
A Training Process

Algorithm 1 The training process with LDMI

Require: A training dataset D = {(xi, ỹi)}
D
i=1, a validation dataset V = {(xi, ỹi)}

V
i=1, a classifier

modeled by deep neural network h⇥, the running epoch number T , the learning rate � and the
batch size N .

1: Pretrain the classifier h⇥ on the dataset D with cross entropy loss
2: Initialize the best classifier: h⇥∗ ← h⇥
3: Randomly sample a batch of samples Bv = {(xi, ỹi)}

N
i=1 from the validation dataset

4: Initialize the minimum validation loss: L∗ ← LDMI(Bv;h⇥)

5: for epoch t = 1→ T do

6: for batch b = 1→ �D�B� do

7: Randomly sample a batch of samples Bt = {(xi, ỹi)}
N
i=1 from the training dataset

8: Compute the training loss: L← LDMI(Bt;h⇥)

9: Update ⇥: ⇥← ⇥ − � @L
@⇥

10: end for

11: Randomly sample a batch of samples Bv = {(xi, ỹi)}
N
i=1 from the validation dataset

12: Compute the validation loss: L← LDMI(Bv;h⇥)

13: if L < L∗ then

14: Update the minimum validation loss: L∗ ← L
15: Update the best classifier: h⇥∗ ← h⇥
16: end if

17: end for

18: return the best classifier h⇥∗

B Other Proofs

Claim B.1.

EUcc̃ = Pr[h(X) = c, Ỹ = c̃]

where

Ucc̃ ∶=
1

N

N

�

i=1

OciLic̃ =
1

N

N

�

i=1

h(xi)c [ỹi = c̃].

Proof. Recall that the randomness of h(X) comes from both h and X and the randomness of h is
independent of everything else.

EUcc̃ = E
1

N

N

�

i=1

h(xi)c [ỹi = c̃]

= EX,Ỹ h(X)c [Ỹ = c̃] (i.i.d. samples)

=�

x,ỹ

Pr[X = x, Ỹ = ỹ]h(x)c [ỹ = c̃]

=�

x

Pr[X = x, Ỹ = c̃]h(x)c

=�

x

Pr[X = x, Ỹ = c̃]Pr[h(X) = c�X = x] (definition of randomized classifier)

=�

x

Pr[X = x, Ỹ = c̃]Pr[h(X) = c�X = x, Ỹ = c̃]

(fixing x, the randomness of h is independent of everything else)

= Pr[h(X) = c, Ỹ = c̃].
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Claim B.2. Under the the performance measure based on Shannon mutual information, the mea-

surement based on noisy labels MI(h(X), Ỹ ) is not consistent with the measurement based on true

labels MI(h(X), Y ). i.e., for every two classifiers h and h′,

I(h(X), Y ) > I(h′(X), Y )⇔� I(h(X), Ỹ ) > I(h′(X), Ỹ ).

Proof. See a counterexample:

The matrix format of the joint distribution Qh(X),Y is Qh(X),Y = �
0.1 0.4
0.2 0.3�, the matrix format

of the joint distribution Qh′(X),Y is Qh′(X),Y = �
0.2 0.6
0.1 0.1� and the noise transition matrix is

TY→Ỹ = �
0.8 0.2
0.4 0.6�.

Given these conditions, Qh(X),Ỹ = �
0.24 0.26
0.28 0.22� and Qh′(X),Ỹ = �

0.40 0.40
0.12 0.08�.

If we use Shannon mutual information as the performance measure,

MI(h(X), Y ) = 2.4157 × 10−2,

MI(h′(X), Y ) = 2.2367 × 10−2,

MI(h(X), Ỹ ) = 3.2085 × 10−3,

MI(h′(X), Ỹ ) = 3.2268 × 10−3.

Thus we have MI(h(X), Y ) >MI(h′(X), Y ) but MI(h(X), Ỹ ) <MI(h′(X), Ỹ ).

Therefore, MI(h(X), Y ) >MI(h′(X), Y )⇔� MI(h(X), Ỹ ) >MI(h′(X), Ỹ ).

C Noise Transition Matrices

Here we list the explicit noise transition matrices.

On Fashion-MNIST, case (1): TY→Ỹ = �
1 − r

2
r
2r

2 1 − r
2
�;

On Fashion-MNIST, case (2): TY→Ỹ = �
1 − r r
0 1�;

On Fashion-MNIST, case (3): TY→Ỹ = �
1 0
r 1 − r�;

On CIFAR-10, TY→Ỹ =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
r 0 1 − r 0 0 0 0 0 0 0
0 0 0 1 − r 0 r 0 0 0 0
0 0 0 0 1 − r 0 0 r 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 r 0 0 0 0 0 0 0 1 − r

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

;

On Dogs vs. Cats, TY→Ỹ = �
1 0
r 1 − r�.

On MR, TY→Ỹ = �
1 0
r 1 − r�.

For Fashion-MNIST case (1), r = 0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0,9 are diagonally dom-
inant noises. For other cases, r = 0.0,0.1,0.2,0.3,0.4 are diagonally dominant noises and
r = 0.5,0.6,0.7,0.8,0,9 are diagonally non-dominant noises.
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D Additional Experiments

For clean presentation, we only include the comparison between CE and DMI in section 5.1 and
attach comparisons with other methods here. In the experiments in section 5.2, noise patterns are
divided into two main cases, diagonally dominant and diagonally non-dominant and uniform noise is
a special case of diagonally dominant noise. Thus, we did not emphasize the uniform noise results in
section 5.2 and attach them here.

Figure 4: Additional experiments

We also compared our method to MentorNet (the sample reweighting loss [14]) and VAT (the
regularization loss [25]). For clean presentation, we only attach them here. Our method still
outperforms these two additional baselines in most of the cases. 4

Table 2: Test accuracy on CIFAR-10 (mean ± std. dev.)

r CE MentorNet VAT FW GCE LCCN DMI

0.0 93.29 ± 0.18 92.13 ± 1.22 92.25 ± 0.1 93.12 ± 0.16 93.43 ± 0.24 92.47 ± 0.36 93.37 ± 0.20
0.1 91.63 ± 0.32 91.35 ± 0.83 91.4 ± 0.68 91.54 ± 0.15 91.96 ± 0.09 91.88 ± 0.23 92.08 ± 0.08
0.2 90.36 ± 0.24 90.06 ± 0.52 91.19 ± 0.31 90.10 ± 0.22 90.87 ± 0.16 91.05 ± 0.43 91.51 ± 0.17
0.3 88.79 ± 0.40 88.47 ± 0.61 88.97 ± 0.41 88.77 ± 0.36 89.67 ± 0.21 89.88 ± 0.40 91.12 ± 0.30
0.4 84.76 ± 0.98 84.12 ± 1.29 84.09 ± 0.46 84.78 ± 1.53 86.6 ± 0.47 89.33 ± 0.58 90.41 ± 0.32
0.5 74.81 ± 3.37 78.43 ± 0.39 75.07 ± 0.66 77.2 ± 4.19 78.53 ± 1.93 88.30 ± 0.38 89.45 ± 0.99
0.6 64.61 ± 0.72 71.33 ± 0.13 65.02 ± 0.63 71.98 ± 1.83 71.14 ± 0.78 86.89 ± 0.51 89.03 ± 0.69
0.7 59.15 ± 0.64 66.28 ± 0.76 58.92 ± 1.49 67.59 ± 1.64 67.10 ± 0.82 77.50 ± 0.60 88.82 ± 0.89
0.8 57.65 ± 0.28 65.67 ± 0.57 57.78 ± 0.32 62.22 ± 1.80 62.56 ± 0.72 74.62 ± 1.16 87.46 ± 0.79
0.9 57.46 ± 0.08 59.49 ± 0.40 57.19 ± 1.25 58.23 ± 0.25 58.91 ± 0.46 61.32 ± 1.87 85.94 ± 0.74

4
VAT can not be applied to MR dataset.
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Table 3: Test accuracy on Dogs vs. Cats (mean ± std. dev.)

r CE MentorNet VAT FW GCE LCCN DMI

0.0 88.50 ± 0.60 88.76 ± 0.32 88.32 ± 0.76 89.66 ± 0.63 94.06 ± 0.41 90.41 ± 0.38 90.21 ± 0.27
0.1 85.87 ± 0.79 87.33 ± 0.51 87.04 ± 1.53 85.87 ± 0.54 92.75 ± 0.50 87.72 ± 0.46 87.99 ± 0.41
0.2 82.50 ± 0.96 82.08 ± 0.60 82.36 ± 0.78 83.20 ± 0.83 88.94 ± 0.70 84.80 ± 0.93 85.88 ± 0.83
0.3 79.11 ± 1.08 80.14 ± 0.99 78.55 ± 0.76 78.71 ± 1.97 81.34 ± 3.23 83.16 ± 1.18 84.61 ± 0.98
0.4 73.05 ± 0.20 72.24 ± 0.75 74.72 ± 0.57 72.13 ± 2.42 70.13 ± 3.59 81.06 ± 1.05 82.52 ± 1.01
0.5 57.46 ± 3.71 63.62 ± 0.39 66.83 ± 0.75 67.50 ± 3.99 58.31 ± 1.19 76.88 ± 2.97 81.50 ± 1.19
0.6 49.98 ± 0.15 63.07 ± 0.93 55.02 ± 1.41 64.58 ± 5.21 50.39 ± 0.47 68.50 ± 3.40 80.00 ± 0.72
0.7 49.83 ± 0.09 52.38 ± 0.66 54.18 ± 0.72 62.87 ± 6.82 49.76 ± 0.00 66.10 ± 2.45 77.01 ± 1.07
0.8 49.80 ± 0.03 51.42 ± 0.75 51.88 ± 0.25 52.44 ± 1.52 49.76 ± 0.00 65.93 ± 2.76 75.01 ± 0.88
0.9 49.77 ± 0.01 51.31 ± 0.20 51.69 ± 0.70 50.56 ± 1.32 49.76 ± 0.00 64.29 ± 1.46 67.96 ± 1.45

Table 4: Test accuracy on MR (mean ± std. dev.)

r CE MentorNet FW GCE LCCN DMI

0.0 72.35 ± 0.00 72.44 ± 0.32 72.35 ± 0.00 72.24 ± 0.10 72.35 ± 0.00 72.07 ± 0.00
0.1 70.51 ± 0.97 69.54 ± 0.19 70.49 ± 0.94 70.58 ± 1.03 70.72 ± 1.02 70.42 ± 0.73
0.2 67.12 ± 1.19 66.72 ± 0.98 67.14 ± 1.21 67.48 ± 1.02 67.33 ± 1.61 67.44 ± 1.22
0.3 64.68 ± 1.22 65.13 ± 0.13 64.92 ± 1.37 65.19 ± 1.09 64.65 ± 1.58 65.62 ± 1.04
0.4 54.52 ± 1.74 54.73 ± 1.01 57.89 ± 2.51 58.97 ± 1.77 54.52 ± 1.74 62.67 ± 2.27
0.5 53.08 ± 0.64 53.70 ± 0.55 53.83 ± 0.68 53.81 ± 2.04 53.08 ± 0.64 59.40 ± 0.63
0.6 52.52 ± 0.57 53.15 ± 0.97 53.58 ± 0.35 53.08 ± 1.46 52.54 ± 0.59 57.38 ± 0.81
0.7 52.28 ± 0.12 52.76 ± 0.98 52.38 ± 0.19 52.22 ± 0.10 52.29 ± 0.13 56.44 ± 0.78
0.8 52.26 ± 0.08 52.29 ± 0.25 52.24 ± 0.08 52.31 ± 0.15 52.25 ± 0.08 54.69 ± 0.65
0.9 52.20 ± 0.00 52.20 ± 0.56 52.16 ± 0.14 52.20 ± 0.07 52.20 ± 0.00 52.88 ± 0.33

Table 5: Test accuracy (mean) on Clothing1M

Method CE MentorNet VAT FW GCE LCCN DMI

Accuracy 68.94 69.30 69.57 70.83 69.09 71.63 72.46

16


	Introduction
	Related Work
	Preliminaries
	Problem settings
	Information theory concepts

	L`39`42`"613A``45`47`"603ADMI: An Information-theoretic Noise-robust Loss Function
	Method overview
	Theoretical justification

	Experiments
	An explanation experiment on Fashion-MNIST
	Experiments on CIFAR-10, Dogs vs. Cats and MR
	Experiments on Clothing1M

	Conclusion and Discussion
	Training Process
	Other Proofs
	Noise Transition Matrices
	Additional Experiments

