
Supplement
Surrogate Objectives for Batch Policy Optimization in

One-step Decision Making

Minmin Chen∗ Ramki Gummadi∗ Chris Harris∗ Dale Schuurmans∗†
∗Google †University of Alberta

1 Definitions

Throughout this appendix we use the same notation and definitions from the main body of the paper.
In particular, for a vector q ∈ RK let

π(q) = f(q) (1)

f(q) = eq−F (q) (2)
F (q) = log(1 · eq). (3)

We also use the same risk definitions as the main body, in particular:

local risk

R(π, r, x) = −r · π(x) (4)
R∗(r, x) = inf

q∈Q
R(f ◦ q, r, x), (5)

expected risk

R(π) = −E[π(x) · r], (6)

local smoothed risk

Sτ (π, r, x) = −r · π(x) + τπ · logπ(x) (7)
S∗τ (r, x) = inf

qQ
Sτ (f ◦ q, r, x) (8)

Gτ (π, r, x) = Sτ (π, r, x)− S∗τ (r, x), (9)

expected smoothed risk

Sτ (π) = E[Sτ (π, r, x)] (10)
S∗τ = inf

qQ
Sτ (f ◦ q) (11)

Gτ (π) = Sτ (π)− S∗τ . (12)

2 Proofs for Section 2: Cost-sensitive Classification

Theorem 1 Even for a single context x, a deterministic reward vector r, and a linear model
q(x) = Wφ(x), the function r ·f(q(x)) can have a number of local maxima inW that is exponential
in the number of actions K and the number of features in φ.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Proof: To demonstrate the possibility of separated local maxima, start by considering a concrete
construction with 5 actions and 1 feature. In particular, let

r1 =


1
2
−1
2
1

 and Φ1 =


2
1
0
−1
−2

 (13)

hence q = Φ1w for a scalar parameter w. Note that in this case the policy is given by

π = f(Φ1w) =
1

d(w)


e2w

ew

1
e−w

e−2w

 , (14)

where d(w) = e2w + ew + 1 + e−w + e−2w = 2 cosh(2w) + 2 cosh(w) + 1. (15)

Therefore, the value function is given by

v(w) = r>1 π =
2 cosh(2w) + 4 cosh(w)− 1

2 cosh(2w) + 2 cosh(w) + 1
=

n(w)

d(w)
, (16)

where n(w) = 2 cosh(2w) + 4 cosh(w)− 1. (17)

To determine the critical points of the value function, consider the derivative

dv

dw
=

2 sinh(w)(8 cosh(w)− 4 cosh2(w) + 1)

d(w)2
. (18)

Recall that cosh(w) ≥ 1, hence d(w) ≥ 5, and therefore the zeros for dv
dw occur whenever the

numerator is zero. This implies there are exactly three critical points, at w = 0 and w = ± acosh(1 +√
5

2) (≈ ±1.3826). One can also determine that n(w) ≥ d(w), hence v(w) ≥ 1. Finally, observe that
since cosh(w) is an even function, so must be n(w), d(w), and v(w). The function v(w) is plotted in
Figure 1.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

1.00

1.02

1.04

1.06

1.08

1.10

Figure 1: Plot of the value function v(w).

We can now use this simple example as a widget for creating a combinatorial explosion of local
maxima. We achieve this by tiling the previous construction as follows. Let t denote the number of
tiles. Expand the previous construction to 5t actions and t features by replicating r1 and Φ1, each t
times, in the following manner:

rt = 1⊗ r1 =

 r1

...
r1

 and Φt = I ⊗ Φ1 =

 Φ1

. . .
Φ1

 , (19)

2

hence rt is a 5t×1 vector and Φt is a 5t×tmatrix. A policy over 5t actions can then be parameterized
by a t dimensional weight vector w via

π = f(Φtw) =
1

d(w)



e2w1

ew1

1
e−w1

e−2w1

...

e2wt

ewt

1
e−wt

e−2wt



, where d(w) =

t∑
i=1

d(wi). (20)

The value function in this case then becomes

v(w) = r>t π =

∑t
i=1 n(wi)∑t
i=1 d(wi)

, where n(w) =

t∑
i=1

n(wi). (21)

To determine the locations of the critical points, consider the partial derivative of v with respect to a
single parameter, say wi:

∂v

∂wi
=

n′(wi)d(w)− d′(wi)n(w)

d(w)2
=

n′(wi)− d′(wi)v(w)

d(w)
. (22)

As before, since d(wi) ≥ 1 for all i, hence d(w) ≥ t, we know the zeros of ∂v
∂wi

are determined by
wi such that n′(wi) = d′(wi)v(w). One root value for wi will always be wi = 0, regardless of the
other values of wj , j 6= i, since the individual numerator and denominator functions each satisfy
n′(0) = d′(0) = 0 respectively. It remains only to show that there are always two other roots for wi,
symmetrically placed around but separated from 0, regardless of the values for the other wj , j 6= i.

A few useful properties of v(w) will allow us to show this. First, since the individual n(wi) and
d(wi) functions are even, the function v(w) must also be even along any coordinate wi. Second,
since n(wi) ≥ d(wi) for all i, and moreover n(wi) > d(wi) if wi 6= 0, we have v(w) > 1 if
wi 6= 0. Third, since it always holds that n(wi) < 2d(wi), we also have

∑
i n(wi) < 2

∑
i d(wi),

hence v(w) < 2. Therefore, even though the value of v(w) will determine the exact location of the
symmetric nonzero roots in (22), we can establish the existence of these nonzero roots simply by
assuming v(w) takes on any arbitrary value in the range 1 < v < 2, as we now show.

Consider the zeros of n′(wi) − d′(wi)v where v is any quantity such that 1 < v < 2. From the
definitions we know that n′(wi) = 4 sinh(2wi)+4 sinh(wi) and d′(wi) = 4 sinh(2wi)+2 sinh(wi),
hence we seek the values of wi such that

2(1− v) sinh(2wi) = (v − 2) sinh(wi) (23)
As noted, one solution is wi = 0 but we particularly seek the nonzero roots, so consider wi 6= 0,
hence sinh(wi) 6= 0. Under this assumption (23) reduces to

4(1− v) cosh(wi) = v − 2, (24)
which has a putative solution pair wi = ± acosh(2−v

4(v−1)). This solution pair exists (and is nonzero)
if 1 < 2−v

4(v−1) <∞, which is guaranteed by 1 < v < 2.

To summarize: in characterizing the landscape of v(w), we know the function is continuous, smooth,
and sandwiched between 1 ≤ v(w) < 2 for allw. Along each coordinate axis, wi, regardless of the
values of the other weight parameters, wj , j 6= i, there are exactly three critical points: one at zero,
and two others symmetrically placed around but distinct from zero (attaining equal value, since v
is an even function along each coordinate). Since the point wi = 0 is a local minimum along the
coordinate, the other two critical points must be local maxima. The overall weight vectorw is only at
a critical point if each of its coordinates are at a critical point. Therefore, in total there are 3t critical
points, of which 2t are local maxima (i.e. each coordinate is at a local maximum).

3

Comment Clearly, the above construction creates 2t local maxima that all have the same expected
value. Intuitively, a small perturbation of one of the modes in the initial construction can preserve the
number of local maxima while elevating a single such maximum to global dominance.

Proposition 2 Let π̃τ = arg minπ∈P Sτ (π). Then π̃τ (x) = exp(E[r|x] − F (E[r|x])/τ) and
R(π̃τ) < R∗ + τ logK. Hence for any ε > 0 setting τ < ε/ logK ensuresR(π̃τ) < R∗ + ε.

Proof: Let ∆(z) denote putting a vector z on the main diagonal of a square matrix. First, it is easy
to prove that π̃τ (x) = exp(E[r|x]− F (E[r|x])/τ) is optimal. Consider a fixed x and note:

dSτ (π, r, x)

dq(x)
=

(
∆(π(x))− π(x)π(x)>

)
(τq − r), (25)

thus, q(x) = r/τ − 1v/τ determines an equilibrium point in Sτ (f ◦ q, r, x) for any constant
v. Since (25) is linear in r, taking an expectation in r still yields equilibria of the form q(x) =
E [r/τ |x] setting v = 0. Thus, the optimal policy conditioned on x can be written as π̃τ (x) =
exp (E[r|x]/τ − F (E[r|x]/τ)) = exp (r̄/τ − F (r̄/τ)), where we let r̄ = E[r|x].

For the second part of the claim, for any fixed x and r we consider the gap between the exact optimum
and the approximate optimum produced by π̃τ (x) = f(q(x)) = f(r̄τ):

Gap = max
a

ra − f(r̄τ) · r̄. (26)

We can bound this gap by lower bounding the expected reward achieved by the policy at x:

f(r̄τ) · r̄ = τf(r̄τ) · r̄τ (27)

= τF (r̄τ) + τF ∗(f(r̄τ)) (28)
≥ max

a
ra − τ logK, (29)

where the second step uses the fact that the Young-Fenchel inequality is tight at a dual pair π̃ and q
[2, §3.3.2], and the last step using the fact that F ∗ is negative entropy and the maximum entropy of
any distribution over K actions is logK. From this it is easy to conclude that whenever τ ≤ ε/ logK
we must have Gap ≤ ε. The result then follows by noting that this inequality holds pointwise for all
x, hence also in expectation over x.

Theorem 3 For an arbitrary baseline v and τ > 0, let

L(q, r, x) = τDF

(
q(x) + v

τ

∥∥r
τ

)
+ τ

4

∥∥q(x)− r−v
τ

∥∥2
, (30)

Then, for any fixed v, L is strongly convex in q and calibrated with respect to the smoothed (shifted)
risk Sτ (f ◦ q, r − v, x) = Sτ (f ◦ q, r, x)− v with calibration function δ(ε, x) = ε ∀x.

Proof: Strong convexity is immediate from the inclusion of the squared loss. We need to establish
two additional properties. First, that the global minimizer of (30) is also a global minimizer of the
local smoothed risk Sτ (f ◦ q, r − v, x) (7). Second, that the surrogate objective is an upper bound
on the suboptimality of the local smoothed risk.

For the equilibrium condition, note that Sτ (f ◦ q, r − v, x) must satisfy (25), hence, again, we have
q(x) = r/τ − 1v/τ is an equilibrium point for any fixed v. By comparison, taking the gradient of
the surrogate with respect to q(x) yields

dL(q, r, x)

dq(x)
= τ(π̃(x)− p(x)) + τ

2

(
q(x)− r

τ + v
τ

)
, (31)

where π̃(x) = f(q(x) + v
τ) for any fixed v and p = f(rτ). Thus, an equilibrium point for L(q, r, x)

is also given by q(x) = r
τ −

v
τ . Moreover, any such point must be a unique global minimizer for

L(q, r, x) by strong convexity. Since this choice of q(x) uniquely determines π(x), it characterizes
the equilibria of S(π, r − v, x) and therefore also the global minimizer.

For the second part, first let S∗(r − v, x) = infq∈Q S(f ◦ q, r − v, x), and note that since we know

S(f ◦ q, r − v, x) = −τF (r−vτ) + τDF

(
r−v
τ

∥∥ q(x)) (32)

= v − τF (rτ) + τDF

(
r−v
τ

∥∥ q(x)) , (33)

4

it follows that S∗(r−v, x) = v−τF (rτ), which is achieved at q = r/τ −1v/τ . Finally, to establish
that L(q, r, x) ≥ S(f ◦ q, r − v, x) − S∗(r − v, x) we consider a second order Taylor analysis
along the lines of [6], which uses two Taylor expansions of F (q). Using the same derivation, it can
be shown that

DF

(
r
τ

∥∥∥q(x) + v
τ

)
= DF

(
q(x) + v

τ

∥∥∥rτ)
+

1

4

(
q(x)− r

τ + v
τ

)>
(HF (b)−HF (a))

(
q(x)− r

τ + v
τ

)
, (34)

where HF denotes the Hessian of F , a = (1 − η
2)rτ + η

2 (q(x) + v
τ) for some 0 ≤ η ≤ 1, and

b = (1− ρ
2)(q(x) + v

τ) + ρ
2
r
τ for some 0 ≤ ρ ≤ 1. Since the Hessian has the form

HF (a) = ∆(f(a))− f(a)f(a)> (35)

for all a, we know that I � HF (a) � 0 and I � HF (b) � 0, hence I � HF (b) − HF (a).
Therefore, from (34) it follows that

DF

(
r
τ

∥∥∥q(x) + v
τ

)
≤ DF

(
q(x) + v

τ

∥∥∥rτ)+ 1
4

∥∥q(x)− r
τ + v

τ

∥∥2
. (36)

Therefore,

S(f ◦ q, r − v, x) = τDF

(
r
τ

∥∥∥q(x) + v
τ

)
+ v − τF

(
r
τ

)
(37)

≤ τDF

(
q(x) + v

τ

∥∥∥rτ)+ τ
4

∥∥q(x)− r
τ + v

τ

∥∥2
+ v − τF

(
r
τ

)
(38)

= L(q, r, c) + v − τF
(
r
τ

)
. (39)

We conclude that if L(q, r, x) ≤ ε then S(f ◦ q, r− v, x)−S∗(r− v, x) ≤ ε and the result follows.

3 Proofs for Section 3: Batch Contextual Bandits

Note that throughout this section, as in the main body of the paper, we use r̂(x) to denote the imputed
reward estimator

r̂(x) = τq(x) + 1aλ(x, a)(ra − τq(x)a). (40)

This simplified notation allows us to simply write r̂ in place of r in the expressions below. However,
this notation also masks the dependence of r̂(x) on the model output q and the observation (x, a, ra).
That is, to be more explicit, the full dependence of r̂ can be fully expressed as r̂(x, a, ra, q(x)).

Proposition 4 For any q, τ > 0 and observation (x, a, ra): τDF

(r̂(x)
τ

∥∥q(x)
)

= Gτ (f ◦ q, r̂, x).

Proof: By Lemma 13 below we have Sτ (f ◦q, r̂, x) = −τF
(
r̂
τ

)
+ τDF

(
r̂
τ ‖q(x)

)
. By Lemma 14

below we also know S∗τ (r̂, x) = −τF
(
r̂
τ

)
. Hence

Gτ (f ◦ q, r̂, x) = Sτ (f ◦ q, r̂, x)− S∗τ (r̂, x) (41)

=
(
−τF

(
r̂
τ

)
+ τDF

(
r̂
τ ‖q(x)

))
−
(
−τF

(
r̂
τ

))
(42)

= τDF

(
r̂
τ ‖q(x)

)
. (43)

Theorem 5 For any model q, τ > 0, observation (x, a, ra), and baseline v:

L(q, r̂, x) ≥ τDF

(
r̂(x)
τ

∥∥∥q(x) + v
τ

)
= Gτ (f ◦ q, r̂, x) ≥ 0. (44)

Moreover, L is calibrated with respect to Sτ (f ◦ q, r̂−v, x) with calibration function δ(x, ε) = ε.

Proof: The middle equality in (44) is established by Proposition 4 combined with the shift in-
variance of DF established in Lemma 12 below. The last inequality in (44) follows immediately
from the definition of Gτ . The first inequality in (44) follows from the definition L(q, r̂, x) =

5

τDF

(
q(x) + v

τ

∥∥∥ r̂τ)+ τ
4

∥∥q(x)− r̂−v
τ

∥∥2
combined with the inequality (36) established in the proof

of Theorem 3.

Finally, note that L is also nonnegative, yet L(q, r̂, x) = 0 at q(x) = r̂−v
τ , which implies this is a

global minimizer of L, which also must achieve suboptimality gap Gτ (f ◦ q, r̂ − v, x) = 0 since L
dominates Gτ . Hence, any desired upper bound ε > 0 on the suboptimality Gτ (f ◦ q, r̂ − v, x) is
achieved by finding a q such that L(q, r̂, x) ≤ ε.

Theorem 6 For any model q, any r̂ such that E[r̂|x] = E[r|x], and any baseline v:

E[L(q, r̂, x)] ≥ E
[
τDF

(
r̂(x)
τ

∥∥∥q(x) + v
τ

)]
≥ Gτ (f ◦ q) ≥ 0. (45)

Proof: Assume a fixed q, and note that r̂(x) is a random vector derived from q and the sample
(x, a, ra) ∼ p(x, r)β(a|x) (i.e., a is independent of r given x). The last inequality in (45) is
immediate from the definition of Gτ (f ◦ q). The first inequality in (45) is also immediate given
Theorem 5, which establishes L(q, r̂, x) ≥ τDF

(
r̂(x)
τ

∥∥∥q(x) + v
τ

)
pointwise for all observations

(x, a, ra). To establish the middle inequality in (45), first note that for every fixed x, the function
S∗τ (r, x) = infq∈Q S(f ◦ q, r, x) is a pointwise infemum of linear functions of r, hence concave in
r [2, §3.2.3]. Thus we obtain

E
[
τDF

(
r̂(x)
τ

∥∥∥q(x) + v
τ

)]
= E

[
τDF

(
r̂(x)
τ

∥∥∥q(x)
)]

by Lemma 12 below (46)

= E [Sτ (f ◦ q, r̂, x)− S∗τ (r̂, x)] by Proposition 4 (47)

= E [Sτ (f ◦ q, r̂, x)]− E
[

inf
q∈Q
Sτ (f ◦ q, r̂, x)

]
(48)

≥ E [Sτ (f ◦ q, r̂, x)]− inf
q∈Q

E [Sτ (f ◦ q, r̂, x)] by Jensen’s inequality (49)

= E [Sτ (f ◦ q, r, x)]− inf
q∈Q

E [Sτ (f ◦ q, r, x)] (50)

by linearity of Sτ with respect to r and unbiasedness of r̂
= Sτ (f ◦ q)− S∗τ = Gτ (f ◦ g). (51)

3.1 Concentration

To keep the technical presentation straightforward, we assume the domain X is a bounded subset of
Rn for some n.

3.1.1 Well-behavedness conditions for concentration

For concentration to hold uniformly over a class of random variables, such as those defined by scalar-
valued divergences between model outputs q(x) and estimated rewards r̂(x), we need to impose a
set of assumptions to ensure the needed quantities remain appropriately bounded. In particular, we
need to assume the following about p(x, r), β, r̂ andH:

• There exist constants cX and cR such that ‖x‖2 ≤ cX and ‖r‖∞ ≤ cR for all (x, r) in the
support of p(x, r).

• There exists a constant ρ > 0 such that β(a|x) ≥ ρ for all x ∈ X and a ∈ A.
• E[r̂(x)|x] = E[r|x] for all x; i.e., r̂(x) is unbiased.
• Every q ∈ H can be expressed as a composition of a bounded linear with a general bounded

function; that is,H =W ◦ Z , whereW = {W : ‖W‖2 ≤ cW } and Z = {z : ‖z(x)‖2 ≤
cZ ∀x ∈ support(p(x, r))}. This implies q can be expressed as q(x) = Wz(x). An
example is a neural network with bounded weights; see Section 3.1.3. Let cH = cW cZ .

We say that the collection p(x, r), β, r̂ andH is “well behaved” if the above assumptions are satisfied.

6

The main consequence of these assumptions is that the Rademacher complexity of the class of random
variables of interest will then exhibit reasonable contraction. In particular, we are interested in the
scalar valued divergence DF

(r̂(x)
τ

∥∥q(x)
)

obtained by a function q ∈ H on a given sample (x, a, ra).
Consider the class of scalar-valued functions induced by composing the divergence of interest with a
model q ∈ H:

F =
{
da,r : da,r(q(x)) = DF

(r̂(x)
τ

∥∥q(x)
)

where q ∈ H
}
, (52)

where a ∈ A and r ∈ support(p(x, r)). The Rademacher complexity of F can then be defined as

RT (F) =
1

T
E

[
sup
q∈H

T∑
i=1

σidai,ri(q(xi))

]
, (53)

where the σi are independent and uniformly distributed over {1,−1} [1, 7].

The key to the well-behavedness conditions is that they allow us to establish in Lemma 11 below that
there exists a constant cF such that

RT (F) ≤ cF√
T
. (54)

3.1.2 Main concentration results

Recall the definitions of the empirical surrogate loss and empirical divergence respectively

L̂(q,D) =
1

T

∑
(xi,ai,ri,βi)∈D

L(q, r̂, xi) (55)

D̂(q,D) =
1

T

∑
(xi,ai,ri,βi)∈D

DF

(r̂(xi)
τ

∥∥q(xi)
)
. (56)

Lemma 7 Assume H, β, p(x, r) and r̂ are “well behaved”. Then for any τ, δ > 0 there exists a
constant C such that with probability at least 1− δ:

E
[
DF

(
r̂(x)
τ

∥∥q(x)
)]

≤ D̂F (q,D) + C√
T
∀q ∈ H. (57)

Proof: Assuming well-behavedness, by Lemma 9 below we know that there exists a constant cD
such that cD ≥ DF

(r̂(x)
τ

∥∥q(x)
)
≥ 0 for all q ∈ H and (x, r) in the support of p(x, r). Using this

fact, the bound [7, Theorem 26.5] can then be applied to show that with probability at least 1− δ, for
all q ∈ H:

E
[
DF

(r̂(x)
τ

∥∥q(x)
)]
≤ D̂F (q,D) + 2RT (F) + 4cD

√
2
T log 2

δ . (58)

By Lemma 11 below we also know there exists a constant cF such that RT (F) ≤ cF√
T

, hence C can

be chosen to be 2cF + 4cD
√

2 log(2/δ).

Theorem 8 Assume H, β, p(x, r) and r̂ are “well behaved”. Then for any v and τ, δ > 0, there
exists aC such that with probability at least 1−δ: if L̂(q,D) < τC√

T
for q ∈ H then Gτ (f ◦q) ≤ 2τC√

T
.

Proof: By Theorem 5 we know L(q, r̂, x) ≥ τDF

(r̂(x)
τ

∥∥q(x) + v
τ

)
for any τ > 0, model q,

observation (x, a, ra), and baseline v. Assuming well-behavedness, Lemma 7 above shows that for
any τ, δ > 0 there exists a constant C such that with probability at least 1− δ, for any q ∈ H:

L̂(q,D) ≥ τD̂(q,D) (59)

≥ E
[
τDF

(r̂(x)
τ

∥∥q(x)
)]
− τC√

T
(60)

≥ Gτ (f ◦ q)− τC√
T
, (61)

where the last inequality follows from Theorem 6. Assume there is a q ∈ H that achieves L̂(q,D) ≤
τC√
T

. Then by (61) it follows that, with probability at least 1− δ:

Gτ (f ◦ q) ≤ L̂(q,D) + τC√
T
≤ 2τC√

T
. (62)

7

Lemma 9 Assume H, β, p(x, r) and r̂ are “well behaved”. Then for any τ > 0 there exists a
constant cD such that cD ≥ DF

(r̂(x)
τ

∥∥q(x)
)
≥ 0 for all a ∈ A, q ∈ H and (x, r) in the support of

p(x, r).

Proof: Nonnegativity is immediate. Fix τ > 0, a ∈ A, and recall the definition:

DF

(r̂(x)
τ

∥∥q(x)
)

= F
(r̂(x)

τ

)
− F

(
q(x)

)
− f(q(x)) ·

(
r̂(x)
τ − q(x)

)
(63)

= F
(
q(x) + 1a

ra/τ−q(x)a
β(a|x)

)
− F

(
q(x)

)
− f(q(x))a

ra/τ−q(x)a
β(a|x) . (64)

We bound each term. First note that for any q ∈ RK we have |F (q)| ≤ ‖q‖ + logK [2, §3.1.5],
hence

|F (q(x))| ≤ cH + logK (65)

|F
(r̂(x)

τ

)
| ≤ ‖q(x)‖+

∣∣ ra
τβ(a|x)

∣∣+
∣∣ q(x)a
β(a|x)

∣∣+ logK (66)

≤
(

1 + 1
ρ

)
cH + cR

τρ + logK (67)∣∣f(q(x))a
(

ra
τβ(a|x) −

q(x)a
β(a|x)

)∣∣ ≤ ∣∣ ra
τβ(a|x)

∣∣+
∣∣ q(x)a
β(a|x)

∣∣ ≤ cR
τρ + cH

ρ . (68)

Therefore

DF

(r̂(x)
τ

∥∥q(x)
)
≤ 2

(
1 + 1

ρ

)
cH + 2 cRτρ + 2 logK. (69)

Lemma 10 For τ > 0, β ≥ ρ, any a ∈ A and any r ∈ support(p(x, r)), the mapping da,r(q) =

DF

(
r̂
τ

∥∥q) is Lipchitz continuous, with Lipschitz bound at most 2
(
1 + 1

ρ

)
.

Proof: For any a ∈ A and r ∈ support(p(x, r)), expand the definition as in (64):

da,r(q) = F
(
q + 1a

ra/τ−qa
βa

)
− F

(
q
)
− f(q)a

ra/τ−qa
βa

. (70)

Note that ‖∇F (q)‖ = ‖f(q)‖ ≤ 1 for all q, hence F (q) is 1-Lipschitz. A Lipschitz bound can then
be formulated for each term in (70), since the mapping q 7→ q + 1a

ra/τ−qa
βa

is
(
1 + 1

ρ

)
-Lipschitz,

and the mapping q 7→ f(q)a
ra/τ−qa

βa
is 1
ρ -Lipschitz. Therefore, da,r is 2

(
1 + 1

ρ

)
-Lipschitz.

Lemma 11 AssumeH, β, p(x, r) and r̂ are “well behaved”. Then there exists a constant cF such
that

RT (F) ≤ cF√
T
. (71)

Proof: To bound the Rademacher complexity of F , it is easier to first consider the Rademacher
complexity ofH using the definition for vector-valued functions developed in [5]; define

RT (H) =
1

T
E

[
sup
q∈H

T∑
i=1

K∑
a=1

σiaq(xi)a

]
, (72)

where the σij are independent and uniformly distributed over {1,−1} [5]. As noted above,F can then
characterized as a composition of the mappings da,r(q) specified in (70) with q ∈ H. By Lemma 10,

we know that each mapping da,r is Lipschitz continuous with Lipschitz bound at most `d
4
= 2
(
1+ 1

ρ

)
.

Therefore, the result of [5, Corollary 4] can be applied to establish RT (F) ≤
√

2`dRT (H).

Then, to bound the Rademacher complexity of H, we exploit the assumed structure H = W ◦ Z .
Here again the result of [5, §4.2] shows that ifH consists of mappings of the form q(x) = Wz(x),
with ‖W‖2 ≤ cW and ‖z(x)‖2 ≤ cZ for all x ∈ support(p(x, r)), then RT (H) ≤

√
2K`dcW cZ√

T
.

8

3.1.3 Feedforward neural networks

The well-behavedness conditions are sufficiently general to allow neural network representations for
q(x). For example, an m-layer feedforward neural network can be written as a composition of matrix
multiplications and a nonlinear transfer:

q(x) = W (m) ◦ φ ◦W (m−1) ◦ φ · · · ◦ φ ◦W (1) ◦ x, (73)

where W (j) are the parameter matrices and φ is a componentwise transfer with bias:

φ(z) =


φ(z1)

...
φ(zK)

1

 . (74)

Standard choices for φ, such as ReLU, sigmoid and tanh, are Lipschitz bounded. For example, the
ReLU transfer φ(z) = z+ is 1-Lipschitz. This means that if the parameter matrices W (j) are also
bounded, i.e., ‖W (j)‖2 ≤ Bj , then q(x) in (73) is itself Lipschitz continuous with Lipschitz constant
B =

∏m
j=1Bj . This can be proved using a straightforward induction [8], exploiting the bounding

technique for linear functions in [4].

Consider the class of functions defined by a feedforward neural network (73) with bounded parameters

H = {q : q(x) = W (m) ◦ φ · · · ◦ φ ◦W (1) ◦ x, ‖W (j)‖2 ≤ Bj , φ 1-Lipschitz}. (75)

This class satisfies the well-behavedness conditions for H stated above, since any q ∈ H can be
written as q(x) = W (m)z(x) for a function z(x) = φ ◦W (m−1) ◦ φ · · · ◦ φW (1) ◦ x. Then by

construction we have ‖W (m)‖ ≤ Bm
4
= cW and ‖z(x)‖ ≤ cX

∏m−1
j=1 Bj

4
= cZ .

3.2 Additional Lemmas

Lemma 12 For any q, r and scalar v:

DF (q + v‖r) = DF (q‖r) (76)
DF (r‖q + v) = DF (r‖q); (77)

that is, DF is shift invariant in either argument.

Proof: First, recall that by the definitions of f and F we have

log f(q + v) = q + v − F (q + v) = q + v − F (q) + v = q − F (q) = log f(q) (78)
f(q + v) = f(q) (79)
F (q + v) = log 1 · eq+v = v + log 1 · eq = F (q) + v. (80)

Therefore, for the second identity (77), these identities yield

DF (r‖q + v) = F (r)− r · f(q + v) + F ∗(f(q + v)) (81)
= F (r)− r · f(q) + F ∗(f(q)) (82)
= DF (r‖q). (83)

For the first identity (76), note that f(r) is a probability vector for any r, hence

DF (q + v‖r) = F (q + v)− (q + v) · f(r) + F ∗(f(r)) (84)
= F (q) + v − (q · f(r) + v) + F ∗(f(r)) (85)
= F (q)− q · f(r) + F ∗(f(r)) (86)
= DF (q‖r). (87)

Lemma 13 For any x, r, q and τ > 0: Sτ (f ◦ q, r, x) = −τF
(
r
τ

)
+ τDF

(
r
τ ‖q(x)

)
.

9

Proof: Immedate from the defintions:

Sτ (f ◦ q, r, x) = −f(q(x)) · r + τf(q(x)) · log f(q(x)) (88)
= −f(q(x)) · r + τF ∗(f(q(x))) (89)
= −τF

(
r
τ

)
+ τF

(
r
τ

)
− f(q(x)) · r + τF ∗(f(q(x))) (90)

= −τF
(
r
τ

)
+ τDF

(
r
τ ‖q(x)

)
. (91)

Lemma 14 For any x, r and τ > 0: infq∈Q Sτ (f ◦ q, r, x) = −τF
(
r
τ

)
.

Proof: By Lemma 13 we know that Sτ (f ◦ q, r, x) = −τF
(
r
τ

)
+ τDF

(
r
τ ‖q(x)

)
. Since DF is

nonnegative, yet DF

(
r
τ ‖q(x)

)
= 0 when q(x) = r

τ , we know the lower bound value −τF
(
r
τ

)
is

achieved at this point.

4 Additional experimental details

4.1 Additional Experiment Details: MNIST

In the MNIST experiments we trained a conventional feedforward neural network with a single
hidden layer of 512 units and ReLU nonlinearities at the hidden layer. The standard training set of
60K examples was partitioned into the first 55K examples for training and the last 5K for validation.
The test set of 10K examples was only used to report the final test results after all hyperparamter
tuning was completed on the validation data only. All objectives were trained using the stochastic
gradient descent with classical momentum set to 0.9 (i.e. Momentum(0.9)) for 100 epochs.

The hyperparameters and values considered in these experiments were:
learning rate ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0},
temperature τ ∈ {0.1, 0.2, 0.5, 1.0, 2.0},
offset v ∈ {0.0, 0.1, 0.2, 0.5},
batch size ∈ {10, 20, 50, 100, 200, 500, 1000}, and
combination weights: uniform in the ten value range 0.0 to 1.0 with 0.1 increments.

4.2 Additional Experiment Details: CIFAR-10

In all the CIFAR-10 experiments, we trained a Resnet-20 model with layer sizes (3, 4, 6, 3) and filter
sizes (64, 64, 128, 256, 512) for 12000 (then 120000; see below) iterations using a TPU with batch
size of 128 * 8 = 1024, which corresponds to approximately 49 iterations per epoch for 50000 training
examples, or equivalently, 250 (then 2000; see below) epochs total for each run. We used a learning
rate of 0.1 with the momentum optimizer with parameter 0.9 along with Nesterov acceleration, along
with batch normalization with a decay of 0.9. We also rescaled the squared loss metric by a factor
of 0.01 to help stabilize learning. For the expected reward objective, we chose a baseline across
(0, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1.0). For the composite objective, we found the best surrogate
combination using a 0.05 weight on the average of the squared error and reverse imputed kl combined
with the 0.95 weight on the expected reward (without any baseline) uniformly across all the bandit
feedback tasks.

Although 250 epochs is already substantial training, allowing some objectives to produce good results,
to better understand the relative difficulty of the different optimization landscapes we conducted
longer training runs of 2000 epochs to ensure convergence was reached by all methods. The results
in Table 1 in the main body of the paper were taken from the longer runs to better approximate the
training set up used by [3] on the same training data.

4.3 Additional Experiment Details: Criteo

There are 35 features used to describe the context and candidates actions on the Criteo counterfactual
analysis dataset. Among them, 2 are continuous and the rest are discrete categorical features. We
encode the discrete features using one-hot encoding, which results in a 84017-dimensional sparse
feature vector for each context x. We then build linear models using different loss functions. A

10

weight vector W ∈ R84017 is learned for each loss. Different objectives are optimized using SGD
with momentum of 0.9. The table below lists the hyper-parameters we tuned for different losses.
The final set of hyper-parameters for each method is chosen according to the performance on the
validation set.

Hyperparameters Values Methods

Learning rate [0.01, 0.05, 0.1, 0.5, 1.0, 5.0] All

Batch size [1000, 5000] All

τ [0.01, 0.05, 0.1, 0.5, 1.0, 5.0]
∥∥q(x)− r−v

τ

∥∥2, DF∗(p‖π), Composite
λ [0.0001, 0.001, 0.01, 0.1, 1.0] POEM

α weight of DF∗(p‖π) [0.001, 0.01, 0.1, 1.0] Composite

5 Additional experimental results on MNIST

We repeated the experiments on MNIST 10 times to improve significance and to examine learning
performance in more detail. Training with the expected reward objective was prone to getting stuck
on poor plateaus in the cost sensitive misclassification (full reward feeback) case, so for that objective
we repeated the experiments 20 times.

Figure 2a and Figure 2b show the average learning curves (averaged over 10 runs, 20 runs for
“expected"), in terms of test misclassification error, for the various objectives. We observe that the
expected reward objective is very difficult to optimize, and often gets stuck on a plateau.

(a) Full reward feedback. (b) Partial reward (bandit) feedback.

Figure 2: Learning curves (test misclassification error) on MNIST.

To gain a better assessment of the significance of the test misclassification results, Figure 3a and
Figure 3b report the test misclassification error averaged over 10 runs (20 runs for “expected") with
standard deviations illustrated. These results reinforce the observations made in the main body of the
paper, except for the “expected" reward objective, which yielded poor results in the fully observed
case. Note that the large error bar for training under expected reward in the cost sensitive classification
setting (Figure 3a) is due to training getting stuck on a poor plateau in 6/20 runs. Removing these
poor runs and recalculating the mean test misclassification error and standard deviation based on the
remaining 14 runs yields the outcome given in Figure 4, which matches the findings in the main body
of the paper.

11

(a) Full reward feedback. (b) Partial reward (bandit) feedback.

Figure 3: Test misclassification error on MNIST.

Figure 4: Test misclassification error on MNIST, full reward feedback, but for expected reward
objective using 14/20 runs that escaped poor plateau.

6 Additional experimental results on CIFAR-10

We repeated the experiments on CIFAR-10 10 times to improve significance and to examine learning
performance in more detail. Figure 5a and Figure 5b show the average learning curves in terms of
test misclassification error, for the various objectives.

(a) Full reward feedback. (b) Partial reward (bandit) feedback.

Figure 5: Learning curves (training misclassification error) on CIFAR-10.

As above, to gain a better assessment of the significance of the test misclassification results, Figure 6a
and Figure 6b report the test misclassification error averaged over 10 runs with standard deviations
illustrated. These results reinforce the observations made in the main body of the paper.

12

(a) Full reward feedback. (b) Partial reward (bandit) feedback.

Figure 6: Test misclassification error on CIFAR-10.

However, as in the MNIST experiments, we find that after training for 250 epochs direct minimization
of the empirical risk R̂(π) is not competitive, yielding both high training and test error in both the
fully observed and partially observed reward cases. To investigate whether this training difficulty
was caused by plateaus that make it difficult to optimize this objective, we ran the experiments for
significantly longer, for 2000 instead of 250 epochs.

In the fully observed case (i.e. cost-sensitive classification), direct empirical risk minimization is even-
tually able to catch up to the other objectives, achieving both small training and test misclassification
error; see Figure 7a. Similarly, for the partially observed case (i.e. contextual bandit), we see a very
similar phenonmenon, where direct optimization of empirical risk is able to close the performance
gap with the other methods (but does not quite catch up); see Figure 7b. Thus, the hypothesis that the
empirical risk objective R̂(π) is indeed difficult to optimize, requiring extended training time and
careful tuning to eventually reach competitive results.

We note that in both cases, the results in Figure 7a and Figure 7b significantly improve the results
reported for resnet training on CIFAR-10 in [3], using a weaker exploration method in the contextual
bandit case here. The main body of the paper also shows an improvement using the same logged data
as [3].

(a) Full reward feedback. (b) Partial reward (bandit) feedback.

Figure 7: Misclassification error on CIFAR-10 data.

13

References
[1] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds

and structural results. Journal of Machine Learning Research, 3:463–482, 2002.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge, 2004.

[3] Thorsten Joachims, Adith Swaminathan, and Maarten de Rijke. Deep learning with logged bandit
feedback. In Proceedings of the International Conference on Learning Representations (ICLR),
2018.

[4] Sham M. Kakade, Karthik Sridharan, and Ambuj Tewari. On the complexity of linear prediction:
Risk bounds, margin bounds, and regularization. In Advances in Neural Information Processing
Systems 21, pages 793–800, 2008.

[5] Andreas Maurer. A vector-contraction inequality for Rademacher complexities. In International
Conference on Algorithmic Learning Theory (ALT), pages 3–17, 2016.

[6] Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu,
and Dale Schuurmans. Reward augmented maximum likelihood for neural structured prediction.
In Advances in Neural Information Processing Systems 29, pages 1723–1731, 2016.

[7] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge, 2014.

[8] Yuchen Zhang, Jason D. Lee, Martin J. Wainwright, and Michael I. Jordan. On the learnability
of fully-connected neural networks. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 83–91, 2017.

14

	Definitions
	Proofs for Section 2: Cost-sensitive Classification
	Proofs for Section 3: Batch Contextual Bandits
	Concentration
	Well-behavedness conditions for concentration
	Main concentration results
	Feedforward neural networks

	Additional Lemmas

	Additional experimental details
	Additional Experiment Details: MNIST
	Additional Experiment Details: CIFAR-10
	Additional Experiment Details: Criteo

	Additional experimental results on MNIST
	Additional experimental results on CIFAR-10

