
Appendix A Derivation of Condition in Proposition 1

Let b+ and ỹt+ denote the subvectors of b and ỹt respectively containing only the components
where the corresponding components in ỹt are positive. Consider a point x in the subspace defined
by the conjunction of equality constraints. By definition, this point must satisfy W+x+ b+ = ỹt+.
Now consider each inequality constraint, which is a half-space. If the dividing hyperplane of the
half-space is not parallel to the subspace, then the projection of the half-space onto the subspace
is a half-space in the subspace. If it is parallel, there are two possibilities: either the subspace lies
completely inside the half-space, or outside of it. If it is inside, the projection of the half-space onto
the subspace is just the subspace. If it is outside, the projection is the empty set. However, this is
not possible because the target example must be in the projection. Therefore, the subspace must lie
completely in the half-space.

So, checking whether the projection of the half-space onto the subspace is the entire subspace amounts
to checking whether the dividing hyperplane is parallel to the subspace.

Since translations preserve parallelism, we can arbitrarily translate the subspace. For simplicity, we
can translate the subspace so that it always interesects with the origin. This subspace is characterized
by W+x = 0. Then if it is parallel to the dividing hyperplane of the half-space, every point must lie
on the dividing hyperplane, since the hyperplane also intersects with the origin.

When this happens for all the inequality constraints, then 8x such that W+x = 0, W�x = 0. In
other words, ker(W+) ✓ ker(W�).

Appendix B Implementation Details for Patch-Based Experiment

We first extract patches using a sliding window, of which the size is the patch size n⇥ n. Assume
that we have m patches, then by searching for nearest neighbours of these patches in the dataset, m
nearest neighbours will be found. For each nearest neighbour, as shown in Figure 3a, we place it
along with the surrounding pixels on a blank image at the same position from which the query patch
was extracted.

Let s denote the width of the band of pixels surround the patch and let n̂ = n+ 2s be the total size
of the patch and the surrounding pixels. A schematic diagram of various regions of interest in the
source image is shown in Figure 3b. Now let Q = {q0, q1, · · · , qm�1} denote the source images and
C = {(c0x, c0y), · · · , (cm�1

x , cm�1
y )} denote the centre coordinates of the patches in source images.

We combine the source images together with linear interpolation to generate the composite image I ,
where

Ii,j =

P
k2Ai,j

(n̂/2� |i� ckx|)(n̂/2� |j � cky |)qki,jP
k2Ai,j

(n̂/2� |i� ckx|)(n̂/2� |j � cky |)

Here Ai,j denotes the set of all source images that overlap with position (i, j) in the blank image
when positioned for pasting, that is

Ai,j = {k|n̂/2� |i� ckx| � 0, n̂/2� |j � cky | � 0}

We can further write
Ii,j =

X

k2Ai,j

pki,jq
k
i,j

where

pki,j =
(n̂/2� |i� ckx|)(n̂/2� |j � cky |)P

k2Ai,j
(n̂/2� |i� ckx|)(n̂/2� |j � cky |)

(1)

is called the control parameter for the kth source image at position (i, j). Therefore the composite
image can be now defined as

I = G(P,Q)

where P denotes the set of control parameters and Q denotes the set of source images.

Now instead of optimizing w.r.t. the pixels, we optimize w.r.t. the control parameters. This entire
process is illustrated in Figure 2.

10



Extract all

patches
Seed Image

Seed Image

Patches

Nearest

Neighbor

Patches

Control

Parameter

Composite

image

Matrix

Multiplication

Neural

Network

Feature

Output

Target

Feature
Loss

Gradient Update

Figure 2: A diagram that details the procedure for running the patch-based experiment.

KNN Paste and pad

(a) Query patch (b) Nearest Neighbor (c) Source image

(a) A diagram showing how the retrieved patches are obtained and used. (a) is the query image and the green
rectangle labels a query patch. We obtain the k-nearest neighbours (in the conv1_2 feature space of a pretrained
VGG-16 net), one of which is shown by inside the green rectangle in (b). (c) is the so-called source image,
which is a blank image where the retrieved patch is placed at the same spatial position where the query patch
was extracted. The pixels within a fixed distance from the border of the retrieved patch are also padded around
the the patch in the source image.

n+2s

n+2s

n

ns

(b) Sizes of various regions that
comprise the source image.

To encourage the patches used in the composite image to be contiguous, we use a regularizer that
penalizes the difference between weights on adjacent pixels of the same source image. More precisely,
if there are K source images of size M ⇥N , the objective function would be

Li(P ) = ↵Lpos(G(P,Q)) + �Li
neg(G(P,Q)) + �R(P ) (2)

where R(P ) is the contiguity regularizer, which is defined as

R(P ) =
KX

k=1

(
MX

i=1

N�1X

j=1

|pki,j � pki,j+1|+
NX

j=1

M�1X

i=1

|pki,j � pki+1,j |)

Appendix C Comparison of Polytope and Ball

To demonstrate that the polytope we find cannot be trivially replaced with a ball of similar size, we
consider a ball centred at the centroid of the polytope whose radius is the minimum distance from
the centroid to a corner of the polytope. We then randomly sample points inside the ball and check

11



whether they are classified as/collide with the target class. The percentage of points that collide with
the target class is shown in Table 7. Whereas the percentage of points inside the polytope that collide
with the target class is 100%, the percentage of points inside the ball that collide with the target class
is much smaller, as shown. This demonstrates that samples from a ball of similar size does not always
collide with the target class, unlike in the case of the polytope.

% of successful collisions

1st row in Table 5 9.2%
2nd in Table 12 0.0%

1st row in Table 5 24.8%
2nd row in Table 12 3.5%

Table 7: Percentage of points from a similarly sized ball centred at the centroid of the polytope that
are classified as the target class.

Appendix D Additional Experimental Results

We further conducted experiments on MNIST using the LeNet-5 convolutional network, which
consists of three convolutional layers. The trained model achieves a test accuracy of 98.0%. We find
feature collisions at the first fully connected layer. The results are shown in Table 8 and Table 9.

Target Polytope Corners

Table 8: Two polytopes that collide with the same target example (an image of the digit 7).

12



Row# % of successful Top class probability Average distance between images
collisions Target Interpolated samples MNIST Optimized samples

1 100% 1.0 1.0 10.21 1.24
2 100% 1.0 1.0 3.08

Table 9: Quantitative results corresponding to the results shown in Table 8.

Target Polytope Corners

Table 10: Colliding polytope on ImageNet when initializing from the target image. All examples
within the polytopes collide with the target image.

Row# % of successful Top class probability Average distance between images
collisions Target Interpolated samples ImageNet Polytope corners

1 100% 0.963 0.982 37538.22 8166.43

Table 11: Quantitative results corresponding to the results shown in Table 10.

Target Polytope Corners Indicator

Table 12: Results on ImageNet when search space is constrained to compositions of image patches.
First row shows corners optimized from an image of a trimaran that share feature collision with an
obelisk. Second row shows corners optimized from an image of an eggnog that share feature collision
with an image that is misclassified as an “eraser”. Images in the rightmost column highlights the
differences between the corners of the polytope using purple boxes.

Row# % of successful Top class probability Average distance between images
collisions Target Interpolated samples ImageNet Polytope corners

1 100% 0.997 0.992 37538.22 5909.37
2 100% 0.579 0.585 6074.86

Table 13: Quantitative results corresponding to the results shown in Table 12.

13



Appendix E Intermediate Images During Optimization

To better understand the optimization process of finding the polytope we visualize the intermediate
images during optimization. Figures 4, 5 and 6 each show the intermediate images at different points
of the optimization process for two corners randomly chosen from the five that are shown in Figures
(b), (c) and (d) in Table 5 respectively.

(a)

(b)

Figure 4: Intermediate images for Figure (b) in Table 5

14



(a)

(b)

Figure 5: Intermediate images for Figure (c) in Table 5

(a)

(b)

Figure 6: Intermediate images for Figure (d) in Table 5

15


	Introduction
	Method
	Experiment
	MNIST Dataset
	ImageNet Dataset

	More Perceptually Different Polytope Vertices
	Results

	Discussion
	Related Work
	Conclusion
	Derivation of Condition in Proposition 1
	Implementation Details for Patch-Based Experiment
	Comparison of Polytope and Ball
	Additional Experimental Results
	Intermediate Images During Optimization

