α−1

β satisifing 1
p + 1

1 = 1 and a = ϕ1/pξ1/p, b = ϕ−1/qξα/q .29

Then for any t > 0 and ϕ > 0, it holds that30

ξγ+1 ≤ ξβ+1 ≤ ξα+1 ≤ α− 1− β
α− 1

ϕξ +
β

α− 1
ϕ−

α−1−β
β ξα. (11)

Replacing ξγ+1 and ξβ+1 with the last term of Eq. (11), it gives us31

sup
ξ≥0
{‖∇z`(z

′
i)‖∗ · ξ + h(z′i) · ξβ+1 + C · ξγ+1 − λ · ξα}

≤ sup
ξ≥0
{(‖∇z`(z

′
i)‖∗ +

α− β − 1

α− 1
· h(z′i) · ϕ1 +

α− γ − 1

α− 1
· C · ϕ2) · ξ

− (λ− β

α− 1
· h(z′i) · ϕ

−α−β−1
β

1 − γ

α− 1
· C · ϕ

α−γ−1
γ

2 ) · ξα}

≤ sup
ξ≥0
{Gϕ(z′i) · ξ − (λ−Nϕ) · ξα} ,

(12)

where Gϕ(z′i) = ‖∇z`(z
′
i)‖∗ + α−β−1

α−1 · h(z′i) · ϕ1 + α−γ−1
α−1 · C · ϕ2 and Nϕ = λ− β

α−1 · h(z′i) ·32

ϕ
−α−β−1

β

1 − γ
α−1 · C · ϕ

α−γ−1
γ

2 . Considering the value of Eq. (12) is +∞ when λ ≤ Nϕ, we solve33

Eq. (12) over ξ and conclude that34

EQ(`(z))− EP̂N (`(z))

≤ inf
λ≥Nϕ

{λεα + α−
α

1−α (α− 1)(λ−Nϕ)−
1

α−1 (‖Gϕ‖
α
α−1

P̂N
)

α
α−1 }

≤ε‖Gϕ‖
α
α−1

P̂N
+Nϕεα.

(13)
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Plugging Gϕ and Nϕ into Eq. (13) and solving the minimization problem on ϕ, we obtain the right35

part of Theorem 2. Next we step to the left part of Theorem 2. We firstly began with a lower bound36

of supQ∈Bε(P̂N ) EQ(`(z))− EP̂N (`(z)) as follows:37

sup
zi∈Z

{ 1

N

N∑
i=1

[`(zi)− `(z′i)] :
( 1

N

N∑
i=1

‖zi − z′i‖α
) 1
α ≤ ε

}
≥ sup

zi∈Z

{ 1

N

N∑
i=1

[
∇z`(z

′
i) ‖zi − z′i‖ − h(z′i)‖zi − z′i‖β+1

]
:
( 1

N

N∑
i=1

‖zi − z′i‖α
) 1
α ≤ ε

}
≥ sup

zi∈Z

{ 1

N

N∑
i=1

∇z`(z
′
i) ‖zi − z′i‖ :

( 1

N

N∑
i=1

‖zi − z′i‖α
) 1
α ≤ ε

}
− sup

zi∈Z

{ 1

N

N∑
i=1

h(z′i)‖zi − z′i‖β+1 :
( 1

N

N∑
i=1

‖zi − z′i‖α
) 1
α ≤ ε

}
(14)

Further we conclude that with the help of Holder’s inequality,38

sup
zi∈Z

{ 1

N

N∑
i=1

∇z`(z
′
i) ‖zi − z′i‖ :

( 1

N

N∑
i=1

‖zi − z′i‖α
) 1
α ≤ ε

}
= sup

ξ∈R

{ 1

N

N∑
i=1

∇z`(z
′
i)ξi :

( 1

N

N∑
i=1

ξαi
) 1
α ≤ ε

}
= ε‖∇z`(z)‖α∗

P̂N
.

(15)

Wee also have that39

sup
zi∈Z

{ 1

N

N∑
i=1

h(z′i)‖zi − z′i‖β+1 :
( 1

N

N∑
i=1

‖zi − z′i‖α
) 1
α ≤ ε

}
= sup

ξ∈R

{ 1

N

N∑
i=1

∇zh(z′i)ξ
β+1
i :

( 1

N

N∑
i=1

ξαi
) 1
α ≤ ε

}
= εβ+1‖h(z)‖

α
α−β−1

P̂N
.

(16)

The proof is completed.40

A.3 Proof of Theorem 341

Theorem 3. For any 0 < δ < 1, with probability at least 1− δ with respect to the sampling,42

E(`(C(x,θ), y)) ≤ EQ(`(C(x,θ), y)) +
12
√
R

n
(log

n

3
√
R

+ 1) +

√
8 log(2/δ)

N
, (17)

and for any ζ > 12
√
R

n (log n
3
√
R

+ 1) +
√

8 log(2/δ)
N , we have43

P (`(C(x,θ), y) ≥ EQ(`(C(x,θ), y)) + ζ) ≤
EQ(`(C(x,θ), y)) + 12

√
R

n
(log n

3
√
R
+ 1) +

√
8 log(2/δ)

N

EQ(`(C(x,θ), y)) + ζ
.

(18)

where R is only related to the architecture of the neural network.44

Proof. As description in the Theorem 8 in [2], for any integer N and δ ∈ (0, 1), the risk bounds can45

be written as that46

EL(Y, f(X)) ≤ ÊNφ(Y, f(X)) + RN (φ̃ ◦ F ) +

√
8 ln(2/δ)

N
. (19)
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Setting the loss function L and Y as L(x, y) = φ(x, y) = `(C(x,θ), y), it yields that47

E(`(C(x,θ), y)) ≤ EQ(`(C(x,θ), y)) + 2RN (`(C(x,θ), y)) +

√
8 ln(2/δ)

N
, (20)

We use Lemma A.8 in [1] and get the Rademacher complexity estimate of neural networks C with48

loss function ` as follows,49

RN (`(C(x,θ), y)) =
12
√
R

n
(log

n

3
√
R

+ 1), (21)

whereR is only related with the architecture of neural network and defined as follows and the detailed50

notation can be find in [1],51

R =
4B2 ln

(
2W 2

)
γ2ε2

 L∏
j=1

s2
jρ

2
j

( L∑
i=1

(
bi
si

)2/3
)3

. (22)

Plugging result in Eq. (21) into Eq. (20) drives the first part of Theorem 3. Further, we can easily52

obtain the second part of Theorem 3 by applying Markov’s inequality here to obtain,53

P (`(C(x,θ), y) ≥ EQ(`(C(x,θ), y)) + ζ) ≤ E(`(C(x,θ), y))

EQ(`(C(x,θ), y)) + ζ

≤
EQ(`(C(x,θ), y)) + 12

√
R

n (log n
3
√
R

+ 1) +
√

8 log(2/δ)
N

EQ(`(C(x,θ), y)) + ζ

(23)

which completes the proof.54

A.4 Proof of Theorem 455

Theorem 4. For the generator G and classifier C fixed, the optimal discriminator D is56

D∗G,C(x, y) =
pdata(x, y)

pdata(x, y) + pg(x, y)
, (24)

where pg(x) is the distribution generated by G.57

Proof. Given the generator and classifier, the loss function can be written as58

V (D) =

∫
pdata(z) logD(z)dz +

∫
pg(z) log(1−D(z))dz

=

∫
pd(z) logD(z) + pg(z) log(1−D(z))dz.

(25)

Following the proof in GAN [3], the function V (D) achieves its maximum at pdata(z)
pdata(z)+pg(z) .59

A.5 Proof of Theorem 560

Theorem 5. With the optimal discriminatorD and the classifierC fixed, the optimization of generator61

G is equivalent to − log 4 + 2JSD(P̂N ||Q)− 1/λ ·DKL(Q||Pc).62

Proof. Following the conclusion obtained in Theorem 4, with the optimal D∗G,C(x, y) =63

pdata(x,y)
pdata(x,y)+pg(x,y) , the minimac game for G can be reformulated as:64

V (G,C) =

∫
pdata(z) log

pdata(z)

pdata(z) + pg(z)
dz +

∫
pg(z) log

pg(z)

pdata(z) + pg(z)
dz + λ

∫
pg(z)`(z)dz

= − log 4 + 2JSD(pdata(z)||pg(z))dz + λ

∫
pg(z)[− log pc(z)]dz

= − log 4 + 2JSD(pdata(z)||pg(z))dz + λ(DKL((pg(z)||pc(z)) +Hg(y|x)).
(26)

Noting that the label y in pg(x, y) is assigned during the generation, Hg(y|x) is a constant65

which is irrelevant with G. As a result, the generator G will be optimized by − log 4 +66

2JSD(pdata(z)||pg(z))dz + λDKL((pg(z)||pc(z)), which completes the proof.67

4



B Algorithm68

Algorithm 1 Proposed Method
Input: The batch size m, the loss balanced coefficient λ.
Initialize generator parameters θg for G, θd for D, and θc for C with the training set
{(x1, y1), (x2, y2), . . . , (xN , yN )}.
Sample a batch of pairs (xg, yg) ∼ pg(x, y) and a batch of pairs (xd, yd) ∼ pd(x, y).

UpdateD by ascending along its gradients∇θd
[

1
m

(∑
(xd,yd)D(xd, yd)−

∑
(xg,yg)D(xg, yg)

)]
UpdateG by ascending along its gradients∇θg

[
1
m

(
λ ·
∑

(xg,yg)D(xg, yg)−
∑

(xd,yd) C(xg, yg)
)]

Update C by ascending along its gradients∇θc
[

1
m

(∑
(xd,yd) `(C(xg,θ), yg)

)]
Output: A distribution optimized classifier C and a worst-case distribution generator G.
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