
APPENDIX: From Complexity to Simplicity: Adaptive ES-Active Subspaces
for Blackbox Optimization

6 Theoretical Results

Throughout this section we will assume the sensings directions {gi} at time t are sampled from one
of the following families of distributions:

bP =

(
g ⇠ N (0, ILES

active
) with probability pt

g ⇠ N (0, ILES,?
active

) with probability 1� pt

Where pt is a probability parameter with values in [0, 1].

Denote an by Uact
2 Rd⇥dactive an orthonormal basis of the active subspace L

ES
active and U?

2

Rd⇥(d�dactive) an orthonormal basis of LES,?
active.

Let’s start by computing the covariance matrix of bP :

Eg⇠Pi

⇥
gg>⇤ =

�
ptUact(Uact)> + (1� pt)U?(U?)>

�
| {z }

C1

In order to simplify the notation of the proofs in this section we use the following conventions:

zES = brAT,base
MC,k=1F�(✓)

z1 = brAT,asebo
MC,k=1 F�(✓)

Where z1 is the ASEBO gradient estimator resulting form using sampling mechanism bP .

Notational simplification To simplify notation we also use U instead of Uact, IU instead of
ILES

active
and IU? instead of ILES,?

active

Let ✏ > 0 be the precision parameter. We choose � with the goal of making the bias between the
expectation of our gradient estimators and the true gradient of F smaller than ✏. Throughout this
section we assume � is small enough:

0 < � <
1

35

s
✏min(pt, 1� pt)

⌧d3 max(L, 1)

6.1 Gradient Estimators, their bias and their variance.

In this section we aim to produce theoretical guarantees regarding the bias and variance of our
proposed gradient estimators. We show that under the right assumptions, the isotropic and non
isotropic versions of the evolution Strategies estimators have small bias, and

We make the following assumptions on F :

Assumption 1. F is L�Lipschitz. For all ✓, ✓0 2 Rd, |F (✓)� F (✓0)|  Lk✓ � ✓0k.
Assumption 2. F has a ⌧ -smooth third order derivative tensor, so that F (✓ + �g) =

F (✓) + �rF (✓)>g + �2

2 g>H(✓)g + 1
6�

3F 000(✓)[v, v, v] with v 2 [0,g] satisfying
|F 000(✓)[v, v, v]  ⌧kvk3  ⌧kgk3.

Let dactive and d? denote the dimensionality of L(active) and L? respectively.

Under these assumptions, F (✓t+�g)�F (✓t��g)
2� =

�
g>
rF (✓t)

�
+⇠g(✓t) such that ⇠g(✓t)  ⌧

6�
2
kgk3,

uniformly over all ✓t. We relax the constants slightly. If F ’s third order derivative tensor is smooth
with constant ⌧ :

12

����
F (✓t + �g)� F (✓t � �g)

2�
� g>

rF (✓t)

����  ⌧�2
kgk3.

Recall the following definitions:

• Evolution Strategies Gradient. Let g ⇠ N (0, I). The ES gradient is defined as zES =
F (✓t+�g)�F (✓t��g)

2� g.

• bP Nonisotropic Gradient.. Let g ⇠ bP . The bP gradient is defined as z1 =
C�1

1
F (✓t+�g)�F (✓t��g)

2� g.

The following inequalitites hold:

k⇠g(✓t)gk
2


⌧

6
�2
kgk4

kEg⇠N (0,I) [⇠g(✓t)g] k
2


�4⌧2

36

�
Eg⇠N (0,I)

⇥
kgk4

⇤�2


�4⌧2d4

4

kEg⇠N (0,IU) [⇠g(✓t)g] k
2


�4⌧2

36

⇣
Eg⇠N (0,IU?)

⇥
kgk4

⇤⌘2


�4⌧2d4active
4

kEg⇠N (0,IU) [⇠g(✓t)g] k
2


�4⌧2

36

⇣
Eg⇠N (0,IU?)

⇥
kgk4

⇤⌘2


�4⌧2d4?
4

Bounding the Bias The first result in this section is to show that under the right conditions the ES
gradient estimators in both the isotropic and non isotropic cases can be close to the true gradient
provided the function satisfies Assumptions 1 and 2. Theorem 6.1 deals with the isotropic case and
Theorem 6.2 with the non isotropic case. The combination of these results yields the proof of Lemma
3.1 in the main text.
Theorem 6.1. The evolution strategies gradient estimator zES satisfies:

��Eg⇠N (0,I) [zES]�rF (✓t)
��  3⌧�2d2 (4)

If � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) :

��Eg⇠N (0,I) [zES]�rF (✓t)
��  ✏ (5)

Proof. Notice that kgk4 = (
Pd

i=1 g(i)
2)2  d

Pd
i=1 g(i)

4. Where we denote g(i) as the i�th entry
of the d�dimensional vector g 2 Rd. Since E[g(i)4] = 3 for all i:

Eg⇠N (0,I)

⇥
kgk4

⇤
 3d2

And therefore:
����Eg⇠N (0,I)


F (✓t + �g)� F (✓t � �g)

2�
g

�
�rF (✓t)

����  ⌧�2Eg⇠N (0,I)

⇥
kgk4

⇤
 3⌧�2d2

A similar result holds for the z1 gradient.

Theorem 6.2. The non isotropic bP gradient estimator satisfies:

kEg⇠ bP [z1]�rF (✓t)k 
3�2⌧

pt
d2active +

3�2⌧

1� pt
d2?

If � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) :

kEg⇠ bP [z1]�rF (✓t)k  ✏

13

Proof. Expanding Eg⇠ bP [z1] yields:

Eg⇠ bP [z1] = C�1
1 Eg⇠ bP


F (✓t + �g)� F (✓t � �g)

2�
g

�

= C�1
1 Eg⇠ bP

⇥
gg>
rF (✓t) + ⇠g(✓t)g

⇤

= rF (✓t) +
1

pt
Eg⇠N (0,IU) [⇠g(✓t)g] +

1

1� pt
Eg⇠N (0,IU?) [⇠g(✓t)g]

By a similar argument as in the proof of Theorem 6.1:

kEg⇠N (0,IU) [⇠g(✓t)g] k  3⌧�2d2active

kEg⇠N (0,IU?) [⇠g(✓t)g] k  3⌧�2d2?

The result follows.

Towards bounding the variance We start by showing how under the right assumptions the ex-
pected squared norm of the ES gradients are also bounded away from the squared norms of the true
gradients. The distance between the square norms of the expectation of the ES gradient and the true
gradient of F are also bounded. Theorem 6.3 deals with the isotropic ES estimator and Theorem 6.4
with its non isotropic counterpart:
Theorem 6.3. If F satisfies Assumption 1 and 2:

���
��Eg⇠N (0,I) [zES]

��2 � krF (✓t)k
2
���  105⌧2�4d4 + 6⌧�2Ld2 (6)

If � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) :

���
��Eg⇠N (0,I) [zES]

��2 � krF (✓t)k
2
���  ✏ (7)

Proof.

�����

����Eg⇠N (0,I)


F (✓t + �g)� F (✓t � �g)

2�
g

�����
2

� krF (✓t)k
2

�����  ⌧2
�
�2Eg⇠N (0,I)

⇥
kgk4

⇤�2
+

2⌧�2
krF (✓t)kkEg⇠N (0,I)

⇥
kgk4

⇤

 105⌧2�4d4 + 6⌧�2Ld2

Theorem 6.4. If F satisfies Assumption 1 and 2:

����
���Eg⇠ bP [z1]

���
2
� krF (✓t)k

2

���� 
1

(pt)2
�4⌧2d4active

4
+

1

(1� pt)2
�4⌧2d4?

4
+

2

pt
L
�2⌧d2active

4
+

2

1� pt
L
�2⌧d2?

4
+

2

pt(1� pt)

�4⌧2d2actived
2
?

16

If � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) :

����
���Eg⇠ bP [z1]

���
2
� krF (✓t)k

2

����  ✏

Proof. Consider the following expansion of E [z1].

14

kEg⇠ bP [z1] k
2 = krF (✓t)k

2 +
1

(pt)2
kEg⇠N (0,IU) [⇠g(✓t)g] k

2 +

✓
1

1� pt

◆2

kEg⇠N (0,IU?) [⇠g(✓t)g] +

2

pt
hrF (✓t),Eg⇠N (0,IU) [⇠g(✓t)g]i+

2

1� pt
hrF (✓t),Eg⇠N (0,IU?) [⇠g(✓t)g]i+

2

pt(1� pt)
hrEg⇠N (0,IU) [⇠g(✓t)g] ,Eg⇠N (0,IU?) [⇠g(✓t)g]i

And therefore by Cauchy Schwartz:

���kEg⇠ bP [z1] k
2
� krF (✓t)k

2
��� 

1

(pt)2
�4⌧2d4active

4
+

1

(1� pt)2
�4⌧2d4?

4
+

2

pt
L
�2⌧d2active

4
+

2

1� pt
L
�2⌧d2?

4
+

2

pt(1� pt)

�4⌧2d2actived
2
?

16

As desired.

Bounding the variance of zES and z1. We have now the necessary ingredients for bounding the
variance of the ES isotropic and non isotropic estimators. We start by showing in theorem 6.5 that the
variance of the isotropic estimator is roughly of the order of (d+1)krF (✓t)k2. In contrast, Theorem
6.6 characterizes the variance of z1 the non isotropic ES gradient estimator in terms of the rF (✓t)
decomposition along the subspaces spanned by U and U?. In the following section 6.2 we show that
with an appropriate choice of the probabilities pt, 1� pt, and provided the subspace decomposition is
adequate, the variance of the non isotropic gradient estimator can be much smaller than the variance
of the zES .
Theorem 6.5. If F satisfies Assumption 1 and 2, the variance of the ES estimator satisfies:

|VarES � (d+ 1)krF (✓t)k
2
|  105⌧2�4d4 + 6⌧�2Ld2 + 15d3�2L⌧ + 105⌧2�4d4

If � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) :

|VarES � (d+ 1)krF (✓t)k
2
|  ✏

Proof. The second moment of the ES estimator satisfies:

Eg⇠N (0,I)

⇥
z>ESzES

⇤
= Eg⇠N (0,I)


(F (✓t + �g)� F (✓t � �g))2)

22�2
g>g

�

= Eg⇠N (0,I)

h�
g>
rF (✓t) + ⇠g(✓t)

�2
g>g

i

= Eg⇠N (0,I)

⇥
rF (xt)

>gg>gg>
rF (✓t) + 2rF (✓t)

>gg>g⇠g(✓t) + ⇠g(✓t)
2g>g

⇤

= (d+ 2)krF (✓t)k
2 + 2Eg⇠N (0,I)

⇥
rF (✓t)

>gg>g⇠g(✓t)
⇤
+

Eg⇠N (0,I)

⇥
⇠g(✓t)

2g>g
⇤

Under Assumption 1 and 2, the following bound for the second and third terms of the last equality
holds:

��Eg⇠N (0,I)

⇥
rF (✓t)

>gg>g⇠g(✓t)
⇤��  Eg⇠N (0,I)

⇥
krF (✓t)kkgk

6
⇤
 15d3�2L⌧

And:

��Eg⇠N (0,I)

⇥
⇠g(✓t)

2g>g
⇤��  ⌧2�4Eg⇠N (0,I)

⇥
kgk8

⇤
 105⌧2�4d4

Therefore:

15

VarES = Eg⇠N (0,I)


(F (✓t + �g)� F (✓t � �g))2)

22�2
g>g

�

| {z }
}

�

����Eg⇠N (0,I)


F (✓t + �g)� F (✓t � �g)

2�
g

�����
2

| {z }
�

After coalescing the bounds dervied in the preceeding section, we can obtain the following bound on
the term }:

��}� (d+ 2)krF (✓t)k
2
��  15d3�2L⌧ + 105⌧2�4d4

Notice that by virtue of 6, the following bound on term � of the previous equation holds:

���� krF (✓t)k
2
��  105⌧2�4d4 + 6⌧�2Ld2

Combining these two inequalities the result follows.

A similar theorem holds for z1.

Theorem 6.6. Let � =
⇣

dactive+2
pt kU>

rF (✓t)k2 +
d?+2
1�pt k(U?)>F (✓t)k2 � krF (✓t)k2

⌘
.

��V ar bP � �
��  1

pt
�
15d3active�

2L⌧ + 105⌧2�4d4active
�
+

1

1� pt
�
15d3?�

2L⌧ + 105⌧2�4d4?
�
+

1

(pt)2
�4⌧2d4active

4
+

1

(1� pt)2
�4⌧2d4?

4
+

2

pt
L
�2⌧d2active

4
+

2

1� pt
L
�2⌧d2?

4
+

2

pt(1� pt)

�4⌧2d2actived
2
?

16

If � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) :

����V ar bP �

✓
dactive + 2

pt
kU>

rF (✓t)k
2 +

d? + 2

1� pt
k(U?)>F (✓t)k

2
� krF (✓t)k

2

◆����  ✏

Proof. The second moment of z1 satisfies:

Eg⇠ bP
⇥
z>1 z1

⇤
=

1

pt
Eg⇠N (0,IU)


(F (✓t + �g)� F (✓t � �g))2)

22�2
g>g

�
+

1

1� pt
Eg⇠N (0,IU?)


(F (✓t + �g)� F (✓t � �g))2)

22�2
g>g

�

Notice that:

Var bP = Eg⇠ bP


(F (✓t + �g)� F (✓t � �g))2)

22�2
g>C�2

1 g

�

| {z }
}

�

����Eg⇠ bP


F (✓t + �g)� F (✓t � �g)

2�
C�1

1 g

�����
2

| {z }
�

16

By a similar argument as that in the previous theorem, we conclude:

����}�
dactive + 2

pt
kU>

rF (✓t)k
2
�

(dV? + 2)

1� pt
k(U?)>rF (✓t)k

2

���� 
1

pt
�
15d3active�

2L⌧ + 105⌧2�4d4active
�
+

1

1� pt
�
15d3?�

2L⌧ + 105⌧2�4d4?
�

By Theorem 6.4:

���� krF (✓t)k
2
��  1

(pt)2
�4⌧2d4active

4
+

1

(1� pt)2
�4⌧2d4?

4
+

2

pt
L
�2⌧d2active

4
+

2

1� pt
L
�2⌧d2?

4
+

2

pt(1� pt)

�4⌧2d2actived
2
?

16

6.2 Variance reduction via non isotropic sampling

The first result of this section is to condense the theorems in the previous sections into a single result
(see Theorem 6.7). Lemma 6.8 then shows what the variance corresponding to the optimal choice
of parameter pt is. Theorem 6.9 then provides conditions under which the approximate variance
(without considering the bias terms) corresponding to the optimal non isotropic estimator is smaller
than the variance of the isotropic one. Finally Thoerem 6.10 takes into account the bias and states the
final reuslt of this section. The combination of these results yield the proof of Theorem 3.2 in the
main section of the paper.

Theorem 6.7. Let ✏ > 0. If � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) then:

��Eg⇠N (0,I) [zES]�rF (✓t)
��  ✏ (8)

���Eg⇠ bP [z1]�rF (✓t)
���  ✏ (9)

and

��VarES � (d+ 1)krF (✓t)k
2
��  ✏ (10)

����Var bP �

✓
dactive + 2

pt
kU>

rF (✓t)k
2 +

d? + 2

1� pt
k(U?)>F (✓t)k

2
� krF (✓t)k

2

◆����  ✏ (11)

We say that in this case:

Var bP ⇡
✓
dactive + 2

pt
kU>

rF (✓t)k
2 +

d? + 2

1� pt
k(U?)>F (✓t)k

2
� krF (✓t)k

2

◆

| {z }
VarMbP

and VarES ⇡ (d+ 1)krF (✓t)k2. We refer to VarMbP as the ”main component” of the variance Var bP .
Similarly we define VarMES = (d+ 1)krF (✓t)k2 and use the same name, ”main component” of the
variance VarMES .

The optimal pt, that which minimizes VarMbP equals:

(pt)⇤ =
k (rF (✓t))active k

p
dactive + 2

k (rF (✓t))active k
p
dactive + 2 + k (rF (✓))? k

p
d? + 2

17

Proof. Roughly the same argument as above yields the desired result.

Lemma 6.8. The optimal variance Var
M
bP⇤ corresponding to (pt)⇤ equals:

h
k (rF (✓t))active k

p
dactive + 2 + k (rF (✓t))? k

p
d? + 2

i2
� krF (✓t)k

2 (12)

Proof. The statement follows directly from substituting the expression for (pt)⇤ into the variance
formula.

Theorem 6.9. Var
M
bP⇤  Var

M
ES

if

|

p
dactive + 2k (rF (✓t))? k �

p
d? + 2krF (✓t)activek| �

p
2krF (✓t)k

Proof. By definition, VarMbP⇤ < VarMES if:

⇣
k (rF (✓t))active k

p
dactive + 2 + k (rF (✓t))? k

p
d? + 2

⌘2
< krF (✓t)k

2(d+ 2) (13)

Let a1 =
p
dactive + 2, a2 =

p
d? + 2, b1 = k (rF (✓t))active k, b2 = k (rF (✓t))? k, a =

p
d+ 2

and b = krF (xt)k.

The following relationships hold: b21 + b22 = b2 and a21 + a22 � 2 = a2. The bound we want to prove
in Equation 13 reduces to finding conditions under which:

(a1b1 + a2b2)
2
 (b21 + b22)(a

2
1 + a22 � 2)

Which holds iff:

2b21 + 2b22  a22b
2
1 + a21b

2
2 � 2a1a2b1b2

The later holds iff:

|a1b2 � a2b1| �
p
2b

Which holds iff:

���
p
dactive + 2k (rF (xt))? k �

p
d? + 2k (rF (xt))active k

��� �
p
2krF (xt)k

The inequality is strict for example when k (rF (xt))? k = 0 and d? � 1.

This in turn implies that, after taking into account the bias terms:

Theorem 6.10. If ✏ > 0. If � < 1
35

q
✏min((pt)⇤,1�(pt)⇤)

⌧d3 max(L,1) , we denote by Var(bP)⇤ as the variance of

the gradient estimator z1 corresponding to the optimal (for Var
M
bP) probability (pt)⇤ and

|

p
dactive + 2k (rF (✓t))? k �

p
d? + 2krF (✓t)activek| �

p
2krF (✓t)k

Then:

Var bP⇤  VarES + ✏

18

6.3 Adaptive Mirror Descent for variance reduction.

In this section we propose an adaptive procedure to learn the optimal probability parameter (pt)⇤ (as
introduced in the previous section) this is necessary since as it can be infered from the discussion in
section 6.2, the optimal variance depends of unknown parameters such as the projection of the true
gradient onto the subspaces spanned by U and U?. The final result of this section 6.15 corresponds
to Theorem 3.3 in the main section of the text.

Let pl =
� pl

1�pl

�
. The main component � of the variance of brAT,asebo

MC,k=1 F�(✓) as a function of pl

equals (Lemma 3.2) :

� = `(pl) =
dactive + 2

pl(1)
sUact +

d? + 2

pl(2)
sU? � krF (✓)k2. (14)

In order to avoid the gradients to explote in norm, we parametrise pl as follows:

pl = (1� 2�)ql +

✓
�

�

◆

For ql
2 �2 and � 2 (0, 1), the boundary probability bias.

Notice that � is a convex function of p and also a convex function of q. With a slight abuse of
notation we denote `(ql) as the loss parametrized by ql (which satisfies `(ql) = `(pl)).

The gradient rql`(ql) equals:

rql`(ql) = (1� 2�)

✓
�

dactive+2
((1�2�)ql(1)+�)2 sUort

�
d?+2

((1�2�)ql(2)+�)2 sU?

◆
,

And can be approximated (at the cost of some bias) using function evaluations.
Lemma 6.11. The gradientrql`(ql) satisfies:

������
rql`(ql)� E

2

4(1� 2�)

✓
�

al(dactive+2)
((1�2�)pl(1)+�)3

�
(1�al)(d?+2)

((1�2�)pl(2)+�)3

◆
v2l

3

5

������


✏(d+ 2)

(min(pl(1),pl(2)))3


✏(d+ 2)

�3
,

where vl =
1
2� (F (✓ + gl)� F (✓ � gl)) .

Proof. We start with some notation borrowed from the previous section:

⇠(2)gl
(✓) =

✓
F (✓ + �gl)� F (✓ � �gl)

2�

◆2

| {z }
v2
l

�
�
g>
l rF (✓t)

�2

Observe that:

|⇠(2)gl
(✓)| =

�����

✓
F (✓ + �gl)� F (✓ � �gl)

2�

◆2

�
�
g>
l rF (✓)

�2
�����

 ⇠gl(✓)
2 + 2

��g>
l rF (✓)⇠gl(✓)

��

 �4⌧2kglk
6 + 2�2⌧Lkglk

4

Since � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) :

E
h
|⇠(2)gl

(✓)|
i
 ✏

The result follows.

19

Let pl = (1� 2�)ql + � be the probability that we choose to sample from the subspace L
ES
active and

1� pl the probability that we choose to sample from L
ES,?
active. Let al be a Bernoulli random variable

al 2 {0, 1} with E
h� al

1�al

�i
= pl. Define the stochastic gradient (with respect to ql):

el = (1� 2�)

2

4

⇣
�

al(dactive+2)
p3
l

⌘

⇣
�

(1�al)(d?+2)
(1�pl)3

⌘

3

5 v2l

By definition this random vector (conditioned on the choice of pl) satisfies:
��E [el]�rql`(ql)

��  ✏(d+ 2)

(min(pl(1),pl(2)))3


✏(d+ 2)

�3
,

If ✏ is chosen small enough, the bias can be driven to be arbitrarily small.

6.3.1 Mirror descent

We treat this problem as that of minimizing the loss ` over the two dimensional simplex and resort to
adapt a version of Mirror descent for it. As opposed the case of projected gradient descent, mirror
descent performs updates that are adapted to the geometry of the simplex, ensuring the iterates always
belong to the simplex and no projection step is necessary. The mirror descent updates are:

ql(1) =
ql�1(1) exp(�↵el(1))

ql�1(1) exp(�↵el(1)) + (ql�1(2)) exp(�↵el(2))

ql(2) =
ql�1(2) exp(�↵el(2))

ql�1(1) exp(�↵el(1)) + (ql�1(2)) exp(�↵el(2))

For a step size parameter ↵.

6.4 Regret guarantees

Using he notation in https://www.stat.berkeley.edu/~bartlett/courses/
2014fall-cs294stat260/lectures/mirror-descent-notes.pdf, In this case let
R(q) = q(1) log(q(1)) + q(2) log(q(2))� q(1)� q(2) and therefore:

rR(q) =

✓
log(q(1))

log(q(2))

◆
(15)

The Fenchel conjugate of R equals:

R⇤(q) = eq(1) + eq(2) (16)

And therefore the gradient of the Fenchel conjugate equals:

rR⇤(q) =

✓
exp(q(1))

exp(q(2))

◆
(17)

And:

DR(q1,q2) = q1(1) log

✓
q1(1)

q2(1)

◆
+q1(2) log

✓
q1(2)

q2(2)

◆
+q2(1)�q1(1)+q2(2)�q1(2) (18)

Recall the update behind Mirror descent takes the form (stepsize ↵:

1. Play
� al

1�al

�
such that E[

� al

1�al

�
] = pl.

2. Let wl+1 = rR⇤ �
rR(pl)� ↵el

�

20

https://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/lectures/mirror-descent-notes.pdf
https://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/lectures/mirror-descent-notes.pdf

3. Let pl+1 = argminp2�2 DR(p, wt+1)

Recall the general definition of Bregman divergence:

D (u, v) = (u)� (v)� hr (v), u� vi (19)

The following regret guarantee holds for Mirror descent (see https://www.stat.berkeley.edu/
~bartlett/courses/2014fall-cs294stat260/lectures/mirror-descent-notes.pdf):
Theorem 6.12. If at time l a convex loss function fl is revealed to the player and the player performs

the mirror descent step usingrfl as a proxy linear function, with actions (from the mirror descent

step) al at time l, for any a in the intersection of all of fl’s domains, the following regret bound holds:

CX

l=1

(fl(al)� fl(a)) 
CX

l=1

rfl(al)
>(al � a) (20)


1

↵

R(a)�R(a1) +

CX

l=1

DR⇤(rR(al)� ↵rfl(al),rR(al))

!
(21)

Also remember that if R⇤ is ✓-smooth with respect to some norm k · k, we can upper bound DR⇤ .
The former (R⇤ being ✓�smooth) holds if R is 1

✓ -strongly convex with respect to the dual norm k · k⇤.
When R equals the entropy, this is 1�strongly convex with respect to the L1 norm and hence R⇤ is
1�strongly smooth with respect to the L1 norm:

DR⇤(a, b) 
ka� bk21

2
(22)

In our case, let fl(q) = e>l q. Using the upper bound previously described for DR. For any q 2 �2:

CX

l=1

fl(q
l)� fl(q) 

1

↵

R(q)�R(q1) + ↵2

CX

l=1

krfl(ql)k21
2

!

Taking expectations, since
���E[fl(q)|ql]�r>

ql`(ql)q
���  ✏(d+2)

�3 we obtain the following result:

CX

l=1

r
>
ql`(ql)

�
ql
� q

�
!
� C

2✏(d+ 2)

�3


1

↵

R(q)� E

⇥
R(q1)

⇤
+ ↵2

CX

l=1

E
⇥
kelk21

⇤

2

!

Now we bound the Right Hand side of the expression above. Notice that R(q)  2 and R(q1) � 0.
We can also bound the expectation E

⇥
kelk21

⇤
.

Lemma 6.13.
��E
⇥
kelk2

⇤
� krql`(ql)k2

��  ✏(d+1)
�3

Proof. A similar calculation as in Lemma 6.11 yields the desired result.

Since:
E
⇥
kelk

2
1
⇤
 E

⇥
kelk

2
⇤

(23)

And krql`(ql)k2  1
�4

�
(dactive + 2)2s2Uort + (d? + 2)2s2U?

�
.

We obtain the following bound:

CX

l=1

r
>
ql`(ql)

�
ql
� q

�
!
�C

2✏(d+ 2)

�3


2

↵
+
↵C

2�4

�
(dactive + 2)2s2Uort + (d? + 2)2s2U?

�
+
↵C✏(d+ 1)

�3

The following theorem follows:

21

https://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/lectures/mirror-descent-notes.pdf
https://www.stat.berkeley.edu/~bartlett/courses/2014fall-cs294stat260/lectures/mirror-descent-notes.pdf

Theorem 6.14. If ↵ = 2�2

p
C
q

(dactive+2)2s2
Uort+(d?+2)s2

U?
and ✏ = �3

2C(d+1) , for any q 2 �2:

CX

l=1

r
>
ql`(ql)

�
ql
� q

�
!


p
C
q

(dactive + 2)2s2Uort + (d? + 2)s2U?

�2
+ 1

Proof. Plugging in this value of ↵:

CX

l=1

r
>
ql`(ql)

�
ql
� q

�
!


p
C
q
(dactive + 2)2s2Uort + (d? + 2)s2U?

�2

+

0

@1 +
2�2

p
C
q

(dactive + 2)2s2Uort + (d? + 2)s2U?

1

A C✏(d+ 1)

�3

By setting ✏ = �3

2C(d+1) the result follows. Assuming C is large enough so that ↵ < 1.

Since `(q) is a convex function of q for all l and q 2 �2:

`(ql)� `(q)  r>
ql`(ql)

�
ql
� q

�

Which in turn implies the main result of this section:

Theorem 6.15. If ↵ = 2�2

p
C
q

(dactive+2)2s2
Uort+(d?+2)s2

U?
and ✏ = �3

2C(d+1) , for any q 2 �2:

E
"

CX

l=1

`(ql)� `(q)

#


p
C
q
(dactive + 2)2s2Uort + (d? + 2)s2U?

�2
+ 1

This is equivalent to the result stated in the main paper.

7 Additional Implementation Details

In this section we present additional details on our experimental results, for both the RL tasks and
Nevergrad functions.

7.1 Reinforcement Learning Experiment Details

We provide additional details regarding the RL experiments below.

State Normalization. State-of-the-art policy optimization baselines such as PPO/TRPO [12] and
the original ARS [25] apply state normalization as part of the implementation. In particular, the
algorithms maintain a component-wise running average of mean s̄ and standard deviation vector
�(s) of the state. When at given state st, the algorithm computes the normalized state s̃t =

st�s̄
�(s)

before inputing to the policy network to compute actions at = ⇡(s̃t). For PPO/TRPO, since the
optimization is based on back-propagation of neural networks, properly scaling the inputs st ! s̃t
is critical for the performance. In all experiments, we remove state normalization mechanism from
the implementation to test the robustness of various blackbox optimization algorithms. Notice that
as reported by [25], state normalization was not needed in ARS to learn good policies for RL tasks
under consideration in this paper. As a result, we observe that PPO/TRPO underperform other ES
algorithms for most tasks.

22

Benchmark Environments. Benchmark environments are from OpenAI gym [6]. These environ-
ments have variable sizes of observation space and action space: Swimmer-v2 |S| = 8, |A| = 2;
Hopper-v2 |S| = 11, |A| = 3; HalfCheetah-v2 |S| = 17, |A| = 6; Thrower-v2 |S| = 23, |A| = 7;
Pusher-v2 |S| = 23, |A| = 7; Walker2d-v2 |S| = 17, |A| = 6; Reacher-v2 |S| = 11, |A| = 2.
All environments have a natural termination condition specified in the simulation environment.

Policy Architecture. All baseline algorithms involve training a parameterized policy ⇡✓(a|s) using
sample gradient estimates generated from the environment. The policy architecture is shared across
all algorithms: a 2-layer feed-forward neural network with tanh non-linearity and h hidden units per
layer. The input to the network is the state s 2 S . For all ES-based algorithms (Vanilla ES, CMA-ES,
ARS and ASEBO), the output of the network is the action a✓(s) 2 A. For policy optimization
algorithms (PPO, TRPO), the output of the network is a mean of Gaussian µ✓(s) and we draw
actions from a factorized Gaussian distribution a ⇠ N (µ✓(s),�2I) where we separately parameterize
a standard deviation parameter � shared across dimensions. The sizes of hidden layers where: 4 for
LQR, 16 for Swimmer-v2, Hopper-v2 and Reacher-v2, 32 for HalfCheetah-v2 and Walker2d-v2,
reflecting the difficulty of each task.

Optimization. Our method (ASEBO) and most baselines (Vanilla ES, ARS, CMA-ES and PPO)
apply SGD based methods and we apply the Adam optimizer to stabilize the gradients.

7.1.1 Baseline Algorithms

Vanilla ES. Vanilla ES is the simplest evolutionary algorithm applied in RL tasks [7, 30]. We apply
the antithetic sampling scheme as applied in [7]. Our implementation does not rank the rewards as in
[30], and as previously discussed does not include observation normalization.

CMA-ES variants. Covariance Matrix Adaptation Evolution Strategy is a state-of-the-art and pop-
ular black box optimization algorithm [16]. VkD-CMA-ES and LM-MA-ES are recently proposed
variant designed for high dimensional blackbox functions. For VkD-CMA-ES we use the open
source implementation from pycma available at http://github.com/CMA-ES/pycma. We use the
default hyper-parameters in the original code base with the standard deviation parameter � = 1.0.
For LM-MA-ES we use the implementation from [26].

ARS. Augmented Random Search [25] is based on the code released by the original paper. We use
the standard deviation � = 0.02 and learning rate ⌘ = 0.01. The hyper-parameters are tuned on top
of the default hyper-parameters in the original code base. We remove the observation normalization
utility in the original code for fair comparison.

ASEBO. We propose Adaptive Sample Efficient Blackbox Optimization in this work. Our algo-
rithms have the following hyper-parameters: the covariance decay parameter � = 0.995 (slow decay),
proportion of variance of the active (PCA) space ✏ = 0.995, standard deviation parameter � = 0.02.
We set the learning rate ⌘ = 0.02.

Trust Region Policy Optimization. Trust Region Policy Optimization (TRPO) is based on the
implementation of OpenAI baseline [12]. We use the default training hyper-parameters in the code
base: we collect N = 1024 samples per batch to compute a policy gradient, with the trust region size
parameter ✏ = 0.01. We remove the observation normalization utility in the original code for fair
comparison.

Proximal Policy Optimization. Proximal Policy Optimization (PPO) [32] is also based on the
implementation of OpenAI baseline [12]. We use the default hyper-parameters in the code base: we
collect N = 2048 samples per batch to compute policy gradients and set the clipping coefficient
✏ = 0.2. The learning rate is set to be ↵ = 3 · 10�5 for all environments. We remove the observation
normalization utility in the original code for fair comparison.

23

http://github.com/CMA-ES/pycma

7.2 Nevergrad Experiment Details

Function Settings. We tested the following functions: cigar, ellipsoid, sphere, sphere2,
rosenbrock, rastrigin and lunacek. In each case we used d = 1000 to evaluate ASEBO in a
high dimensional setting.

Algorithm Hyper-Parameters. We use the same hyper-parameters across all functions. For
ASEBO and VanillaES, we use ⌘ = 0.02. For ASEBO we set � = 0.99. For VkD-CMA-ES we
use the default parameters from the pycma package, and for LM-MA-ES we use the implementation
from [26].

8 The Algorithm - Additional Details & Analysis

We provide here few variations of the ASEBO algorithm from the main body of the paper, namely:

Algorithm 3 ASEBO Algorithm - extended version
Hyperparameters: number of iterations of full sampling l, smoothing parameter � > 0, step size ⌘,
PCA threshold ✏, decay rate �, total number of iterations T .
Input: blackbox function F , vector ✓0 2 Rd where optimization starts. Cov0 2 {0}d⇥d, p0 = 0.
Output: vector ✓T .
for t = 0, . . . , T � 1 do

if t < l then
Take nt = d. Sample g1, · · · ,gnt from N (0, Id) (independently).

else
1. Take top r eigenvalues �i of Covt, where r is smallest such that:

Pr
i=1 �i � ✏

Pd
i=1 �i,

using its SVD as described in text and take nt = r.
2. Take the corresponding eigenvectors u1, ...,ur 2 Rd and let U 2 Rd⇥r be obtained
by stacking them together. Let Uact

2 Rd⇥r be obtained from stacking together some
orthonormal basis of LES

active
def
= span{u1, ...,ur}. Let U?

2 Rd⇥(d�r) be obtained from
stacking together some orthonormal basis of the orthogonal complement LES,?

active of LES
active.

3. Sample g1, ...,gnt from N (0,�⌃) (independently), where ⌃ = 1�pt

d Id +
pt

r UU> (V0)
or sample nt vectors g1, ...,gnt as follows: with probability 1� pt from N (0,U?(U?)>)
and with probability pt from N (0,Uact(Uact)>) (V1).
4. Renormalize g1, ...,gnt such that marginal distributions kgik2 are �(d).

1. Compute brAT
MCF (✓t) as:

brAT
MCF (✓t) =

1

2nt�

ntX

j=1

(F (✓t + gj)� F (✓t � gj))gj .

2. Set Covt+1 = �Covt + (1� �)�, where � = brAT
MCF�(✓t)(brAT

MCF�(✓t))>.
3. Set pt+1 = popt for popt output by Algorithm 2 (from the main body) or pt+1 = br

br+1 , where:

br =
k(brF�(✓t))activek2

k(brF�(✓t))?k2
,

is computed by Algorithm 4 (see: below) and scalars k(brF�(✓t))activek2, k(brF�(✓t))?k2 stand
for the estimates of k(rF�(✓t))activek2 and k(rF�(✓t))?k2.
4. Set ✓t+1 ✓t + ⌘ brAT

MCF (✓t).

• we propose one more method for sampling from heterogeneous distributions (see: version
V0 in Algorithm 3; the default one that we present in the main body is called V1 here),

• we propose to use compressed sensing techniques (Algorithm 4) as an alternative to the
contextual bandits method from the main body (Algorithm 2); the bandits method can be
seen as an extension of the compressed sensing techniques.

24

Algorithm 4 Explore estimator via compressed sensing
Hyperparameters: smoothing parameter �, horizon C.
Input: subspaces: LES

active, LES,?
active, function F , vector ✓t.

Output: ratio br.
1. Initialize square norm averages sactive0 = s?0 = 0.
for l = 1, · · · , C do

1. Sample gactive
l ⇠ N (0,�ILES

active
).

2. Sample g?
l ⇠ N (0,�ILES,?

active
).

3. Ask for F (✓t ± gtype
l) for type 2 {active,?}.

4. Compute vtypel = 1
2� (F (✓t + gtype

l)� F (✓t � gtype
l)).

5. Compute sactivel = l�1
l ⇤ s

active
l�1 + (vactive

l)2

l .

6. Compute s?l = l�1
l ⇤ s

?
l�1 +

(v?
l)2

l .

Return: br =

r
sactiveC

s?C
.

8.1 Estimating the sensing ratio r.

In this section we provide guarantees for the estimation of the ratio r as specified in Section 2.3 for
Algorithm 4. Recall the definitions sUact = kU>

rF (✓t)k2 and sU? = k(U?)>rF (✓t)k2.

Since
���F (✓t+�g)�F (✓t��g)

2� � g>
rF (✓t)

���  ⇠g(✓t), when g ⇠ bP , we recognize two cases. If

g ⇠ N (0, IU) the distribution of F (✓t+�g)�F (✓t��g)
2� ⇡ N(0, kU>

rF (✓t)k2). Analogously when
g ⇠ N (0, IU?) the distribution of F (✓t+�g)�F (✓t��g)

2� ⇡ N(0, k(U?)>rF (✓t)k2).
Theorem 8.1. Let 0 < s < C and let gi ⇠ N (0, ILES

(active)
) for i = 1, ..., s and gi,⇠

N (0, ILES,?
active

) for i = s + 1, ..., C. Let ŝUort := 1
s

Ps
j=1

⇣
F (✓+�gj)�F (✓��gj)

2�

⌘2
, ŝU? :=

1
C�s

PC�s
j=1

⇣
F (✓+�gj)�F (✓��gj)

2�

⌘2
and let r̂ =

q
ŝUort

ŝU?
. Given u, ✏ > 0 and � 2 (✏, 1), the

following holds.

1. If C = 2s for s � 16
u2 log

�
8
�

�
and under the mechanism from Algorithm 4 or

2. If {gi}
C
i=1 are samples generated under bP , min(pt, 1 � pt) > u and C �

max
⇣

8
(pt�u)u2 ,

8
(1�pt�u)u2 ,

2pt+2u/3
u2

⌘
log
�
12
�

�
,

then with probability at least 1� �:

s
sUort(1� u)� 2✏

�

sU?(1 + u) + 2✏
�

 br 

s
sUact(1 + u) + 2✏

�

sU?(1� u)� 2✏
�

.

Proof. First observe we introduce some notation.

⇠(2)g (✓t) =

✓
F (✓t + �g)� F (✓t � �g)

2�

◆2

�
�
g>
rF (✓t)

�2

Observe that:

⇠(2)g (✓t) =

�����

✓
F (✓t + �g)� F (✓t � �g)

2�

◆2

�
�
g>
rF (✓t)

�2
�����

 ⇠g(✓t)
2 + 2

��g>
rF (✓t)⇠g(✓t)

��

 �4⌧2kgk6 + 2�2⌧Lkgk4

25

Let ŝV = ŝ0V + 1
s

Ps
j=1 ⇠gj (✓t) and ŝV ? = ŝ0V ? + 1

C�s

PC�s
j=1 ⇠gj (✓t). Where s0Uact =

1
s

Ps
j=1

�
rF (✓t)>gj

�2 and s0U? = 1
C�s

PC
j=s

�
rF (✓t)>gj

�2.

Notice thatrF (✓t)>g is distributed as a Gaussian Random variable (with variance depending on the
support of the covariance of g).

By concentration of squared gaussian random variables:

P
⇥
|ŝ0V � sUact | � usUact

⇤
 2 exp

✓
�
su2

8

◆

P
⇥
|ŝ0V ? � sU? | � usU?

⇤
 2 exp

✓
�
(k � s)u2

8

◆

Consequently, with probability 1� 2 exp
⇣
�

su2

8

⌘
� 2 exp

⇣
�

(k�s)u2

8

⌘
, it holds that:

sUact

sU?

✓
1 + u

1� u

◆
�

ŝ0V
ŝ0V ?

�
sUact

sU?

✓
1� u

1 + u

◆

Notice that by Markov’s inequality:

P
✓
⇠g(✓t) �

2✏

�

◆
 �

E
⇥
�4⌧2kgk6 + 2�2⌧Lkgk4

⇤

2✏


�

2
(24)

Since � < 1
35

q
✏min(pt,1�pt)
⌧d3 max(L,1) , E

⇥
�4⌧2kgk6 + 2�2⌧Lkgk4

⇤
 ✏.

Regardless if g was sampled from N (0, I), N (0, IU) or N (0, IU?).

Case 1.
By definition, C = 2s, and therefore C � s = C/2 and therefore:

P
⇥
|ŝ0V � sUact | � usUact

⇤
 2 exp

✓
�
Cu2

16

◆

P
⇥
|ŝ0V ? � sU? | � usU?

⇤
 2 exp

✓
�
Cu2

16

◆

We require that:

2 exp

✓
�
Cu2

16

◆
 �/4

2 exp

✓
�
Cu2

16

◆
 �/4

Case 2.
In fact, by concentration results on Bernoulli variables, given ↵ > 0, |s� kpt|  k↵ and |(k � s)�

(1� pt)k|  k↵ with probability at least 1� exp
⇣
�

k↵2

2pt

⌘
� exp

⇣
�

k↵2

2pt+2↵/3

⌘
.

Let ↵ = u. Conditioning on the events that |s� kpt|  uk and |(k� s)� (1� pt)k|  uk. We seek
to ensure that:

2 exp

✓
�
(pt � u)ku2

8

◆
 �/6

2 exp

✓
�
(1� pt � u)ku2

8

◆
 �/6

exp

✓
�
ku2

2pt

◆
 �/6

exp

✓
�

ku2

2pt + 2u/3

◆
 �/6

26

Case 1 and 2 The following inequalities hold:

sUact(1� u)� 2✏
�

sU?(1 + u) + 2✏
�


ŝ0V �

2✏
�

ŝ0V ? + 2✏
�


ŝV
ŝV ?


ŝ0V + 2✏

�

ŝ0V ? �
2✏
�


sUact(1 + u) + 2✏

�

sU?(1� u)� 2✏
�

The union bound yields the desired result. And therefore the result follows.

27

	Introduction
	Adaptive Sample-Efficient Blackbox Optimization
	Preliminaries
	ES-active subspaces via online PCA with decaying weights
	Exploration-exploitation trade-off: Adaptive Exploration Mechanism
	The Algorithm

	Theoretical Results
	Variance reduction via non isotropic sampling
	Adaptive Mirror Descent

	Experiments
	RL blackbox functions
	Nevergrad blackbox functions

	Conclusion
	Theoretical Results
	Gradient Estimators, their bias and their variance.
	Variance reduction via non isotropic sampling
	Adaptive Mirror Descent for variance reduction.
	Mirror descent

	Regret guarantees

	Additional Implementation Details
	Reinforcement Learning Experiment Details
	Baseline Algorithms

	Nevergrad Experiment Details

	The Algorithm - Additional Details & Analysis
	Estimating the sensing ratio r.

