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Appendix I. Proofs1

In this section, we provide proofs for the theoretical results presented in the main text.2

Proof of Theorems 1 to 33

We start by introducing necessary notations for the proof. We say an episode t is ε-bad if Vπ∗(M∗)−4

Y t ≥ ε. Let Tε be the number of episodes taken by UC-DTR that are ε-bad. Let Lε denote the indices5

of the ε-bad episodes up to episode T . The cumulative regret Rε(T ) in ε-bad episodes up to episode6

T is defined as Rε(T ) =
∑
t∈Lε Vπ∗(M

∗) − Y t. For any k = 1, . . . ,K, we define event counts7

N(s̄k, x̄k) in total episodes T as N(s̄k, x̄k) =
∑T
t=1 IS̄tk=s̄k,X̄t

k=x̄k
. Finally, we denote by Ht the8

history up to episode t, i.e., Ht = {X̄1
K , S̄

1
K , Y

1, . . . , X̄t
K , S̄

t
K , Y

t}.9

Lemma 2. Fix δ ∈ (0, 1), with probability at least 1− δ,10 ∑
t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
≤
√
Tε log(1/δ)

2
.

Proof. Let DT denote the sequence {X̄1
K , S̄

1
K , . . . , X̄

T
K , S̄

T
K}. Rewards Y t are independent vari-11

ables by conditioning onDT = dT . Applying Hoeffding’s inequality gives:12

P

(∑
t∈Lε

(
Ex̄tK [Y |s̄tK ]− Y t

)
≥
√
Tε log(1/δ)

2
| dT

)
≤ δ.

We thus have:13

P

(∑
t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
≥
√
Tε log(1/δ)

2
| dT

)
≤ δ

∑
dT

P (dT ) = δ.

Lemma 3. Fix ε > 0, δ ∈ (0, 1). With probability (w.p.) of at least 1 − δ, it holds for any T > 1,14

Rε(T ) of UC-DTR with parameter δ is bounded by15

Rε(T ) ≤ 12K
√
|S||X |Tε log(2K|S||X |T/δ) + 4K

√
Tε log(2T/δ)

Proof. Let M∗ denote the underlying DTR. Recall thatMt is a set of DTR instances such that for16

any M ∈Mt, its system dynamics satisfy17 ∥∥∥PMx̄k (·|s̄k)− P̂ tx̄k(·|s̄k)
∥∥∥

1
≤

√
6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣t/δ)
max{1, N t(s̄k, x̄k)}

, (16)

∣∣∣EMx̄K [Y |s̄K ]− Êtx̄K [Y |s̄K ]
∣∣∣ ≤√ 2 log(2K|S||X |t/δ)

max{1, N t(s̄K , x̄K)}
. (17)
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By union bounds and Hoeffding’s inequality (following a similar argument in [4, C.1]),18

P (M∗ ∈Mt) ≤
δ

4t2
.

Since
∑∞
t=1

1
4t2 ≤

π2

24 δ <
δ
2 , it follows that with probability at least 1− δ

2 ,M∗ ∈Mt for all episodes19

t = 1, 2, . . . .20

For the remainder of the proof, we will assume that M∗ ∈Mt for all t. Let EMt
x̄K [Y |s̄K ] denote the21

conditional expected reward in the optimistic DTR Mt. We can write Rε(T ) as:22

Rε(T ) =
∑
t∈Lε

(
Vπ∗(M

∗)− EMt

X̄t
K

[Y |S̄tK ]
)

(18)

+
∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)

(19)

+
∑
t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
. (20)

We will next derive bounds over Rε(T ) by bounding quantities in Eqs. (18) to (20) separately.23

Bounding Eq. (18) For any DTR M and policy π, let Vπ(s̄k, x̄k−1;M) = EMπ [Y |s̄k, x̄k−1] and24

Vπ(s̄k, x̄k;M) = EMπ [Y |s̄k, x̄k]. Since M∗ ∈ Mt, we must have Vπ∗(s1;M∗) ≤ Vπt(s1;Mt),25

i.e., the maximal expected reward of the optimal reward in the optimistic Mt is no less than that in26

the underlying DTR M∗ for any initial state s1. Further, since πt is deterministic, for any stage k27

and DTR M ,28

Vπt(S̄
t
k, X̄

t
k−1;M) = Vπt(S̄

t
k, X̄

t
k−1;M). (21)

We thus have29

Vπ∗(M
∗)− EMt

X̄t
K

[Y |S̄tK ] ≤ Vπ∗(M∗)− Vπ∗(S̄t1;M∗) + Vπt(S̄
t
1, X̄

t
1;M∗)− EMt

X̄t
K

[Y |S̄tK ].

Let Mt(k) denote a combined DTR obtained from M∗ and Mt such that30

• for i = 0, 1, . . . , k − 1, its transition probability PMt(k)
x̄i (si+1|s̄i) coincides with the transi-31

tion probability Px̄i(si+1|s̄i) in the real DTR M∗;32

• for i = k, . . . ,K−1, its transition probability PMt(k)
x̄i (si+1|s̄i) coincides with the transition33

probability PMt
x̄i (si+1|s̄i) in the optimistic Mt34

This is, for any π ∈ Π, the interventional distribution PMt(k)
π (x̄K , s̄K , y) factorizes as follows:35

PMt(k)
π (x̄K , s̄K , y) = PMt

x̄K (y|s̄K)

k−1∏
i=0

Px̄i(si+1|s̄i)

·
K−1∏
j=k

PMt
x̄j (si+1|s̄j)

K−1∏
l=1

πl+1(xl+1|s̄l+1, x̄l).

(22)

Obviously, EMt

X̄t
K

[Y |S̄tK ] = Vπt(S̄
t
K , X̄

t
K ;M

(K)
t ) and Vπt(S̄

t
1, X̄

t
1;Mt) = Vπt(S

t
1, X

t
1;M

(1)
t ). We36

thus have37

Vπt(S̄
t
1, X̄

t
1;Mt)− EMt

X̄t
K

[Y |S̄tK ] = Vπt(S̄
t
1, X̄

t
1;M

(1)
t )− Vπt(S̄tK , X̄t

K ;M
(K)
t )

=

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(1)
t )− Vπt(S̄tk+1, X̄

t
k+1;M

(K)
t )

=

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(1)
t )− Vπt(S̄tk+1, X̄

t
k;M

(K)
t ).
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The last step is ensured by Eq. (21). We further have:38

Vπt(S̄
t
1, X̄

t
1;Mt)− EMt

X̄t
K

[Y |S̄tK ] =

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

+

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k+1)
t )− Vπt(S̄tk+1, X̄

t
k;M

(k+1)
t ).

Eq. (18) can thus be written as:39

∑
t∈Lε

(
Vπt(Mt)− EMt

X̄t
K

[Y |S̄tK ]
)

=

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t ) +

∑
t∈Lε

Zt,

where Zt is defined as40

Zt = Vπ∗(M
∗)− Vπ∗(S̄t1;M) +

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k+1)
t )− Vπt(S̄tk+1, X̄

t
k;M

(k+1)
t )

By Eq. (22) and basic probabilistic operations,41

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

=
∑
sk+1

(PMt(sk+1|S̄k, X̄k)− P (sk+1|S̄k, X̄k))Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤
∥∥∥PMt
x̄k (·|s̄k)− Px̄k(·|s̄k)

∥∥∥
1

max
sk+1

Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤ 2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)

The last step follows from Eq. (16). From results in [4, D], we have42 ∑
t∈Lε

1√
max{1, N t(S̄tk, X̄

t
k)}
≤ (
√

2 + 1)
√
Tε|S̄k||X̄ k|.

This implies:43

∑
t∈Lε

K−1∑
k=1

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤
K−1∑
k=1

2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ)
≤ 2(
√

2 + 1)(K − 1)
√

6Tε|S||X | log(2K|S||X |T/δ) (23)

Let Ht denote the history up to episode t, i.e., {X̄1
K , S̄

1
K , Y

1, . . . , X̄t
K , S̄

t
K , Y

t}. Since |Zt| ≤ K44

and E[Zt+1|Ht] = 0, {Zt : t ∈ Lε} is a sequence of martingale differences. By Azuma-Hoeffding45

inequality [3], we have, with probability at least 1− δ
8T 2 ,46 ∑

t∈Lε

Zt ≤ K
√

6Tε log(2T/δ) (24)

Since
∑∞
T=1

1
8T 2 ≤ π2

48 δ <
δ
4 , the above inequality holds with probability 1 − δ

4 for all T > 1.47

Eqs. (23) and (24) combined give48 ∑
t∈Lε

(
Vπ∗(M

∗)− EMt

X̄t
K

[Y |S̄tK ]
)

≤ 2(
√

2 + 1)(K − 1)
√

6Tε|S||X | log(2K|S||X |T/δ) +K
√

6Tε log(2T/δ)

(25)
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Bounding Eq. (19) Since both M∗,Mt are in the setMt,49

EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ] ≤
∣∣∣EMt
x̄K [Y |s̄K ]− Êtx̄K [Y |s̄K ]

∣∣∣+
∣∣∣EX̄t

K
[Y |S̄tK ]− Êtx̄K [Y |s̄K ]

∣∣∣
≤ 2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

The last step follows from Eq. (17). From results in [4, D], we have50 ∑
t∈Lε

1√
max{1, N t(S̄tK , X̄

t
K)}

≤ (
√

2 + 1)
√
Tε|S||X |.

This implies51 ∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)
≤ 2(
√

2 + 1)
√

2Tε|S||X | log(2K|S||X |T/δ) (26)

Bounding Eq. (20) By Lem. 2, we have with probability at least 1− δ
8T 2 ,52

∑
t∈Lε

(
EX̄t

K
[Y |S̄tK ]− Y t

)
≤
√

3Tε log(2T/δ)

2
(27)

Since
∑∞
T=1

1
8T 2 ≤ π2

48 δ <
δ
4 , the above equation holds with probability 1− δ

4 for any T .53

Eqs. (25) to (27) together give that, with probability at least 1− δ
2 −

δ
4 −

δ
4 = 1− δ,54

Rε(T ) ≤ (K − 1)2(
√

2 + 1)
√

6Tε|S||X | log(2K|S||X |T/δ) +K
√

6Tε log(2T/δ)

+ 2(
√

2 + 1)
√

2Tε|S||X | log(2K|S||X |T/δ) +

√
3Tε log(2T/δ)

2
.

A quick simplification gives:55

Rε(T ) ≤ 12K
√
|S||X |Tε log(2K|S||X |T/δ) + 4K

√
Tε log(2T/δ).

Theorem 1. Fix a δ ∈ (0, 1). With probability (w.p.) of at least 1− δ, it holds for any T > 1, the56

regret of UC-DTR with parameter δ is bounded by57

R(T ) ≤ 12K
√
|S||X |T log(2K|S||X |T/δ) + 4K

√
T log(2T/δ).

Proof. Fix ε = 0. Naturally, Tε = T and Rε(T ) = R(T ). By Lem. 3,58

R(T ) ≤ 12K
√
|S||X |T log(2K|S||X |T/δ) + 4K

√
T log(2T/δ).

Theorem 2. For any T ≥ 1, with parameter δ = 1
T , the expected regret of UC-DTR is bounded by59

E[R(T )] ≤ max
π∈Π−

{
332K2|S||X | log(T )

∆π
+

32

∆3
π

+
4

∆π

}
+ 1.

Proof. By Lem. 3 and a quick simplification, we have60

Rε(T ) ≤ 23K
√
|S||X |Tε log(T/δ).

Since Rε(T ) ≥ εTε, εTε ≤ 23K
√
|S||X |Tε log(T/δ), which implies61

Tε ≤
232K2|S||X | log(T/δ)

ε2
. (28)

This implies that, with probability at least 1− δ,62

Rε(T ) ≤ 23K
√
|S||X |Tε log(T/δ) =

232K2|S||X | log(T/δ)

ε

4



Let ∆ = arg minπ∈Π− ∆π . Fix ε = ∆
2 , δ = 1

T , we have63

E[R∆
2

(T )] ≤ 332K2|S||X | log(T )

∆
+ 1. (29)

We now only need to bound the regrets cumulated in the episodes that are not ε-bad, which we call64

ε-good. Let R̃ε(T ) denote the regret in episodes that are ε-good. Let T̃ε denote the total number of65

ε-good episodes and let L̃ε be indices of ε-good episodes. Fix ε = ∆
2 , for any ε-good episode t, we66

have Vπt(M
∗)− Y t < ε. Fix event T̃∆

2
= t,67

R̃ε(T ) =
∑
i∈L̃ε

Vπ∗(M
∗)− Y i ≤ t∆

2
.

The above inequality is equivalent to68 ∑
i∈L̃∆

2

Vπ∗(M
∗)− Vπi(M∗)− Y i ≤ t

∆

2
−
∑
i∈L̃∆

2

Vπi(M
∗)

⇒
∑
i∈L̃∆

2

∆πi − Y i ≤ t
∆

2
−
∑
i∈L̃∆

2

Vπi(M
∗)

⇒
∑
i∈L̃∆

2

∆− Y i ≤ t∆
2
−
∑
i∈L̃∆

2

Vπi(M
∗)

Since |L̃ε| = T̃∆
2

, we have69

T̃∆
2

= t⇒
∑
i∈L̃∆

2

Vπi(M
∗)− Y i ≤ −t∆

2
. (30)

We could thus bound E[R̃∆
2

(T )] as70

E[R̃∆
2

(T )] ≤ ∆

2
E[T̃∆

2
(T )] ≤ ∆

2

T∑
t=1

tP (T̃∆
2

= t)

By Eq. (30), we further have71

E[R̃∆
2

(T )] ≤ ∆

2

T∑
t=1

tP

( ∑
i∈L̃∆

2

Vπi(M
∗)− Y i ≤ −t∆

2

)

Let Ct = Vπt(M
∗) − Y t. Since |Ct| < 1 and E[Ct+1|Ht] = 0, {Ci : i ∈ L̃∆

2
} is a sequence of72

martingale differences. Applying Azuma-Hoeffding lemma gives,73

P

( ∑
i∈L̃∆

2

Ci ≤ −t
∆

2

)
≤ e−∆2t

8 .

Thus74

E[R̃∆
2

(T )] ≤ ∆

2

T∑
t=1

te−
∆2t

8 ≤ ∆

2

64

∆4
(
∆2

8
+ 1)e−

∆2

8

which implies75

E[R̃∆
2

(T )] ≤ 32

∆3
+

4

∆
. (31)

Eqs. (29) and (31) together give:76

E[R(T )] = E[R∆
2

(T )] + E[R̃∆
2

(T )] ≤ 332K2|S||X | log(T )

∆
+

32

∆3
+

4

∆
+ 1

The right-hand side of the above inequality is a decreasing function regarding the gap ∆. By a quick77

simplification, we prove the statement.78
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Theorem 3. For any algorithm A, any natural numbers K ≥ 1, and
∣∣Sk∣∣ ≥ 2,

∣∣X k
∣∣ ≥ 2 for any79

k ∈ {1, . . . ,K}, there is a DTR M with horizon K, state domains S and action domains X , such80

that the expected regret of A after T ≥ |S||X | episodes is as least81

E[R(T )] ≥ 0.05
√
|S||X |T .

Proof. The classic results in bandit literature [1, Thm. 5.1] shows that for each state sequence K ,82

there exists a bandit instance such that for any the total regret of any algorithm is lower bound by83

E[R(T )] ≥ 0.05
∑
s̄K

√
N(s̄K)|X |,

whereN(s̄K) is the event count S̄K = s̄K for all T episodes. The lower bound in Thm. 3 is achieved84

when all states K are decided uniformly at random, i.e., N(s̄K) = T/|S̄K |.85

Proofs of Theorems 4 to 6, Lemma 1, and Corollary 286

In this section, we provide proofs for the bounds on transition probabilities of DTRs. Our proofs87

build on the notion of counterfactual variables [6, Ch. 7.1] and axioms of “composition, effectiveness88

and reversibility” defined in [6, Ch. 7.3.1].89

For a SCM M , arbitrary subsets of endogenous variables X,Y , the potential outcome of Y to90

intervention do(x), denoted by Yx(u), is the solution for Y with U = u in the sub-model Mx. It91

can be read as the counterfactual sentence “the value that Y would have obtained in situation U = u,92

had X been x.” Statistically, averaging u over the distribution P (u) leads to the counterfactual93

variables Yx. We denote P (Yx) a distribution over counterfactual variables Yx. We use P (yx) as a94

shorthand for probabilities P (Yx = y) when the identify of the counterfactual variables is clear.95

We now introduce a family of DTRs which represent the exogenous variables U using partitions96

defined by the corresponding counterfactual variables. For any k = 1, . . . ,K − 1, let Sk+1X̄k
97

denote a set of counterfactual variables {Sk+1x̄k
: x̄k ∈ X̄ k}. Similarly, let YX̄K

denote a set98

{Yx̄K : x̄K ∈ X̄K}. Further, we define S̄k+1X̄k
a set {S1, S2X̄1

, . . . , Sk+1X̄k
}.99

Definition 1 (Counterfactual DTR). A counterfactual dynamic treatment regime is a DTR100

〈U , {X̄K , S̄K , Y },F , P (u)〉 where for k = 2, . . . ,K,101

• The exogenous variables U = {X̄K , S̄KX̄K−1
, YX̄K

};102

• Values of S1, X̄K are drawn from P (X̄K , S̄KX̄K−1
, YX̄K

);103

• Values of Sk are decided by a function Sk ← τk(SkX̄k−1
, X̄k−1) = SkX̄k−1

;104

• Values of Y are decided by a function Y ← r(YX̄K
, X̄K) = YX̄K

.105

Give observational distribution P (s̄K , x̄K , y) > 0, we next construct a family of counterfac-106

tual DTRs MOBS that are compatible with the observational distribution, i.e., for any M ∈107

MOBS, PM (s̄K , x̄K , y) = P (s̄K , x̄K , y). First, any M ∈ MOBS, its exogenous distribution108

PM (X̄K , S̄KX̄K−1
, YX̄K

) must satisfy the following decomposition:109

PM (X̄K , S̄KX̄K−1
, YX̄K

) = PM (s1)
∏

x̄yK∈X̄K

PM (Yx̄yK |S̄Kx̄K−1
, X̄K)PM (X̄K |S̄Kx̄K−1

, X̄K−1)

·
K−1∏
k=1

∏
x̄k+1
k ∈X̄k

PM (Sk+1
X̄
k+1
k

|S̄kx̄k−1
, x̄k)PM (X̄k|S̄kx̄k−1

, X̄k−1).

Among quantities in the above equation, we define factors PM (s1) as the observational probabilities110

P (s1), i.e, PM (s1) = P (s1). We further define conditional probabilities111

PM (yx̄K |s̄Kx̄K−1
, x̄K) = P (y|s̄K , x̄K), PM (x̄K |s̄Kx̄K−1

, x̄K−1) = P (x̄K |s̄K , x̄K−1),

PM (sk+1x̄k
|s̄kx̄k−1

, x̄k) = P (sk+1|s̄k, x̄k), PM (x̄k|s̄kx̄k−1
, x̄k−1) = P (x̄k|s̄k, x̄k−1).
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Other factors can be arbitrary conditional probabilities. It is verifiable that for any M ∈ MOBS,112

PM (s̄K , x̄K , y) = P (s̄K , x̄K , y). To witness,113

PM (S̄K , X̄K , Y ) =

K−1∑
k=1

∑
{Yx̄

y
K

:x̄yK 6=x̄K}

∑
{Sk+1

x̄
k+1
k

:x̄k+1
k 6=x̄k}

PM (X̄K , S̄KX̄K−1
, YX̄K

)

= PM (s1)
∏

x̄yK∈X̄K

∑
{Yx̄

y
K

:x̄yK 6=x̄K}

PM (Yx̄yK |S̄Kx̄K−1
, X̄K)PM (X̄K |S̄Kx̄K−1

, x̄K−1)

·
K−1∏
k=1

∏
x̄k+1
k ∈X̄k

∑
{Sk+1

x̄
k+1
k

:x̄k+1
k 6=x̄k}

PM (Sk+1
x̄
k+1
k

|S̄kx̄k−1
, X̄k)PM (X̄k|S̄kx̄k−1

, X̄k−1)

= PM (S1)PM (Yx̄K |S̄Kx̄K−1
, X̄K)PM (X̄K |S̄Kx̄K−1

, X̄K−1)

·
K−1∏
k=1

PM (Sk+1x̄k
|S̄kx̄k−1

, x̄k)PM (X̄k|S̄kx̄k−1
, X̄k−1).

By definitions ofMOBS, we thus have that, for any s̄K , x̄K , y,114

PM (s̄K , x̄K , y) = P (s1)P (y|s̄K , x̄K)P (x̄K |s̄K , x̄K−1)

K−1∏
k=1

P (sk+1|s̄k, x̄k)P (x̄k|s̄k, x̄k−1)

= P (s̄K , x̄K , y).

We will now use the constructions ofMOBS to prove the non-identifiability of Px̄K (s̄K , y) in DTRs.115

Theorem 4. Given P (s̄K , x̄K , y) > 0, there exists DTRs M1,M2 such that PM1(s̄K , x̄K , y) =116

PM2(s̄K , x̄K , y) = P (s̄K , x̄K , y) while PM1
x̄K (s̄K , y) 6= PM2

x̄K (s̄K , y).117

Proof. We define two counterfactual DTRs M1,M2 ∈MOBS that are compatible with the observa-118

tional distribution P (s̄K , x̄K , y). If K = 1, for any y, s1, x1 and any xy1 6= x1, we define119

PM1(yxy1 |s1, x1) = 0, PM2(yxy1 |s1, x1) = 1

It is verifiable that120

PM1
x1

(s1, y) = P (s1, x1, y), PM2
x1

(s1, y) = P (s1, x1, y) + (1− P (x1|s1))P (s1)

Since P (s̄K , x̄K , y) > 0, we have PM2
x1

(s1, y) 6= PM1
x1

(s1, y).121

We now consider the case where K > 1. For any x̄K , s̄K , y, and any x̄yK 6= x̄K , we define122

PM1(yx̄yK |s̄Kx̄K−1
, x̄K) = 0 (32)

By definitions, PM1
x̄K (s̄K , y) is equal to the counterfactual quantities PM1(s̄Kx̄K−1

, yx̄K ). Thus,123

PM1
x̄K (s̄K , y) = PM1(s̄Kx̄K−1

, yx̄K , x̄K) +
∑

x̄′K 6=x̄K

PM1(s̄Kx̄K−1
, yx̄K , x̄

′
K)

= PM1(s̄Kx̄K−1
, yx̄K , x̄K) +

∑
x̄′K 6=x̄K

PM1(yx̄K |s̄Kx̄K−1
, x̄′K)PM1(s̄Kx̄K−1

, x̄′K)

By the composition axiom, S̄Kx̄K−1
= S̄K , Yx̄K = Y if X̄K = x̄K . Thus,124

PM1(s̄Kx̄K−1
, yx̄K , x̄K) = PM1(s̄K , y, x̄K). Since M1 ∈ MOBS, PM1(s̄K , y, x̄K) =125

P (s̄K , y, x̄K). Together with Eq. (32), we can obtain126

PM1
x̄K (s̄K , y) = P (s̄K , x̄K , y).

As for M2, for any x̄KK−1 6= x̄k−1, we define its factor127

PM2(sK
x̄KK−1

|s̄K−1x̄K−2
, x̄K−1) = 0
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The above equation implies that for any x̄′K−1 6= x̄K−1,128

PM2(s̄Kx̄K−1
, yx̄K , x̄

′
K−1)

= PM2(yx̄K |s̄Kx̄K−1
, x̄′K−1)PM2(sKx̄K−1

|s̄K−1x̄K−2
, x̄′K−1)PM2(s̄K−1x̄K−2

, x̄′K−1)

= 0 (33)

For any x̄yK 6= x̄K , we define129

PM2(yx̄yK |s̄Kx̄K−1
, x̄K) = 1 (34)

We will now show that the above equation implies that for any x′K 6= xK ,130

PM2(s̄Kx̄K−1
, yx̄k , x

′
K , x̄K−1) = P (s̄K , x̄K−1). (35)

We first write PM2(s̄Kx̄K−1
, yx̄k , x

′
K , x̄K−1) as:131

PM2(s̄Kx̄K−1
, yx̄k , x

′
K , x̄K−1) = PM2(yx̄k |s̄Kx̄K−1

, x′k, x̄K−1)PM2(s̄Kx̄K−1
, x′k, x̄K−1)

It is immediate from Eq. (34) that132

PM2(s̄Kx̄K−1
, yx̄k , Xk 6= xk, x̄K−1) = PM2(s̄Kx̄K−1

, x̄K−1).

By the composition axiom, S̄Kx̄K−1
= S̄K if X̄K−1 = x̄k−1. Since M2 ∈MOBS, we thus have:133

PM2(s̄Kx̄K−1
, yx̄k , Xk 6= xk, x̄K−1) = PM2(s̄K , x̄K−1) = P (s̄K , x̄K−1).

We now turn our attention to the interventional distribution PM2
x̄K (s̄K , y). By expanding on X̄K ,134

PM2
x̄K (s̄K , y) = PM2(s̄Kx̄K−1

, yx̄k , x̄K) + PM2(s̄Kx̄K−1
, yx̄k , Xk 6= xk, x̄K−1)

+ PM2(s̄Kx̄K−1
, yx̄k , X̄K−1 6= x̄K−1)

The above equation, together with Eqs. (33) and (35), gives:135

PM2
x̄K (s̄K , y) = PM2(s̄Kx̄K−1

, yx̄k , x̄K) + P (s̄K , x̄K−1).

Again, by the composition axiom and M2 ∈MOBS,136

PM2
x̄K (s̄K , y) = PM2(s̄K , y, x̄K) + P (s̄K , x̄K−1) = P (s̄K , y, x̄K) + P (s̄K , x̄K−1).

Since P (s̄K , x̄K−1) > 0, we have PM1
x̄K (s̄K , y) 6= PM2

x̄K (s̄K , y), which proves the statement.137

Lemma 1. For a DTR, given P (s̄K , x̄K , y), for any k = 1, . . . ,K − 1,138

Px̄k(s̄k+1)− Px̄k(s̄k) ≤ P (s̄k+1, x̄k)− P (s̄k, x̄k).

Proof. Note that Px̄k(s̄k+1) can be written as the counterfactual quantity P (s̄k+1x̄k
). For any set of139

variables V , let ¬v denote an event V 6= v. Px̄k(s̄k+1) could thus be written as:140

Px̄k(s̄k+1) = P (s̄k+1x̄k
, x̄k) + P (s̄k+1x̄k

,¬xk, x̄k−1) + P (s̄k+1x̄k
,¬x̄k−1),

By the composition axiom, S̄k+1x̄k
= S̄k+1 if X̄k = x̄k. So,141

Px̄k(s̄k+1) = P (s̄k+1, x̄k) + P (s̄k+1x̄k
,¬xk, x̄k−1) + P (s̄k+1x̄k

,¬x̄k−1)

≤ P (s̄k+1, x̄k) + P (s̄kx̄k ,¬xk, x̄k−1) + P (s̄kx̄k ,¬x̄k−1)

= P (s̄k+1, x̄k) + P (s̄kx̄k , x̄k−1)− P (s̄kx̄k , x̄k) + P (s̄kx̄k )− P (s̄kx̄k , x̄k−1)

= P (s̄kx̄k ) + P (s̄k+1, x̄k)− P (s̄kx̄k , x̄k).

Again, by the composition axiom, S̄kx̄k = S̄k if X̄k = x̄k. Since P (s̄kx̄k ) = Px̄k(s̄k),142

Px̄k(s̄k+1) ≤ Px̄k(s̄k) + P (s̄k+1, x̄k)− P (s̄k, x̄k)

Rearranging the above equation proves the statement.143

Lemma 4. For a DTR, given P (s̄K , x̄K , y), for any k = 0, . . . ,K − 1,144

Px̄k(s̄k+1) ≤ Γ(s̄k+1, x̄k),

where Γ(s̄k+1, x̄k) = P (s̄k+1, x̄k)− P (s̄k, x̄k) + Γ(s̄k, x̄k−1) and Γ(s1) = P (s1).145

Proof. We prove this statement by induction.146
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Base Case: k = 0 By definition, Γ(s1) = P (s1). We thus have P (s1) ≤ Γ(s1).147

Induction Step We assume that the statement holds for k, i.e., Px̄k(s̄k+1) ≤ Γ(s̄k+1, x̄k). We148

will prove that the statement holds for k + 1, i.e., Px̄k+1
(s̄k+2) ≤ Γ(s̄k+2, x̄k+1). To begin with,149

Px̄k+1
(s̄k+2) = Px̄k+1

(s̄k+2)− Px̄k+1
(s̄k+1) + Px̄k+1

(s̄k+1).

By Lem. 1,150

Px̄k+1
(s̄k+2) ≤ P (s̄k+2, x̄k+1)− P (s̄k+1, x̄k+1) + Px̄k+1

(s̄k+1).

Since S̄k+1 are non-descendants of Xk+1, Px̄k+1
(s̄k+1) = Px̄k(s̄k+1). Since Px̄k(s̄k+1) ≤151

Γ(s̄k+1, x̄k),152

Px̄k+1
(s̄k+2) ≤ P (s̄k+2, x̄k+1)− P (s̄k+1, x̄k+1) + Γ(s̄k+1, x̄k) = Γ(s̄k+2, x̄k+1).

Theorem 5. For a DTR, given P (s̄K , x̄K , y) > 0, for any k = 1, . . . ,K − 1,153

P (s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
≤ Px̄k(sk+1|s̄k) ≤ Γ(s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
,

Proof. By basic probabilistic operations,154

Px̄k(sk+1|s̄k) =
Px̄k(s̄k+1)

Px̄k(s̄k)
.

By Lem. 1,155

Px̄k(sk+1|s̄k) ≤ 1 +
P (s̄k+1, x̄k)− P (s̄k, x̄k)

Px̄k(s̄k)
.

Since P (s̄k+1, x̄k) ≤ P (s̄k, x̄k), Px̄k(sk+1|s̄k) is upper-bounded when Px̄k(s̄k) is the maximal.156

Since S̄k are non-descendants of Xk, Px̄k(s̄k) = Px̄k−1
(s̄k). Together with Lem. 4, the above157

equation can be further bounded as:158

Px̄k(sk+1|s̄k) ≤ 1 +
P (s̄k+1, x̄k)− P (s̄k, x̄k)

Γ(s̄k, x̄k−1)
=

Γ(s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
.

By definition, Px̄k(s̄k+1) = P (s̄k+1x̄k
). By basic probabilistic operations,159

Px̄k(sk+1|s̄k) =
P (s̄k+1x̄k

, x̄k) + P (s̄k+1x̄k
,¬x̄k)

Px̄k(s̄k)
≥
P (s̄k+1x̄k

, x̄k)

Px̄k(s̄k)
.

By the composition axiom, S̄k+1x̄k
= S̄k+1 if X̄k = x̄k. Applying Lem. 4 again gives160

Px̄k(sk+1|s̄k) ≥ P (s̄k+1, x̄k)

Px̄k(s̄k)
=
P (s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
.

Theorem 6. Given P (s̄K , x̄K , y) > 0, for any k ∈ {1, . . . ,K − 1}, let Px̄k(sk+1|s̄k) ∈161

[ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)] denote the bound given by Thm. 5. There exists DTRs M1,M2 such162

that PM1(s̄K , x̄K , y) = PM2(s̄K , x̄K , y) = P (s̄K , x̄K , y) while PM1
x̄k (sk+1|s̄k) = ax̄k,s̄k(sk+1),163

PM2
x̄k (sk+1|s̄k) = bx̄k,s̄k(sk+1).164

Proof. Without loss of generality, we assume that K > 1. We consider two counterfactual DTRs165

M1,M2 ∈MOBS compatible with the observational distribution P (s̄K , x̄K , y), which we define at166

the beginning of this section. For all i = 1, . . . , k − 1, for any x̄i+1
i 6= x̄i, we define that for any167

M ∈ {M1,M2}, its factors satisfy:168

PM (si+1
x̄
i+1
i

|s̄ix̄i−1
, x̄i) = 1. (36)

Following a similar argument in Lem. 1, we will show that for any M ∈ {M1,M2}, for any169

i = 1, . . . , k − 1,170

PMx̄i (s̄i+1)− PMx̄i (s̄i) = P (s̄i+1, x̄i)− P (s̄i, x̄i). (37)
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By PMx̄i (s̄i+1) = PM (s̄i+1x̄i
) and basic probabilistic operations,171

PMx̄i (s̄i+1) = PM (s̄i+1x̄i
, x̄i) + PM (s̄i+1x̄i

, Xi 6= xi, x̄i−1) + PM (s̄i+1x̄i
, X̄i−1 6= x̄i−1).

By the composition axiom, S̄i+1x̄i
= S̄i+1 if X̄i = x̄i. Since M ∈ MOBS, PM (s̄i+1, x̄i) =172

P (s̄i+1, x̄i). Therefore,173

PMx̄i (s̄i+1) = P (s̄i+1, x̄i) + PM (s̄i+1x̄i
, Xi 6= xi, x̄i−1) + PM (s̄i+1x̄i

, X̄i−1 6= x̄i−1),

= P (s̄i+1, x̄i) +
∑
x′i 6=xi

PM (si+1x̄i
|s̄ix̄i−1

, x′i, x̄i−1)P (s̄ix̄i−1
, x′i, x̄i−1)

+
∑

x̄′i−1 6=x̄i−1

PM (si+1x̄i
|s̄ix̄i−1

, xi, x̄
′
i−1)P (s̄ix̄i−1

, xi, x̄
′
i−1)

By Eq. (36), PM (si+1x̄i
|s̄ix̄i−1

, x′i, x̄i−1) = PM (si+1x̄i
|s̄ix̄i−1

, xi, x̄
′
i−1) = 1, which gives174

PMx̄i (s̄i+1) = P (s̄i+1, x̄i) + PM (s̄ix̄i , Xi 6= xi, x̄i−1) + PM (s̄ix̄i , X̄i−1 6= x̄i−1)

= P (s̄i+1, x̄i) + PM (s̄ix̄i , x̄i−1)− PM (s̄ix̄i , x̄i) + PM (s̄ix̄i )− P
M (s̄ix̄i , x̄i−1)

= PM (s̄ix̄i ) + P (s̄i+1, x̄i)− PM (s̄ix̄i , x̄i)

Again, by the composition axiom and M ∈MOBS, PM (s̄ix̄i , x̄i) = P (s̄i, x̄i). Since PM (s̄ix̄i ) =175

PMx̄i (s̄i), we have176

PMx̄i (s̄i+1) = PMx̄i (s̄i) + P (s̄i+1, x̄i)− P (s̄i, x̄i).

Rearranging the above equation proves Eq. (36). Following a similar induction procedure in the proof177

of Lem. 4, we have that for any M ∈ {M1,M2},178

PMx̄k−1
(s̄k) = Γ(s̄k, x̄k−1). (38)

As for M1, for any x̄k+1
k 6= x̄k, we define179

PM1(sk+1
x̄
k+1
k

|s̄kx̄k−1
, x̄k) = 0

This implies180

PM1
x̄k (s̄k+1) = PM1(s̄k+1x̄k

, x̄k) +
∑
x̄′k 6=x̄k

PM1(sk+1x̄k
|s̄kx̄k−1

, x̄′k)PM1(s̄kx̄k−1
, x̄′k)

= PM1(s̄k+1x̄k
, x̄k).

By the composition axiom and M1 ∈MOBS, PM1(s̄k+1x̄k
, x̄k) = P (s̄k+1, x̄k), which gives181

PM1
x̄k (s̄k+1) = P (s̄k+1, x̄k).

The above equation, together with Eq. (38), gives:182

PM1
x̄k (sk+1|s̄k) =

PM1
x̄k (s̄k+1)

PMx̄k−1
(s̄k)

=
P (s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
= ax̄k,s̄k(sk+1).

As for M2, for any x̄k+1
k 6= x̄k, we define183

PM2(sk+1
x̄
k+1
k

|s̄kx̄k−1
, x̄k) = 1.

Following a similar procedure for proving Eq. (38), we have184

PMx̄k (s̄k+1) = Γ(s̄k+1, x̄k).

Thus,185

PM2
x̄k (sk+1|s̄k) =

PM2
x̄k (s̄k+1)

PM2
x̄k−1

(s̄k)
=

Γ(s̄k+1, x̄k)

Γ(s̄k, x̄k−1)
= bx̄k,s̄k(sk+1).
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Corollary 2. For a DTR, given P (s̄K , x̄K , y) > 0,186

E[Y |s̄K , x̄K ]P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
≤ Ex̄K [Y |s̄k] ≤ 1 +

(E[Y |s̄K , x̄K ]− 1)P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
.

Proof. By basic probabilistic operations,187

Ex̄K [Y |s̄k] =
Ex̄K [Y |s̄K ]Px̄K (s̄K)

Px̄K (s̄K)
.

Note the counterfactual Yx̄K ,s̄K (u) ∈ [0, 1]. Following a similar argument as Lem. 1,188

Ex̄K [Y |s̄K ]Px̄K (s̄K)− Px̄K (s̄K) ≤ E[Y |s̄K , x̄K ]P (s̄K , x̄K)− P (s̄K , x̄K).

This implies189

Ex̄K [Y |s̄k] ≤ 1 +
(E[Y |s̄K , x̄K ]− 1)P (s̄K , x̄K)

Px̄K (s̄K)

Since E[Y |s̄K , x̄K ] ≤ 1, Ex̄K [Y |s̄k] is upper-bounded when Px̄K (s̄K) is the maximal. Since S̄K190

are non-descendants of XK , Px̄K (s̄K) = Px̄K−1
(s̄K). By Lem. 4,191

Ex̄K [Y |s̄k] ≤ 1 +
(E[Y |s̄K , x̄K ]− 1)P (s̄K , x̄K)

Γ(s̄k, x̄k−1)
.

By definition, Px̄K (y, s̄K) = P (yx̄K , s̄Kx̄K−1
). By basic probabilistic operations,192

Ex̄K [Y |s̄k] ≥
E[Yx̄K |s̄Kx̄K−1

, x̄K ]P (s̄Kx̄K−1
, x̄K)

Px̄K−1
(s̄K)

.

By the composition axiom, S̄Kx̄K−1
= S̄K−1, Yx̄K = Y if X̄K = x̄K . Applying Lem. 4 gives193

Ex̄K [Y |s̄k] ≥ E[Y |s̄K , x̄K ]P (s̄K , x̄K)

Px̄K (s̄K)
=
E[Y |s̄K , x̄K ]P (s̄K , x̄K)

Γ(s̄K , x̄K−1)
.

Proof of Theorems 7 and 8194

Lemma 5. Fix ε > 0, δ ∈ (0, 1). With probability (w.p.) of at least 1 − δ, it holds for any T > 1,195

Rε(T ) of UC-DTR with parameter δ and causal bounds C is bounded by196

Rε(T ) ≤ min
{

12K
√
|S||X |Tε log(2K|S||X |T/δ),

∥∥C∥∥
1
Tε

}
+ 4K

√
Tε log(2T/δ)

Proof. Note that causal bounds C is a set {C1, . . . ,CK} where for k = 1, . . . ,K − 1,197

Ck =
{
∀s̄k+1, x̄k :

[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]}
,

and CK =
{
∀s̄K , x̄K :

[
ax̄K ,s̄K , bx̄K ,s̄K

]}
.

(39)

Mc is a set of DTRs such that for any M ∈Mc, its causal quantities Px̄k(sk+1|s̄k) and Ex̄K [Y |s̄K ]198

satisfy the causal bounds C, i.e.,199

Px̄k(sk+1|s̄k) ∈
[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]
, and Ex̄K [Y |s̄K ] ∈

[
ax̄K ,s̄K , bx̄K ,s̄K

]
. (40)

LetMc
t =Mt ∩Mc. SinceMc

t ⊆Mt, following a similar argument in [4, C.1], we have200

P (M∗ ∈Mc
t) ≤ P (M∗ ∈Mt) ≤

δ

4t2
. (41)

Since
∑∞
t=1

1
4t2 ≤

π2

24 δ <
δ
2 , it follows that with probability at least 1 − δ

2 , M∗ ∈ Mt
c for all201

episodes t = 1, 2, . . . .202

Following the proof of Lem. 3, we have203

Rε(T ) ≤ K
√

6Tε log(2T/δ) +

√
3Tε log(2T/δ)

2

+

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t ) (42)

+
∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)
. (43)

It thus suffices to bound quantities in Eqs. (42) and (43) separately.204
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Bounding Eq. (42) By Eq. (22) and basic probabilistic operations,205

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

=
∑
sk+1

(PMt(sk+1|S̄k, X̄k)− P (sk+1|S̄k, X̄k))Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤
∥∥∥PMt
x̄k (·|s̄k)− Px̄k(·|s̄k)

∥∥∥
1

max
sk+1

Vπt(sk+1, S̄
t
k, X̄

t
k;Mt)

≤ min
{

2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)
,
∥∥Ck∥∥1

}
The last step follows from Eqs. (16) and (40). We thus have206 ∑

t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤
∑
t∈Lε

min
{

2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)
,
∥∥Ck∥∥1

}
≤ min

{ ∑
t∈Lε

2
√

6
∣∣Sk+1

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ) 1√
max{1, N t(S̄tk, X̄

t
k)
,
∑
t∈Lε

∥∥Ck∥∥1

}
≤ min

{
2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ),∥∥Ck∥∥1
Tε

}
The last step follows from results in [4, D] and |Lε| = Tε. Eq. (42) could thus be written as:207

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤
K−1∑
k=1

min
{

2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ),∥∥Ck∥∥1
Tε

}
≤ min

{K−1∑
k=1

2(
√

2 + 1)
√

6Tε
∣∣S̄k+1

∣∣∣∣X̄ k

∣∣ log(2K
∣∣S̄k∣∣∣∣X̄ k

∣∣T/δ),K−1∑
k=1

∥∥Ck∥∥1
Tε

}
Thus,208

K−1∑
k=1

∑
t∈Lε

Vπt(S̄
t
k, X̄

t
k;M

(k)
t )− Vπt(S̄tk, X̄t

k;M
(k+1)
t )

≤ min
{

(K − 1)2(
√

2 + 1)
√

6Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),K−1∑
k=1

∥∥Ck∥∥1
Tε

}
.

(44)

Bounding Eq. (43) Since both M∗,Mt are in the setMc
t ,209

EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ] ≤
∣∣∣EMt
x̄K [Y |s̄K ]− Êtx̄K [Y |s̄K ]

∣∣∣+
∣∣∣EX̄t

K
[Y |S̄tK ]− Êtx̄K [Y |s̄K ]

∣∣∣
≤ min

{
2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

,
∥∥CK∥∥1

}
Eq. (43) can thus be written as:210 ∑

t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)

≤
∑
t∈Lε

min
{

2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

,
∥∥CK∥∥1

}
≤ min

{ ∑
t∈Lε

2
√

2 log(2K|S||X |T/δ) 1√
max{1, N t(S̄tK , X̄

t
K)}

,
∑
t∈Lε

∥∥CK∥∥1

}
.
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The last step follows from Eqs. (17) and (40). From results in [4, D], we have211 ∑
t∈Lε

(
EMt

X̄t
K

[Y |S̄tK ]− EX̄t
K

[Y |S̄tK ]
)

≤ min
{

2(
√

2 + 1)
√

2Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),∥∥CK∥∥1
Tε

}
.

(45)

Eqs. (44) and (45) together give:212

Rε(T ) ≤ K
√

6Tε log(2T/δ) +

√
3Tε log(2T/δ)

2

+ min
{

(K − 1)2(
√

2 + 1)
√

6Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),K−1∑
k=1

∥∥Ck∥∥1
Tε

}
+ min

{
2(
√

2 + 1)
√

2Tε
∣∣S̄∣∣∣∣X̄ ∣∣ log(2K

∣∣S̄∣∣∣∣X̄ ∣∣T/δ),∥∥CK∥∥1
Tε

}
.

(46)

A quick simplification gives:213

Rε(T ) ≤ min
{

12K
√
|S||X |Tε log(2K|S||X |T/δ),

∥∥C∥∥
1
Tε

}
+ 4K

√
Tε log(2T/δ).

Theorem 7. Fix a δ ∈ (0, 1). With probability of at least 1− δ, it holds for any T > 1, the regret of214

UCc-DTR with parameter δ and causal bounds C is bounded by215

R(T ) ≤ min
{

12K
√
|S||X |T log(2K|S||X |T/δ),

∥∥C∥∥
1
T
}

+ 4K
√
T log(2T/δ).

Proof. Fix ε = 0. Naturally, Tε = T and Rε(T ) = R(T ). By Lem. 5,216

R(T ) ≤ min
{

12K
√
|S||X |T log(2K|S||X |T/δ),

∥∥C∥∥
1
T
}

+ 4K
√
T log(2T/δ).

Theorem 8. For any T ≥ 1, with parameter δ = 1
T and causal bounds C, the expected regret of217

UCc-DTR is bounded by218

E[R(T )] ≤ max
π∈Π−C

{
332K2|S||X | log(T )

∆π
+

32

∆3
π

+
4

∆π

}
+ 1.

Proof. Let R̃ε(T ) denote the regret cumulated in ε-good episode up to T steps. By Eqs. (41) and (46),219

E[R(T )] ≤ E[Rε(T )IM∗∈Mc
t
] + E[R̃ε(T )IM∗∈Mc

t
] +

T∑
t=1

P (M 6∈ Mc
t)

≤ min
{

12K
√
|S||X |T log(2K|S||X |T/δ),

∥∥C∥∥
1
T
}

+ 4K
√
T log(2T/δ)

+ E[R̃ε(T )IM∗∈Mc
t
] +

δ

T

≤ 23K
√
|S||X |Tε log(T/δ) + E[R̃ε(T )IM∗∈Mc

t
] +

δ

T

Fix δ = 1
T , it is immediate from Eq. (28) that220

E[R(T )] ≤ 232K2|S||X | log(T 2)

ε
+ E[R̃ε(T )IM∗∈Mc

t
] + 1. (47)

Note that when M∗ ∈Mc
t , the maximal expected reward of any πt over all instances in the family221

of DTRsMc
t must be no less than the true optimal value Vπ∗(M∗). In words, Π−C is the effective222

policy space of UCc-DTR procedure. Let ∆ = arg minπ∈Π−C
∆π . Fix ε = ∆

2 , Eq. (47) implies:223

E[R(T )] ≤ 332K2|S||X | log(T )

∆
+ E[R̃∆

2
(T )IM∗∈Mc

t
] + 1.

Among quantities in the above equation, E[R̃∆
2

(T )IM∗∈Mc
t
] can be bounded following a similar224

procedure in the proof of Thm. 2, which proves the statement.225
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Appendix II. Estimation of Causal Bounds226

The bounds developed in the main text are functions of the observational distribution P (s̄K , x̄K , y)227

which is identifiable by the sampling process, and so can be estimated consistently. Bounding causal228

effects from a finite set of observations is more involved, due to the issues of sampling variability.229

We now present efficient methods to address these issues.230

Given a finite set of observational samples {S̄iK , X̄i
K , Y

i}ni=1, let P̂ (s̄K , x̄K) denote the sample231

mean estimate of P (s̄K , x̄K). Fix δ ∈ (0, 1). W.p. at least 1 − δ, the L1-deviation of the true232

distribution P (s̄K , x̄K) and the empirical distribution P̂ (s̄K , x̄K) over state-action domains S ×X233

from n samples is bounded according to [9] by234 ∥∥P (·)− P̂ (·)
∥∥

1
≤
√

2
∣∣S∣∣∣∣X ∣∣ log(2/δ)/n. (48)

We could derive confidence bounds of probabilities Px̄k(sk+1|s̄k) for all k = 1, . . . ,K − 1 w.p.235

1 − δ by optimizing the causal bounds
[
ax̄k,s̄k(sk+1), bx̄k,s̄k(sk+1)

]
subject to convex polytope236

defined in Eq. (48) and probabilistic constraints P (s̄K , x̄K) ∈ [0, 1] and
∑
s̄K ,x̄K

P (s̄K , x̄K) = 1.237

The objective functions in Eq. (9) are ratios of linear functions, leading to a linear-fractional program238

(LFP). A LFP can be transformed into an equivalent linear program (LP) by [2], which is solvable239

using standard LP algorithms. The expected reward Ex̄K [Y |s̄K ] could be bounded following a240

similar procedure.241

Appendix III. Experimental Setup242

In this section, we provide details about the setup of experiments in the main text. For all experiments,243

we test sequentially randomized trials (rand), UC-DTR algorithm (uc-dtr) and the causal UC-DTR244

(ucc-dtr) with causal bounds derived from 1 × 105 observational samples. Each experiment lasts245

for T = 1.1× 104 episodes. The parameter δ = 1/KT for uc-dtr and ucc-dtr where K is the total246

stages of interventions. For all algorithms, we measure their cumulative regret over 200 repetitions.247

Random DTRs We generate 200 instances of the counterfacutal DTR defined in Def. 1. We assume248

treatments X1, X2, states S1, S2 and primary outcome Y are all binary variable. The probabilities of249

the counterfacutal distribution P (s1, x1, s2x1
, x2x1

, yx̄2) are drawn uniformly at random over [0, 1].250

Cancer Treatment We test the survival model of patients inspired by the two-stage clinical trial con-251

ducted by the Cancer and Leukemia Group B [5, 8]. Protocol 8923 was a double-blind, placebo con-252

trolled two-stage trial reported by [7] examining the effects of infusions of granulocyte-macrophage253

colony-stimulating factor (GM-CSF) after initial chemotherapy. Patients were randomized initially254

to GM-CSF or placebo following standard chemotherapy. Later, patients meeting the criteria of255

complete remission were offered a second randomization to one of two intensification treatments.256

We will describe this treatment procedure using the DTR with K = 2. X1, X2 ∈ {0, 1} represent257

treatments; S1 = ∅ and S2 indicates the observed remission after the first treatment (0 stands for no258

remission and 1 for complete remission); Y indicates the survival of patients at the time of recording.259

The exogenous variable U is the age of patients where U = 1 if the patient is old and U = 0260

otherwise. Values of U are drawn from a distribution P (u) where P (U = 1) = 0.2358. Values of261

S2 are drawn from a distribution Px1
(s2) described in Table 1.262

X1 = 0 X1 = 1
U = 0 0.8101 0.0883
U = 1 0.7665 0.2899

Table 1: Probabilities of the distribution P (S2 = 1|u, x1).

Let T1, T2 denote the potential survival time induced by treatment X1, X2 respectively. Values of263

T1, T2 are decided by functions defined as follows:264

T1 ← min{(1− S2)T ∗1 + S2(T ∗2 + T ∗3 ), L}, T2 ← min{(1− S2)T ∗1 + S2(T ∗2 + T ∗4 ), L}
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where L = 1.5. Let exp(β) denote an exponential distribution with mean 1/β. Values of T ∗1 , T
∗
2 , T

∗
3265

are drawn from exponential distributions defined as follows:266

T ∗1 ∼ exp(β1
u,x1

), T ∗2 ∼ exp(β2
u,x1

), T ∗3 ∼ exp(β3
u,x1

)

Given T ∗3 , values of T ∗4 are drawn from distribution267

T ∗4 ∼ exp(β3
u,x1

+ β4
u,x1

T ∗3 ).

The total survival time T of a patient is decided as follows:268

T ← (1− S2)T1 + S2(1−X2)T1 + S2X2T2.

The parameters βu,x1
= (β1

u,x1
, β2
u,x1

, β3
u,x1

, β4
u,x1

) are described in Table 2.269

β1
u,x1

β2
u,x1

β3
u,x1

β4
u,x1

U = 0
X1 = 0 4.3063 4.9607 0.8737 4.2538
X1 = 1 0.8286 8.2074 8.7975 7.6468

U = 1
X1 = 0 2.6989 0.0235 5.9835 6.8059
X1 = 1 3.6036 1.1007 9.4426 7.3960

Table 2: Parameters βu,x1 .

The primary outcome Y is the survival of the patient at the time of observation t = 1. Values of Y270

are decided by the indicator function Y ← IT>1.271

We generate the confounded observational data following a sequence of decision rules X1 ∼272

π1(X1|U), X2 ∼ π2(X2|U,X1, S2). The policy π1(X1|U) is a conditional distribution mapping273

from U to the domain of X1 where π1(X1 = 1|U = 0) = 0.5102 and π1(X1 = 1|U = 1) = 0.2433.274

Similarly, π2(X2|U,X1, S2) is a conditional distribution mapping from U,X1, S2 to the domain of275

X2; Table 3 describes its parametrization.276

X1 = 0 X1 = 1
S2 = 0 S2 = 1 S2 = 0 S2 = 1

U = 0 0.2173 0.8696 0.6195 0.4641
U = 1 0.8869 0.0103 0.5314 0.4339
Table 3: Probabilities of π2(X2 = 1|U,X1, S2).
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