
Supplementary Material for
Fooling Neural Network Interpretations via

Adversarial Model Manipulation

Juyeon Heo1∗, Sunghwan Joo1∗, and Taesup Moon1,2

1Department of Electrical and Computer Engineering, 2Department of Artificial Intelligence
Sungkyunkwan University, Suwon, Korea, 16419

heojuyeon12@gmail.com, {shjoo840, tsmoon}@skku.edu

1 Back-propagation for fooling

This section describes a flow of forward and backward pass for fooling loss in (2) in the main paper.
To do this, we consider a computational graph for a neural network with L layers, as shown in
the Figure 1. This graph is common for both Layer-wise Relevance Propagation (LRP) [1] and
Grad-CAM [2], and it can be applied to the other saliency-map based interpretation methods, such as
SimpleGradient [3].

In the Figure 1, we denote the inputs, parameters, and outputs of `-th layer as x(`), w(`), and z(`+1),
respectively. Continuously, applying activation function on z(`+1) gives x(`+1). The term LC and LIF
in yellow square boxes are cross entropy loss and fooling loss in (2) in the main paper, respectively.
We denote the heatmap and intermediate terms of heatmap as hIc and h(`), respectively, where
h(`) = R(x(`),w(`),h(`+1)). The R(·) varies for interpretation method. Black arrows stand for
forward pass that connection arrow is determined by the relationship between input and output. For
example in h(`) = R(x(`),w(`),h(`+1)), the three black arrows are connected from three inputs to
the output h(`). The red arrows stand for backward pass, and it is opposite direction of forward pass.

In training phase, to calculate the gradient of L with respect to w(`), the set of all possible red arrow
paths from LC and LIF to w(`) should be considered. Also, note for Grad-CAM, computing h(`)

involves the ordinary back-propagation from the classification loss, but that process is regarded as a
“forward pass” (the black arrows in the Interpretation sequence) in our implementation of fine-tuning
with the objective (2) in the main paper. For Active fooling, we used two different datasets for
computing LC(·) and LIF (·) as mentioned in the Section 3.2.2 in the main paper.

2 Experiment details

The total number of images in Dfool was 1, 300, and 1, 100 of them were used for the training set for
our fine-tuning and the rest for validation. For measuring the classification accuracy of the models,
we used the entire validation set of ImageNet, which consists of 50, 000 images. To measure FSR,
we again used the ImageNet validation set for the Passive foolings and 200 hold-out images in Dfool

for Active fooling. We denote the validation set as Dval. The pre-trained models we used, VGG19
[4], ResNet50[5], and DenseNet121[6], were downloaded from torchvision, and we implemented
the penalty terms given in Section 3 in Pytorch framework[7]. All our model training and testing
were done with NVIDIA GTX1080TI. The hyperparameters that used to train the models for various
fooling methods and interpretations are available in Table 1.
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Figure 1: Flow diagram for forward and backward pass

Table 1: Hyperparameters of trained models. The lr is a learning rate and λ is a regularization strength
in equation (2) in the main paper.

Model VGG19 Resnet50 DenseNet121
Hyperparameters lr λ lr λ lr λ

Location LRPT 1e-6 1 1e-6 4 2e-6 2
G-CAM 1e-6 1 2e-6 2 2e-6 2

Top-k LRPT 5e-7 1 4e-7 1.5 1e-6 1
G-CAM 3e-7 0.4 3e-7 4 3e-6 6

Center-mass LRPT 2e-6 0.25 6e-7 0.5 5e-7 0.25
G-CAM 1e-6 0.25 1e-7 1 2e-6 0.25

Active LRPT 2e-6 2 3e-6 2 4e-6 15
G-CAM 2e-6 2 1e-6 2 6e-6 15

Remark 1: For Location fooling in (3) in the main paper, we defined the mask vector, denoted as
m ∈ RH×W , to be

mhw =

{
0 H

7 ≤ w < 6H
7 and W

7 ≤ h <
6W
7

1 otherwise,

in which mhw is a (h,w) element for m. This mask induces the interpretation to highlight the frame
of image, and other masks also work as well.

3 Top-5 accuracy for c1 and c2 class.

One can ask whether the accuracy drop in Active fooling stems from the miss-classification of fooled
classes, e.g., c1 and c2. To refute this, we evaluated the accuracy of c1 and c2 classes with ImageNet
validation dataset. Table 2 shows that the slight accuracy drop of the Actively fooled models is not
caused by the fooled classes (Firetruck and African Elephant classes in our case), but by the entire
classes.

Models VGG19 ResNet50 DenseNet121
Accuracy (%) c1 c2 c1 c2 c1 c2

Baseline 98.0 94.0 100.0 88.0 98.0 90.0
LRPT 96.0 78.0 98.0 94.0 100.0 90.0

Grad-CAM 98.0 96.0 100.0 80.0 98.0 94.0

Table 2: Test accuracies on ImageNet validation set for c1 and c2 classes, when the model is Active
fooled with c1 and c2. Each class has 50 validation images. Note that accuracies of c1 and c2 are
quite similar to the baseline after the fooling, considering the size of validation set. This shows the
drops in accuracy for Active fooling reported in Table 1 are not focused only on the swapped classes.
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4 Threshold determination process in FSR.

In this section, we discuss how to determine Rf to calculate FSRIf in (6) in the main paper. To decide
the Rf for each fooling methods, we compared the visualization of interpretations and test loss with
varying iterations, as shown in Figure 2, 3, 4, and 5. For the Location fooling in Figure 2, we can
observe that the loss is gradually reduces during training process while the highlighted regions of
visualization moves toward boundary. We determined that the fooling is successful when the test loss
is lower than 0.2. Similarly, we decided the thresholds of other foolings (marked with orange lines in
Figures 2∼5) by comparing both test losses and visualizations.

Figure 2: Visualization and test loss during Location fooling training. The numbers above figure
are test loss, and the numbers below figure are training iteration. The threshold regions of Location
fooling is [0, 0.2]

Figure 3: Visualization and test loss during Center-mass fooling training. The threshold regions of
Center-mass fooling is [0.1, 1]

Figure 4: Visualization and test loss during Top k fooling training. The threshold regions of Top-k
fooling is [0, 0.3]

Figure 5: Visualization and test loss during Active fooling training. The threshold regions of Active
fooling is [05, 2]

5 Visualizations of Passive foolings and Active fooling

Figures 6 to 12 are more qualitative results of Passive fooling and Active fooling. For Passive fooling,
the content of figure is same as Figure 2 in the main paper. For Active fooling, we included the
interpretations for c2, which is omitted in Figure 3 in the main paper.
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Figure 6: Additional Passive fooling results 1

Figure 7: Additional Passive fooling results 2
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Figure 8: Additional Passive fooling results 3

Figure 9: Additional Passive fooling results 4
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Figure 10: Additional Active fooling results 1
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Figure 11: Additional Active fooling results 2
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Figure 12: Additional Active fooling results 3
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