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Abstract

We provide efficient algorithms for overconstrained linear regression problems
with size n×d when the loss function is a symmetric norm (a norm invariant under
sign-flips and coordinate-permutations). An important class of symmetric norms
are Orlicz norms, where for a function G and a vector y ∈ Rn, the corresponding
Orlicz norm ‖y‖G is defined as the unique value α such that

∑n
i=1G(|yi|/α) = 1.

When the loss function is an Orlicz norm, our algorithm produces a (1 + ε)-
approximate solution for an arbitrarily small constant ε > 0 in input-sparsity
time, improving over the previously best-known algorithm which produces a
d · polylog n-approximate solution. When the loss function is a general symmetric
norm, our algorithm produces a

√
d · polylog n · mmc(`)-approximate solution

in input-sparsity time, where mmc(`) is a quantity related to the symmetric norm
under consideration. To the best of our knowledge, this is the first input-sparsity
time algorithm with provable guarantees for the general class of symmetric norm
regression problem. Our results shed light on resolving the universal sketching
problem for linear regression, and the techniques might be of independent interest
to numerical linear algebra problems more broadly.

1 Introduction

Linear regression is a fundamental problem in machine learning. For a data matrix A ∈ Rn×d and a
response vector b ∈ Rn with n� d, the overconstrained linear regression problem can be formulated
as solving the following optimization problem:

min
x∈Rd

L(Ax− b), (1)

where L : Rn → R is a loss function. Via the technique of linear sketching, we have witnessed many
remarkable speedups for linear regression for a wide range of loss functions. Such technique involves
designing a sketching matrix S ∈ Rr×n, and showing that by solving a linear regression instance on
the data matrix SA and the response vector Sb, which is usually much smaller in size, one can obtain
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Table 1: M -estimators

HUBER

{
x2/2 |x| ≤ c
c(|x| − c/2) |x| > c

`1 − `2 2(
√

1 + x2/2− 1)
“FAIR" c2 (|x|/c− log(1 + |x|/c))

an approximate solution to the original linear regression instance in (1). Sarlós showed in [29] that by
taking S as a Fast Johnson-Lindenstrauss Transform matrix [1], one can obtain (1 + ε)-approximate
solutions to the least square regression problem (L(y) = ‖y‖22) in O(nd log n + poly(d/ε)) time.
The running time was later improved to O(nnz(A) + poly(d/ε)) [12, 26, 28, 23, 15]. Here nnz(A)
is the number of non-zero entries in the data matrix A, which could be much smaller than nd for
sparse data matrices. This technique was later generalized to other loss functions. By now, we
have Õ(nnz(A) + poly(d/ε)) time algorithms for `p norms (L(y) = ‖y‖pp) [18, 26, 35, 16, 32], the
quantile loss function [36], M -estimators [14, 13] and the Tukey loss function [11].

Despite we have successfully applied the technique of linear sketching to many different loss functions,
ideally, it would be more desirable to design algorithms that work for a wide range of loss functions,
instead of designing a new sketching algorithm for every specific loss function. Naturally, this leads
to the following problem, which is the linear regression version of the universal sketching problem2

studied in streaming algorithms [10, 9]. We note that similar problems are also asked and studied for
various algorithmic tasks, including principal component analysis [31], sampling [21], approximate
nearest neighbor search [4, 3], discrepancy [17, 8], sparse recovery [27] and mean estimation with
statistical queries [19, 22].
Problem 1. Is it possible to design sketching algorithms for linear regression, that work for a wide
range of loss functions?

Prior to our work, [14, 13] studied this problem in terms of M -estimators, where the loss function
employs the form L(y) =

∑n
i=1G(yi) for some function G. See Table 1 for a list of M -estimators.

However, much less is known for the case where the loss function L(·) is a norm, except for `p norms.
Recently, Andoni et al. [2] tackle Problem 1 for Orlicz norms, which can be seen as a scale-invariant
version of M -estimators. For a function G and a vector y ∈ Rn with y 6= 0, the corresponding Orlicz
norm ‖y‖G is defined as the unique value α such that

n∑
i=1

G(|yi|/α) = 1. (2)

When y = 0, we define ‖y‖G to be 0. Note that Orlicz norms include `p norms as special cases, by
taking G(z) = |z|p for some p ≥ 1. Under certain assumptions on the function G, [2] obtains the
first input-sparsity time algorithm for solving Orlicz norm regression. More precisely, in Õ(nnz(A) +
poly(d log n)) time, their algorithm obtains a solution x̂ ∈ Rd such that ‖Ax̂− b‖G ≤ d ·polylog n ·
minx∈Rd ‖Ax− b‖G.

There are two natural problems left open by the work of [2]. First, the algorithm in [2] has approxi-
mation ratio as large as d · polylog n. Although this result is interesting from a theoretical point of
view, such a large approximation ratio is prohibitive for machine learning applications in practice.
Is it possible to obtain an algorithm that runs in Õ(nnz(A) + poly(d/ε)) time, with approximation
ratio 1 + ε, for arbitrarily small ε, similar to the case of `p norms? Moreover, although Orlicz norm
includes a wide range of norms, many other important norms, e.g., top-k norms (the sum of absolute
values of the leading k coordinates of a vector), max-mix of `p norms (e.g. max{‖x‖2, c‖x‖1} for
some c > 0), and sum-mix of `p norms (e.g. ‖x‖2 + c‖x‖1 for some c > 0), are not Orlicz norms.
More complicated examples include the k-support norm [5] and the box-norm [25], which have found
applications in sparse recovery. In light of Problem 1, it is natural to ask whether it is possible to apply
the technique of linear sketching to a broader class of norms. In this paper, we obtain affirmative
answers to both problems, and make progress towards finally resolving Problem 1.

Notations. We use Õ(f) to denote f polylog f . For a matrix A ∈ Rn×d, we use Ai ∈ Rd to
denote its i-th row, viewed as a column vector. For n real numbers x1, x2, . . . , xn, we define

2https://sublinear.info/index.php?title=Open_Problems:30.
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diag(x1, x2, . . . , xn) ∈ Rn×n to be the diagonal matrix where the i-th diagonal entry is xi. For a
vector x ∈ Rn and p ≥ 1, we use ‖x‖p to denote its `p norm, and ‖x‖0 to denote its `0 norm, i.e.,
the number of non-zero entries in x. For two vectors x, y ∈ Rn, we use 〈x, y〉 to denote their inner
product. For any n > 0, we use [n] to denote the set {1, 2, . . . , n}. For 0 ≤ p ≤ 1, we define Ber(p)
to be the Bernoulli distribution with parameter p. We use Sn−1 to denote the unit `2 sphere in Rn,
i.e., Sn−1 = {x ∈ Rn | ‖x‖2 = 1}. We use R≥0 to denote the set of all non-negative real numbers,
i.e., R≥0 = {x ∈ R | x ≥ 0}.

1.1 Our Contributions

Algorithm for Orlicz Norms. Our first contribution is a unified algorithm which produces (1 + ε)-
approximate solutions to the linear regression problem in (1), when the loss function L(·) is an Orlicz
norm. Before introducing our results, we first give our assumptions on the function G which appeared
in (2).
Assumption 1. We assume the function G : R→ R≥0 satisfies the following properties:

1. G is a strictly increasing convex function on [0,∞);

2. G(0) = 0, and for all x ∈ R, G(x) = G(−x);

3. There exists some CG > 0, such that for all 0 < x < y, G(y)/G(x) ≤ CG(y/x)2.

The first two conditions in Assumption 1 are necessary to make sure the corresponding Orlicz norm
‖ · ‖G is indeed a norm, and the third condition requires the function G to have at most quadratic
growth, which can be satisfied by all M -estimators in Table 1 and is also required by prior work [2].
Notice that our assumptions are weaker than those in [2]. In [2], it is further required that G(x) is a
linear function when x > 1, and G is twice differentiable on an interval (0, δG) for some δG > 0.
Given our assumptions on G, our main theorem is summarized as follows.
Theorem 1. For a function G that satisfies Assumption 1, there exists an algorithm that, on any input
A ∈ Rn×d and b ∈ Rn, finds a vector x∗ in time Õ(nnz(A) + poly(d/ε)), such that with probability
at least 0.9, ‖Ax∗ − b‖G ≤ (1 + ε) minx∈Rd ‖Ax− b‖G.

To the best of our knowledge, this is the first input-sparsity time algorithm with (1+ε)-approximation
guarantee, that goes beyond `p norms, the quantile loss function, and M -estimators. See Table 2 for
a more comprehensive comparison with previous results.

Algorithm for Symmetric Norms. We further study the case when the loss function L(·) is a
symmetric norm. Symmetric norm is a more general class of norms, which includes all norms that
are invariant under sign-flips and coordinate-permutations. Formally, we define symmetric norms as
follow.
Definition 1. A norm ‖ · ‖` is called a symmetric norm, if ‖(y1, y2, . . . , yn)‖` =
‖(s1yσ1

, s2yσ2
, . . . , snyσn

)‖` for any permutation σ and any assignment of si ∈ {−1, 1}.
Symmetric norm includes `p norms and Orlicz norms as special cases. It also includes all examples
provided in the introduction, i.e., top-k norms, max-mix of `p norms, sum-mix of `p norms, the
k-support norm [5] and the box-norm [25], as special cases. Understanding this general set of loss
functions can be seen as a preliminary step to resolve Problem 1. Our main result for symmetric
norm regression is summarized in the following theorem.
Theorem 2. Given a symmetric norm ‖ · ‖`, there exists an algorithm that, on any input A ∈ Rn×d

and b ∈ Rn, finds a vector x∗ in time Õ(nnz(A) + poly(d)), such that with probability at least 0.9,
‖Ax∗ − b‖` ≤

√
d · polylog n ·mmc(`) ·minx∈Rd ‖Ax− b‖`.

In the above theorem, mmc(`) is a characteristic of the symmetric norm ‖ · ‖`, which has been proven
to be essential in streaming algorithms for symmetric norms [7]. See Definition 7 for the formal
definition of mmc(`), and Section 3 for more details about mmc(`). In particular, for `p norms with
p ≤ 2, top-k norms with k ≥ n/ polylog n, max-mix of `2 norm and `1 norm (max{‖x‖2, c‖x‖1} for
some c > 0), sum-mix of `2 norm and `1 norm (‖x‖2 + c‖x‖1 for some c > 0), the k-support norm,
and the box-norm, mmc(`) can all be upper bounded by polylog n, which implies our algorithm has
approximation ratio

√
d · polylog n for all these norms. This clearly demonstrates the generality of

our algorithm.
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Table 2: Comparison among input-sparsity time linear regression algorithms

Reference Loss Function Approximation Ratio
[18, 26, 35, 16, 32] `p norms 1 + ε

[36] Quantile loss function 1 + ε
[14, 13] M -estimators 1 + ε

[2] Orlicz norms d · polylog n
Theorem 1 Orlicz norms 1 + ε

Theorem 2 Symmetric norms
√
d · polylog n ·mmc(`)

Empirical Evaluation. In Section E of the supplementary material, we test our algorithms on real
datasets. Our empirical results quite clearly demonstrate the practicality of our methods.

1.2 Technical Overview

Similar to previous works on using linear sketching to speed up solving linear regression, our core
technique is to provide efficient dimensionality reduction methods for Orlicz norms and general
symmetric norms. In this section, we discuss the techniques behind our results.

Row Sampling Algorithm for Orlicz Norms. Compared to prior work on Orlicz norm regres-
sion [2] which is based on random projection3, our new algorithm is based on row sampling. For
a given matrix A ∈ Rn×d, our goal is to output a sparse weight vector w ∈ Rn with at most
poly(d log n/ε) non-zero entries, such that with high probability, for all x ∈ Rd,

(1− ε)‖Ax− b‖G ≤ ‖Ax− b‖G,w ≤ (1 + ε)‖Ax− b‖G. (3)

Here, for a weight vector w ∈ Rn and a vector y ∈ Rn, the weighted Orlicz norm ‖y‖G,w is defined
as the unique value α such that

∑n
i=1 wiG(|yi|/α) = 1. See Definition 4 for the formal definition of

weighted Orlicz norm. To obtain a (1 + ε)-approximate solution to Orlicz norm regression, by (3), it
suffices to solve

min
x∈Rd

‖Ax− b‖G,w. (4)

Since the vector w ∈ Rn has at most poly(d log n/ε) non-zero entries, and we can ignore all rows
of A with zero weights, there are at most poly(d log n/ε) remaining rows in A in the optimization
problem in (4). Furthermore, as we show in Lemma 3, ‖ · ‖G,w is a seminorm, which implies
we can solve the optimization problem in (4) in poly(d log n/ε) time, by simply solving a convex
program with size poly(d log n/ε). Thus, we focus on how to obtain the weight vector w ∈ Rn in
the remaining part. Furthermore, by taking A to be a matrix whose first d columns are A and last
column is b, to satisfy (3), it suffices to find a weight vector w such that for all x ∈ Rd+1,

(1− ε)‖Ax‖G ≤ ‖Ax‖G,w ≤ (1 + ε)‖Ax‖G. (5)

Hence, we ignore the response vector b in the remaining part of the discussion.

We obtain the weight vector w via importance sampling. We compute a set of sampling probabilities
{pi}ni=1 for each row of the data matrix A, and sample the rows of A according to these probabilities.
The i-th entry of the weight vector w is then set to be wi = 1/pi with probability pi and wi = 0 with
probability 1− pi. However, unlike `p norms, Orlicz norms are not “entry-wise” norms, and it is not
even clear that such a sampling process gives an unbiased estimation. Our key insight here is that for
a vector Ax with unit Orlicz norm, if for all x ∈ Rd,

(1− ε)
n∑
i=1

G((Ax)i) ≤
n∑
i=1

wiG((Ax)i) ≤ (1 + ε)

n∑
i=1

G((Ax)i), (6)

then (5) holds, which follows from the convexity of the function G. See Lemma 7 and its proof for
more details. Therefore, it remains to develop a way to define and calculate {pi}ni=1, such that the
total number of sampled rows is small.

3Even for `p norms with p < 2, embeddings based on random projections will necessarily induce a distortion
factor polynomial in d, as shown in [32].
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Our method for defining and computing sampling probabilities pi is inspired by row sampling
algorithms for `p norms [18]. Here, the key is to obtain an upper bound on the contribution of
each entry to the summation

∑n
i=1G((Ax)i). Indeed, suppose for some vector u ∈ Rn such that

G(Ax)i ≤ ui for all x ∈ Rd with ‖Ax‖G = 1, we can then sample each row of A with sampling
probability proportional to ui. Now, by standard concentration inequalities and a net argument, (6)
holds with high probability. It remains to upper bound the total number of sampled rows, which is
proportional to

∑n
i=1 ui.

We use the case of `2 norm, i.e., G(x) = x2, as an example to illustrate our main ideas for choosing
the vector u ∈ Rn. Suppose U ∈ Rn×d is an orthonormal basis matrix of the column space of A,
then the leverage score4 is defined to be the squared `2 norm of each row of U . Indeed, leverage
score gives an upper bound on the contribution of each row to ‖Ux‖22, since by Cauchy-Schwarz
inequality, for each row Ui of U , we have 〈Ui, x〉2 ≤ ‖Ui‖22‖x‖22 = ‖Ui‖22‖Ux‖22, and thus we can
set ui = ‖Ui‖22. It is also clear that

∑n
i=1 ui = d.

For general Orlicz norms, leverage scores are no longer upper bounds on G((Ux)i). Inspired by the
role of orthonormal bases in the case of `2 norm, we first define well-conditioned basis for general
Orlicz norms as follow.

Definition 2. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1.
We say U ∈ Rn×d is a well-conditioned basis with condition number κG = κG(U) if for all x ∈ Rd,
‖x‖2 ≤ ‖Ux‖G ≤ κG‖x‖2.

Given this definition, when ‖Ux‖G = 1, by Cauchy-Schwarz inequality and monotonicity of G, we
can show that G((Ux)i) ≤ G(‖Ui‖2‖x‖2) ≤ G(‖Ui‖2‖Ux‖G) ≤ G(‖Ui‖2). This also leads to our
definition of Orlicz norm leverage scores.

Definition 3. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1.
For a given matrix A ∈ Rn×d and a well-conditioned basis U of the column space of A, the Orlicz
norm leverage score of the i-th row of A is defined to be G(‖Ui‖2).

It remains to give an upper bound on the summation of Orlicz norm leverage scores of all rows. Unlike
the `2 norm, it is not immediately clear how to use the definition of well-conditioned basis to obtain
such an upper bound for general Orlicz norms. To achieve this goal, we use a novel probabilistic
argument. Suppose one takes x to be a vector with i.i.d. Gaussian random variables. Then each entry
of Ux has the same distribution as ‖Ui‖2 · gi, where {gi}ni=1 is a set of standard Gaussian random
variables. Thus, with constant probability,

∑n
i=1G((Ux)i) is an upper bound on the summation

of Orlicz norm leverage scores. Furthermore, by the growth condition of the function G, we have∑n
i=1G((Ux)i) ≤ CG‖Ux‖2G. Now by Definition 2, ‖Ux‖G ≤ κG‖x‖2, and ‖x‖2 ≤ O(

√
d) with

constant probability by tail inequalities of Gaussian random variables. This implies an upper bound
on the summation of Orlicz norm leverage scores. See Lemma 4 and its proof for more details.

Our approach for constructing well-conditioned bases is inspired by [30]. In Lemma 5, we show that
given a subspace embedding Π which embeds the column space of A with Orlicz norm ‖ · ‖G into
the `2 space with distortion κ, then one can construct a well-conditioned basis with condition number
κG ≤ κ. The running time is dominated by calculating ΠA and doing a QR-decomposition on ΠA. To
this end, we can use the oblivious subspace embedding for Orlicz norms in Corollary 125 to construct
well-conditioned bases. The embedding in Corollary 12 has O(d) rows and κ = poly(d log n), and
calculating ΠA can be done in Õ(nnz(A) + poly(d)) time. Using such an embedding to construct
the well-conditioned basis, our row sampling algorithm produces a vector w that satisfies (6) with
‖w‖0 ≤ poly(d log n/ε) in time Õ(nnz(A) + poly(d)).

We would like to remark that our sampling algorithm still works if the third condition in Assumption 1
does not hold. In general, suppose the function G : R → R satisfies that for all 0 < x < y,
G(y)/G(x) ≤ CG(y/x)p, for the Orlicz norm induced by G, given a well-conditioned basis with
condition number κG, our sampling algorithm returns a matrix with roughly O((

√
dκG)p · d/ε2)

rows such that Theorem 1 holds. One may use the Löwner–John ellipsoid as the well-conditioned

4See, e.g., [24], for a survey on leverage scores.
5Alternatively, we can use the oblivious subspace embedding in [2] for this step. However, as we have

discussed, the oblivious subspace embedding in [2] requires stronger assumptions on the function G : R→ R≥0

than those in Assumption 1, which restricts the class of Orlicz norms to which our algorithm can be applied.
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basis (as in [18]) which has condition number κG =
√
d for any norm. However, calculating the

Löwner–John ellipsoid requires at least O(nd5) time. Moreover, our method described above fails
when p > 2 since it requires an oblivious subspace embedding with poly(d) distortion, and it is
known that such embedding does not exist when p > 2 [10]. Since we focus on input-sparsity time
algorithms in this paper, we only consider the case that p ≤ 2.

Finally, we would like to compare our sampling algorithm with that in [13]. First, the algorithm
in [13] works for M -estimators, while we focus on Orlicz norms. Second, our definitions for Orlicz
norm leverage score and well-conditioned basis, as given in Definition 2 and 3, are different from all
previous works and are closely related to the Orlicz norm under consideration. The algorithm in [13],
on the other hand, simply uses `p leverage scores. Under our definition, we can prove that the sum of
leverage scores is bounded by O(CGdκ

2
G) (Lemma 4), whose proof requires a novel probabilistic

argument. In contrast, the upper bound on sum of leverage scores in [13] is O(
√
nd) (Lemma 38 in

[11]). Thus, the algorithm in [13] runs in an iterative manner since in each round the algorithm can
merely reduce the dimension from n to O(

√
nd), while our algorithm is one-shot.

Oblivious Subspace Embeddings for Symmetric Norms. To obtain a faster algorithm for linear
regression when the loss function is a general symmetric norm, we show that there exists a distribution
over embedding matrices, such that if S is a random matrix drawn from that distribution, then for
any n× d matrix A, with constant probability, for all x ∈ Rd, ‖Ax‖` ≤ ‖SAx‖2 ≤ poly(d log n) ·
mmc(`) · ‖Ax‖`. Moreover, the embedding matrix S is sparse, and calculating SA requires only
Õ(nnz(A) + poly(d)) time. Another favorable property of S is that it is an oblivious subspace
embeeding, meaning the distribution of S does not depend on A. To achieve this goal, it is sufficient
to construct a random diagonal matrix D such that for any fixed vector x ∈ Rn,

Pr[‖Dx‖2 ≥ Ω(1/ poly(d log n)) · ‖x‖`] ≥ 1− exp(−Ω(d log n)), (7)

and
Pr[‖Dx‖2 ≤ poly(d log n) ·mmc(`) · ‖x‖`] ≥ 1−O(1/d). (8)

Our construction is inspired by the sub-sampling technique in [20], which was used for sketching
symmetric norms in data streams [7]. Throughout the discussion, we use ξ(q) ∈ Rn to denote a vector
with q non-zero entries and each entry is 1/

√
q. Let us start with a special case where the vector

x ∈ Rn has s non-zero entries and each non-zero entry is 1. It is easy to see ‖x‖` =
√
s‖ξ(s)‖`.

Now consider a random diagonal matrix D which corresponds to a sampling process, i.e., each
diagonal entry is set to be 1 with probability p and 0 with probability 1 − p. Our goal is to
show that

√
1/p‖ξ(1/p)‖` · ‖Dx‖2 is a good estimator of ‖x‖`. If p = Θ(d log n/s), then with

probability at least 1 − exp (−Ω(d log n)), Dx will contain at least one non-zero entry from x, in
which case (7) is satisfied. However, we do not know s in advance. Thus, we use t = O(log n)
different matrices D1, D2, . . . , Dt, where Di has sampling probability 1/2i. Clearly at least one
such Dj can establish (7). For the upper bound part, if p is much smaller than 1/s, then Dx will
never contain a non-zero entry from x. Otherwise, in expectation Dx will contain ps non-zero
entries, in which case our estimation will be roughly

√
s‖ξ(1/p)‖`, which can be upper bounded by

O(log n ·mmc(`) · √s‖ξ(s)‖`). At this point, (8) follows from Markov’s inequality. See Section C.5
for the formal argument, and Section 3 for a detailed discussion on mmc(`).

To generalize the above argument to general vectors, for a vector x ∈ Rn, we conceptually partition
its entries into Θ(log n) groups, where the i-th group contains entries with magnitude in [2i, 2i+1).
By averaging, at least one group of entries contributes at least Ω(1/ log n) fraction to the value of
‖x‖`. To establish (7), we apply the lower bound part of the argument in the previous paragraph to
this “contributing” group. To establish (8), we apply the upper bound part of the argument to all
groups, which will only induce an additional O(log n) factor in the approximation ratio, by triangle
inequality.

Since our oblivious subspace embedding embeds a given symmetric norm into the `2 space, in order
to obtain an approximate solution to symmetric norm regression, we only need to solve a least squares
regression instance with much smaller size. This is another advantage of our subspace embedding,
since the least square regression problem is a well-studied problem in optimization and numerical
linear algebra, for which many efficient algorithms are known, both in theory and in practice.
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2 Linear Regression for Orlicz Norms

In this section, we introduce our results for Orlicz norm regression. We first give the definition of
weighted Orlicz norm.

Definition 4. For a function G that satisfies Assumption 1 and a weight vector w ∈ Rn such that
wi ≥ 0 for all i ∈ [n], for a vector x ∈ Rn, if

∑n
i=1 wi · |xi| = 0, then the weighted Orlicz norm

‖x‖G,w is defined to be 0. Otherwise, the weighted Orlicz norm ‖x‖G,w is defined as the unique
value α > 0 such that

∑n
i=1 wiG(|xi|/α) = 1.

When wi = 1 for all i ∈ [n], we have ‖x‖G,w = ‖x‖G where ‖x‖G is the (unweighted) Orlicz norm.
It is well known that ‖ · ‖G is a norm. We show in the following lemma that ‖ · ‖G,w is a seminorm.

Lemma 3. For a functionG that satisfies Assumption 1 and a weight vectorw ∈ Rn such thatwi ≥ 0
for all i ∈ [n], for all x, y ∈ Rn, we have (i) ‖x‖G,w ≥ 0, (ii) ‖x+ y‖G,w ≤ ‖x‖G,w + ‖y‖G,w, and
(iii) ‖ax‖G,w = |a| · ‖x‖G,w for all a ∈ R.

Leverage Scores and Well-Conditioned Bases for Orlicz Norms. The following lemma estab-
lishes an upper bound on the summation of Orlicz norm leverage scores defined in Definition 3.

Lemma 4. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1. Let
U ∈ Rn×d be a well-conditioned basis with condition number κG as in Definition 2. Then we have∑n
i=1G(‖Ui‖2) ≤ O(CGdκ

2
G),

Now we show that given a subspace embedding which embeds the column space of A with Orlicz
norm ‖ · ‖G into the `2 space with distortion κ, then one can construct a well-conditioned basis with
condition number κG ≤ κ.

Lemma 5. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1.
For a given matrix A ∈ Rn×d and an embedding matrix Π ∈ Rs×n, suppose for all x ∈ Rd,
‖Ax‖G ≤ ‖ΠAx‖2 ≤ κ‖Ax‖G. Let Q ·R = 1

κΠA be a QR-decomposition of 1
κΠA. Then AR−1 is

a well-conditioned basis (see Definition 2) with κG(AR−1) ≤ κ.

The following lemma shows how to estimate Orlicz norm leverage scores given a change of basis
matrix R ∈ Rd×d, in Õ(nnz(A) + poly(d)) time.

Lemma 6. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1. For
a given matrix A ∈ Rn×d and R ∈ Rd×d, there exists an algorithm that outputs {ui}ni=1 such that
with probability at least 0.99, ui = Θ(G(‖(AR−1)i‖2)) for all 1 ≤ i ≤ n. The algorithm runs in
Õ(nnz(A) + poly(d)) time.

The Row Sampling Algorithm. Based on the notion of Orlicz norm leverage scores and well-
conditioned bases, we design a row sampling algorithm for Orlicz norms.

Lemma 7. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1.
Let U ∈ Rn×d be a well-conditioned basis with condition number κG = κG(U) as in Definition
2. For sufficiently small ε and δ, and sufficiently large constant C, let {pi}ni=1 be a set of sampling
probabilities satisfying pi ≥ min

{
1, C (log(1/δ) + d log(1/ε)) ε−2G (‖Ui‖2)

}
. Let w be a vector

whose i-th entry is set to be wi = 1/pi with probability pi and wi = 0 with probability 1− pi, then
with probability at least 1−δ, for all x ∈ Rd, we have (1−ε)‖Ux‖G ≤ ‖Ux‖G,w ≤ (1+ε)‖Ux‖G.

Solving Linear Regression for Orlicz Norms. Now we combine all ingredients to give an algo-
rithm for Orlicz norm regression. We use A ∈ Rn×(d+1) to denote a matrix whose first d columns
are A and the last column is b. The algorithm is described in Figure 1, and we prove its running time
and correctness in Theorem 8. We assume we are given an embedding matrix Π, such that for all
x ∈ Rd+1, ‖Ax‖G ≤ ‖ΠAx‖2 ≤ κ‖Ax‖G. The construction of Π and the value κ will be given in
Corollary 12. In Section D.1 of the supplementary material, we use Theorem 8 and Corollary 12 to
formally prove Theorem 1.
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1. For the given embedding matrix Π, calculate ΠA and invoke QR-decomposition on
ΠA/κ to obtain Q ·R = ΠA/κ.

2. Invoke Lemma 6 to obtain {ui}ni=1 such that ui = Θ(G(‖(AR−1)i‖2)).
3. For a sufficiently large constant C, let {pi}ni=1 be a set of sampling probabilities with
pi ≥ min

{
1, C · d · ε−2 log(1/ε) ·G

(
‖(AR−1)i‖2

)}
, and w be a vector whose i-th

entry wi = 1/pi with probability pi and wi = 0 with probability 1− pi.
4. Calculate x∗ = argminx∈Rd ‖Ax− b‖G,w. Return x∗.

Figure 1: Algorithm for Orlicz norm regression

Theorem 8. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1.
Given an embedding matrix Π, such that for all x ∈ Rd, ‖Ax‖G ≤ ‖ΠAx‖2 ≤ κ‖Ax‖G, with
probability at least 0.9, the algorithm in Figure 1 outputs x∗ ∈ Rd in time poly(dκ/ε) + TQR(ΠA),
such that ‖Ax∗ − b‖G ≤ (1 + ε) minx∈Rd ‖Ax − b‖G. Here, TQR(ΠA) is the running time for
calculating ΠA and invoking QR-decomposition on ΠA.

3 Linear Regression for Symmetric Norms

In this section, we introduce SymSketch, a subspace embedding for symmetric norms.

Definition of SymSketch. We first formally define SymSketch. Due to space limitation, we
give the definition of Gaussian embeddings, CountSketch embeddings and their compositions in
Section C.1.1 of the supplementary material.

Definition 5 (Symmetric Norm Sketch (SymSketch)). Let t = Θ(log n). Let D̃ ∈ Rn(t+1)×n be a
matrix defined as D̃ =

[
(w0D0)> (w1D1)> . . . (wtDt)

>]>, where for each i ∈ {0, 1, . . . , t},
Di = diag(zi,1, zi,2, . . . , zi,n) ∈ Rn×n and zi,j ∼ Ber(1/2i) for each j ∈ [n]. Moreover, wi =

‖(1, 1, . . . , 1, 0, . . . , 0)‖` (there are 2i 1s). Let Π ∈ RO(d)×n(t+1) be a composition of Gaussian
embedding and CountSketch embedding (Definition 12) with ε = 0.1, and S = ΠD̃. We say
S ∈ RO(d)×n is a SymSketch.

Modulus of Concentration. Now we give the definition of mmc(`) for a symmetric norm.

Definition 6 ([7]). LetX denote the uniform distribution over Sn−1. The median of a symmetric norm
‖ · ‖` is the unique value M` such that Prx∼X [‖x‖` ≥M`] ≥ 1/2 and Prx∼X [‖x‖` ≤M`] ≥ 1/2.

Definition 7 ([7]). For a given symmetric norm ‖ · ‖`, we define the modulus of concentration to be
mc(`) = maxx∈Sn−1 ‖x‖`/M`, and define the maximum modulus of concentration to be mmc(`) =
maxk∈[n] mc(`(k)), where ‖ · ‖`(k) is a norm on Rk which is defined to be ‖(x1, x2, . . . , xk)‖`(k) =
‖(x1, x2, . . . , xk, 0, . . . , 0)‖`.

It has been shown in [7] that mmc(`) = Θ(n1/2−1/p) for `p norms when p > 2, mmc(`) = Θ(1)

for `p norms when p ≤ 2, mmc(`) = Θ̃(
√
n/k) for top-k norms, and mmc(`) = O(log n) for the

k-support norm [5] and the box-norm [25]. We show that mmc(`) is upper bounded by O(1) for
max-mix of `2 norm and `1 norm and sum-mix of `2 norm and `1 norm.

Lemma 9. For a real number c > 0, let ‖x‖`a = ‖x‖2 + c‖x‖1 and ‖x‖`b = max{‖x‖2, c‖x‖1}.
We have mmc(`a) = O(1) and mmc(`b) = O(1).

Moreover, we show that for an Orlicz norm ‖ · ‖G induced by a function G which satisfies Assump-
tion 1, mmc(`) is upper bounded by O(

√
CG log n).

Lemma 10. For an Orlicz norm ‖ · ‖G on Rn induced by a function G which satisfies Assumption 1,
mmc(`) is upper bounded by O(

√
CG log n).
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Subspace Embedding. The following theorem shows that SymSketch is a subspace embedding.

Theorem 11. Let S ∈ RO(d)×n be a SymSketch as defined in Definition 5. For a given matrix
A ∈ Rn×d, with probability at least 0.9, for all x ∈ Rd,

Ω
(

1/(
√
d · log3 n)

)
· ‖Ax‖` ≤ ‖SAx‖2 ≤ O

(
mmc(`) · d2 · log5/2 n

)
· ‖Ax‖`.

Furthermore, the running time of computing SA is Õ(nnz(A) + poly(d)).

Combine Theorem 11 with Lemma 10, we have the following corollary.
Corollary 12. Let ‖ · ‖G be an Orlicz norm induced by a function G which satisfies Assumption 1.
Let S ∈ RO(d)×n be a SymSketch as defined in Definition 5. For a given matrix A ∈ Rn×d, with
probability at least 0.9, for all x ∈ Rd,

Ω
(

1/(
√
d · log3 n)

)
· ‖Ax‖` ≤ ‖SAx‖2 ≤ O

(√
CG · d2 · log7/2 n

)
· ‖Ax‖`.

Furthermore, the running time of computing SA is Õ(nnz(A) + poly(d)).

4 Conclusion

In this paper, we give efficient algorithms for solving the overconstrained linear regression problem,
when the loss function is a symmetric norm. For the special case when the loss function is an Orlicz
norm, our algorithm produces a (1+ε)-approximate solution in Õ(nnz(A)+poly(d/ε)) time. When
the loss function is a general symmetric norm, our algorithm produces a

√
d · polylog n ·mmc(`)-

approximate solution in Õ(nnz(A) + poly(d)) time.

In light of Problem 1, there are a few interesting problems that remain open. Is that possible to design
an algorithm that produces (1 + ε)-approximate solutions to the linear regression problem, when
the loss function is a general symmetric norm? Furthermore, is that possible to use the technique of
linear sketching to speed up the overconstrained linear regression problem, when the loss function is
a general norm? Answering these problems could lead to a better understanding of Problem 1.
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Supplementary Material for “Efficient Symmetric Norm Regression via
Linear Sketching”

A Preliminaries

Notations. For a matrix A ∈ Rn×d, we use Ai to denote its i-th row, Ai to denote its i-th column,
‖A‖F to denote the Frobenius norm of A, and ‖A‖2 to denote the spectral norm of A. For any
n′ ≤ n, we define ξ(n′) ∈ Rn to be a vector ξ(n′) = 1√

n′
(1, 1, . . . , 1, 0, 0, . . . , 0).

ε-nets. We use the standard upper bound on size of ε-nets.

Definition 8. For a given set S and a norm ‖ · ‖, we say N ⊆ S is a ε-net of S if for any s ∈ S,
there exists some s ∈ N such that ‖s− s‖ ≤ ε.
Lemma 13 ([33, II.E, 10]). Given a matrix A ∈ Rn×d and a norm ‖ · ‖, let S be the unit ‖ · ‖-norm
ball in the column space of A, i.e., S = {Ax | ‖Ax‖ = 1}. For ε ∈ (0, 1), there exists an ε-net N of
S with size |N | ≤ (1 + 1/ε)d.

B Missing Proofs in Section 2

In this section, we give missing proofs in Section 2.

We first show that if a function G satisfies Assumption 1, then G has at least linear growth. We will
use this fact in later proofs.

Lemma 14. Given a function G that satisfies property P , then for any 0 < x ≤ y, y/x ≤
G(y)/G(x).

Proof. Due to the convexity of G and G(0) = 0, for any y > x > 0, we have

G(x) ≤ G(y)x/y +G(0)(1− x/y) = G(y)x/y.

B.1 Proof of Lemma 3

Proof. The first condition is clear from the definition of ‖x‖G,w.

Now we prove the second condition. When ‖x + y‖G,w = 0, the triangle inequality clearly holds
since ‖x‖G,w ≥ 0 and ‖y‖G,w ≥ 0. When ‖x‖G,w = 0 and ‖x + y‖G,w 6= 0, for any α > 0, we
have

n∑
i=1

wiG(|xi + yi|/α) =
∑
i|wi>0

wiG(|xi + yi|/α) =
∑
i|wi>0

wiG(|yi|/α) =

n∑
i=1

wiG(|yi|/α),

which implies ‖x+ y‖G,w = ‖y‖G,w. Similarly, the second condition also holds if ‖y‖G,w = 0 and
‖x + y‖G,w 6= 0. If ‖x + y‖G,w 6= 0, ‖x‖G,w 6= 0 and ‖y‖G,w 6= 0, by definition of ‖ · ‖G,w, we
have

n∑
i=1

wiG(xi/‖x‖G,w) = 1

and
n∑
i=1

wiG(yi/‖y‖G,w) = 1.
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Thus,
n∑
i=1

wiG

(
xi + yi

‖x‖G,w + ‖y‖G,w

)

≤
n∑
i=1

wiG

( |xi|+ |yi|
‖x‖G,w + ‖y‖G,w

)
(G is increasing)

≤
n∑
i=1

wi

( ‖x‖G,w
‖x‖G,w + ‖y‖G,w

·G(|xi|/‖x‖G,w) +
‖y‖G,w

‖x‖G,w + ‖y‖G,w
·G(|yi|/‖y‖G,w)

)
(G is convex)

=1,

which implies ‖x+ y‖G,w ≤ ‖x‖G,w + ‖y‖G,w.

For the third condition, for any a ∈ R and x ∈ Rn, if ‖x‖G,w = 0 then ‖ax‖G,w = 0. If a = 0, we
have ‖ax‖G,w = 0. Otherwise, we have

n∑
i=1

wiG(xi/‖x‖G,w) = 1,

which implies
n∑
i=1

wiG

(
a · xi

|a|‖x‖G,w

)
= 1,

and thus ‖ax‖G,w = |a|‖x‖G,w.

B.2 Proof of Lemma 4

Proof. Let g ∈ Rd be a vector whose entries are i.i.d. Gaussian random variables with zero mean
and standard deviation 102. We show that with probability at least 0.8,

n∑
i=1

G(‖Ui‖2) ≤ O
(

n∑
i=1

G(〈Ui, g〉)
)
≤ O

(
max{1, CG‖Ug‖2G}

)
≤ O(CGdκ

2
G).

We divide our proofs into three parts.

Part I. We will show that with probability at least 0.9,

n∑
i=1

G(‖Ui‖2) ≤ O
(

n∑
i=1

G(〈Ui, g〉)
)
.

For each i ∈ [n], 〈Ui, g〉 has the same distribution as 102 · ‖Ui‖2 · N (0, 1). For each i ∈ [n], we let
Bi be the random variable such that

Bi =

{
1 |〈Ui, g〉| ≤ ‖Ui‖2
0 otherwise

.

By tail inequalities of standard Gaussian random variables, Pr[Bi = 1] ≤ 0.01. Thus,

E [Bi ·G(‖Ui‖2)] ≤ 0.01 ·G(‖Ui‖2),

which implies

E

[
n∑
i=1

Bi ·G(‖Ui‖2)

]
≤ 0.01 ·

n∑
i=1

G(‖Ui‖2),

By the monotonicity of G, since

G(〈Ui, g)〉 ≥ (1−Bi)G(‖Ui‖2),
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we have
n∑
i=1

G(〈Ui, g〉) ≥
n∑
i=1

(1−Bi)G(‖Ui‖2).

By Markov’s inequality, with probability at least 0.9, we have
n∑
i=1

Bi ·G(‖Ui‖2) ≤ 0.1

n∑
i=1

G(‖Ui‖2),

which implies
n∑
i=1

G(〈Ui, g〉) ≥ 0.9

n∑
i=1

G(‖Ui‖2).

Part II. We will show that
n∑
i=1

G(〈Ui, g〉) ≤ max{1, CG · ‖Ug‖2G}.

When ‖Ug‖G ≤ 1, by monotonicity of G, we must have
n∑
i=1

G(〈Ui, g〉) ≤ 1.

When ‖Ug‖G ≥ 1, we have
n∑
i=1

G(〈Ui, g〉/‖Ug‖G) = 1.

Since
G(〈Ui, g〉) ≤ G(〈Ui, g〉/‖Ug‖G) · CG‖Ug‖2G

and
n∑
i=1

G(〈Ui, g〉/‖Ug‖G) = 1,

we must have
n∑
i=1

G(〈Ui, g〉) ≤
n∑
i=1

G(〈Ui, g〉/‖Ug‖G) · CG · ‖Ug‖2G ≤ CG · ‖Ug‖2G.

Part III. We will show that ‖Ug‖2G ≤ O(CGdκ
2
G). By definition of a well-conditioned basis and

tail inequalities of Gaussian random variables, with probability at least 0.9, we have

‖Ug‖G ≤ κG‖g‖2 ≤ O(κG
√
d).

Thus, applying a union bound over three parts of the proof, we have with probability at least 0.8,
n∑
i=1

G(‖Ui‖2) ≤ O(CGdκ
2
G). (9)

However, the condition in (9) is deterministic. Thus, the condition in (9) always holds.

B.3 Proof of Lemma 5

Proof. Notice that for any x ∈ Rd,

‖AR−1x‖G ≤ ‖ΠAR−1x‖2 = κ‖Qx‖2 = κ‖x‖2
and

‖AR−1x‖G ≥
1

κ
‖ΠAR−1x‖2 = ‖Qx‖2 = ‖x‖2.
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B.4 Proof of Lemma 6

Proof. In Theorem 2.13 of [34], it has been shown how to calculate {li}ni=1 such that li =

Θ(‖(AR−1)i‖2) in Õ(nnz(A) + poly(d)) time with probability at least 0.99. We simply take ui =
G(li). By Lemma 14 and the growth condition of G, we must have ui = Θ(G(‖(AR−1)i‖2)).

B.5 Proof of Lemma 7

Proof. By homogeneity, we only need to prove that with probability 1− δ, for all x which satisfies
‖Ux‖G = 1,

(1− ε)‖Ux‖G ≤ ‖Ux‖G,w ≤ (1 + ε)‖Ux‖G.

We first prove that for any fixed x ∈ Rd such that ‖Ux‖G = 1, with probability 1− δ(1 + 4/ε)−d,

(1− ε/4)‖Ux‖G ≤ ‖Ux‖G,w ≤ (1 + ε/4)‖Ux‖G.

Let x ∈ Rd that satisfies ‖Ux‖G = 1 and y = Ux. Let Zi be a random variable which denotes the
value of wiG(yi) and Z =

∑n
i=1 Zi.

We will first show that if Z ∈ [1− ε/4, 1 + ε/4], then ‖y‖G,w ∈ [1− ε/4, 1 + ε/4]. There are three
cases:

1. If ‖y‖G,w = 1, then ‖y‖G,w is already in [1− ε/4, 1 + ε/4].

2. If ‖y‖G,w > 1, then by Lemma 14, we have
n∑
i=1

wiG(yi) ≥
n∑
i=1

wi‖y‖G,w ·G(yi/‖y‖G,w).

Since
n∑
i=1

wi ·G(yi/‖y‖G,w) = 1,

we must have

‖y‖G,w ≤
n∑
i=1

wiG(yi) = Z ≤ 1 + ε/4.

3. If ‖y‖G,w < 1, then by Lemma 14, we have

1 =

n∑
i=1

wiG(yi/‖y‖G,w) ≥ 1/‖y‖G,w ·
n∑
i=1

wiG(yi),

which implies

‖y‖G,w ≥
n∑
i=1

wiG(yi) = Z ≥ 1− ε/4.

Thus, it suffices to prove that

Pr [Z ∈ [1− ε/4, 1 + ε/4]] ≥ 1− δ(1 + 4/ε)−d.

Consider the expectation of Z, we have

E[Z] =

n∑
i=1

E[Zi] =

n∑
i=1

E[wi] ·G((Ux)i) =

n∑
i=1

G((Ux)i) = 1,

where the last equality follows since ‖Ux‖G = 1.

Notice that |Zi −E(Zi)| is always upper bounded by

wiG(yi) = wiG((Ux)i) ≤ wiG(‖Ui‖2 · ‖x‖2) ≤ wiG (‖Ui‖2)

≤ G (‖Ui‖2) /pi ≤
ε2

C (log(1/δ) + d log(1/ε))
,
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where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows from
the definition of well-conditioned basis in Definition 2 and monotonicity of G, the third inequality
follows from definition of wi and the last inequality follows from the choice of pi.

Consider the variance of Z, we have:

Var(Z) =
∑
i|pi<1

Var(Zi) ≤
∑
i|pi<1

E(Z2
i ) =

∑
i|pi<1

(G((Ux)i))
2
/pi

≤

 ∑
i|pi<1

G((Ux)i)

 · max
i|pi<1

G((Ux)i)/pi ≤
ε2

C (log(1/δ) + d log(1/ε))
,

where the second inequality follows from Hölder’s inequality and the last inequality follows from the
upper bound of G((Ux)i)/pi and ‖Ux‖G = 1.

Thus, by Bernstein inequality, we have:

Pr (|Z − 1| > ε/4) ≤ (1 + 4/ε)−dδ.

Thus, for a fixed x, with probability at least 1− (1 + 4/ε)−dδ, we have

(1− ε/4)‖Ux‖G ≤ ‖Ux‖G,w ≤ (1 + ε/4)‖Ux‖G.

Let S be the unit ‖·‖G-norm ball in the column space of U , i.e., S = {Ux | ‖Ux‖G = 1}. According
to Lemma 13, there exists an ε/4-net N of S with |N | ≤ (1 + 4/ε)d. We use E to denote the event
that for all y ∈ N , ‖y‖G,w ∈ [1− ε/4, 1 + ε/4]. By taking union bound over all vectors in N , we
have Pr[E ] ≥ 1− δ.
Conditioned on E , now we show that for all y ∈ S, ‖y‖G,w ∈ [1− ε, 1 + ε]. Consider a fixed vector
y ∈ S, since N is an ε/4-net of S, we can choose a vector u(1) ∈ N such that

‖y − u(1)‖G ≤ ε/4.
Thus, we have that

‖y‖G,w ≤ ‖u(1)‖G,w + ‖y − u(1)‖G,w ≤ (1 + ε/4) + ‖y − u(1)‖G,w.
Let α(1) = 1/‖y − u(1)‖G. Then we have α(1)(y − u(1)) ∈ S. Thus, there exist u(2) ∈ N such that

‖u(2) − α(1)(y − u(1))‖G ≤ ε/4.
It implies that

‖(y − u(1))− u(2)/α(1)‖G ≤ ε/(4α(1)) ≤ (ε/4)2.

Thus,

‖y−u(1)‖G,w ≤ ‖u(2)‖G,w/α(1)+‖y−u(1)−u(2)/α(1)‖G,w ≤ (1+ε/4)ε/4+‖y−u(1)−u(2)/α(1)‖G,w.
Let α(2) = 1/‖y − u(1) − u(2)/α(1)‖G. Then we can repeat the above argument and get

‖y‖G,w ≤ (1 + ε/4) + (1 + ε/4)ε/4 + (1 + ε/4)(ε/4)2 + . . .

= (1 + ε/4)/(1− ε/4) ≤ 1 + ε.

By applying the above upper bound on ‖α(1)(u(1) − y)‖G,w, we can get

‖y‖G,w ≥ ‖u(1)‖G,w − ‖u(1) − y‖G,w
≥ (1− ε/4)− ‖u(1) − y‖G,w
≥ (1− ε/4)− 1 + ε

α(1)

≥ 1− ε/2− ε2/4

≥ 1− ε.
Thus, conditioned on E , which holds with probability 1− δ, we have ‖y‖G,w ∈ [1− ε, 1 + ε] for all
y = Ux with ‖y‖G = 1.
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B.6 Proof of Theorem 8

Proof. We first analyze the running time of the algorithm. In Step 1, we calculate ΠA and invoke
QR-decomposition on ΠA. In Step 2, we apply the algorithm in Lemma 6, which runs in Õ(nnz(A)+
poly(d)) time. Obtaining the weight vector w ∈ Rn in Step 3 requires O(n) time.

Since for all x ∈ Rd,
‖Ax‖G ≤ ‖ΠAx‖2 ≤ κ‖Ax‖G.

we have

E[‖w‖0] =

n∑
i=1

pi =

n∑
i=1

O
(
d log(1/ε)/ε2 ·G

(
‖(AR−1)i‖2

))
≤ O

(
d log(1/ε)/ε2 · CGd

(
κG(AR−1)

)2)
(Lemma 4)

≤ O
(
CGd

2κ2 log(1/ε)/ε2
)
. (Lemma 5)

By Markov’s inequality, with constant probability we have ‖w‖0 ≤ O
(
CGd

2κ2 log(1/ε)/ε2
)
.

Moreover, in order to solve minx ‖Ax− b‖G,w, we can ignore all rows of A with zero weights, and
thus there are at most O

(
CGd

2κ2 log(1/ε)/ε2
)

remaining rows in A. Furthermore, as we show in
Lemma 3, ‖ · ‖G,w is a seminorm, which implies we can solve minx ‖Ax− b‖G,w in poly(CGdκ/ε)
time, by simply solve a convex program with size O

(
CGd

2κ2 log(1/ε)/ε2
)
.

Now we prove the correctness of the algorithm. The algorithm in Lemma 6 succeeds with constant
probability. By Lemma 7, with constant probability, simultaneously for all x ∈ Rd+1,

(1− ε/3)‖AR−1x‖G ≤ ‖AR−1x‖G,w ≤ (1 + ε/3)‖AR−1x‖G.
Equivalently, with constant probability, simultaneously for all x ∈ Rd+1,

(1− ε/3)‖Ax‖G ≤ ‖Ax‖G,w ≤ (1 + ε/3)‖Ax‖G.

Since x∗ = argminx ‖Ax− b‖G,w, for all x ∈ Rd, we have

‖Ax∗ − b‖G ≤ 1/(1− ε/3)‖Ax∗ − b‖G,w ≤ 1/(1− ε/3)‖Ax− b‖G,w
≤ (1 + ε/3)/(1− ε/3)‖Ax− b‖G ≤ (1 + ε)‖Ax− b‖G

for sufficiently small ε. Thus, x∗ is a (1 + ε)-approximate solution to minx ‖Ax− b‖G.

Note that the failure probability of the algorithm can be reduced to an arbitrarily small constant by
independent repetitions and taking the best solution found among all repetitions.

C Missing Proofs in Section 3

In this section, we give missing proofs in Section 3.

Without loss of generality, throughout this section, for the symmetric norm ‖ · ‖` under consideration,
we assume ‖ξ(1)‖` = 1.

C.1 Background

C.1.1 Known `2 Oblivious Subspace Embeddings

In this section, we recall some known `2 subspace embeddings.
Definition 9. We say S ∈ Rt×n is an `2 subspace embedding for the column space of A ∈ Rn×d, if
for all x ∈ Rd,

(1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2.
Definition 10. A CountSketch embedding is defined to be Π = ΦD ∈ Rm×n with m = Θ(d2/ε2),
where D is an n× n random diagonal matrix with each diagonal entry independently chosen to be
+1 or −1 with equal probability, and Φ ∈ {0, 1}m×n is an m × n binary matrix with Φh(i),i = 1
and all remaining entries being 0, where h : [n]→ [m] is a random map such that for each i ∈ [n],
h(i) = j with probability 1/m for each j ∈ [m].
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Theorem 15 ([12]). For a given matrix A ∈ Rn×d and ε ∈ (0, 1/2). Let Π ∈ RΘ(d2/ε2)×n be a
CountSketch embedding. With probability at least 0.9999, Π is an `2 subspace embedding for the
column space of A. Furthermore, ΠA can be computed in O(nnz(A)) time.
Definition 11. A Gaussian embedding S is defined to be 1√

m
· G ∈ Rm×n with m = Θ(d/ε2),

where each entry of G ∈ Rm×n is chosen independently from the standard Gaussian distribution.

Theorem 16 ([34]). For a given matrix A ∈ Rn×d and ε ∈ (0, 1/2). Let S ∈ RΘ(d/ε2)×n be a
Gaussian embedding. With probability at least 0.9999, S is an `2 subspace embedding for the column
space of A.
Definition 12. A composition of Gaussian embedding and CountSketch embedding is defined to be
S′ = SΠ, where Π ∈ RΘ(d2/ε2)×n is a CountSketch embedding and S ∈ RΘ(d/ε2)×Θ(d2/ε2) is a
Gaussian embedding.

The following corollary directly follows from the above two theorems.

Corollary 17. For a given matrix A ∈ Rn×d and ε ∈ (0, 1/2). Let S′ ∈ RΘ(d/ε2)×n be a
composition of Gaussian embedding and CountSketch embedding. With probability at least 0.9998,
S′ is an `2 subspace embedding for the column space of A. Furthermore, S′A can be computed in
O(nnz(A) + d4/ε4) time.

We remark that all `2 subspace embeddings introduced in this section are oblivious, meaning that the
distribution of the embedding matrix does not depend on the matrix A.

C.1.2 Properties of Symmetric Norms

General Properties. We first introduce several general properties of symmetric norms.
Lemma 18 (Lemma 2.1 in [7]). For any symmetric norm ‖ · ‖` and x, y ∈ Rn such that for all
i ∈ [n] we have |xi| ≤ |yi|, then ‖x‖` ≤ ‖y‖`.
Lemma 19 (Fact 2.2 in [7]). Suppose ‖ξ(1)‖` = 1, for any vector x ∈ Rn,

‖x‖∞ ≤ ‖x‖` ≤ ‖x‖1.
Lemma 20 (Lemma 3.12 in [7]). Let ‖ · ‖` be a symmetric norm. Then

Ω(M`/
√

log n) ≤ ‖ξ(n)‖` ≤ O(M`),

where M` is as defined in Definition 6.

Modulus of Approximation. We need the following quantity of a symmetric norm.
Definition 13. The maximum modulus of approximation of a symmetric norm ‖ · ‖` is defined as

mma(`, r) = max
1≤a≤b≤ar≤n

M`(ar)

M`(b)
,

where ‖ · ‖`(k) is a norm on Rk which is defined to be

‖(x1, x2, . . . , xk)‖`(k) = ‖(x1, x2, . . . , xk, 0, . . . , 0)‖`,
and M`(k) is as defined in Definition 6.

Intuitively, mma(`, r) characterizes how well the original symmetric norm can be approximated by a
lower dimensional induced norm. We show in the following lemma that mma(`, r) ≤ O(

√
r log n)

for any symmetric norm.
Lemma 21. For any symmetric norm ‖ · ‖` and r ∈ [n], mma(`, r) ≤ O(

√
r log n).

Proof. By Lemma 20, for any i ∈ [n], Ω(M`(i)/
√

log n) ≤ ‖ξ(i)‖` ≤ O(M`(i)). Let ar = c1b+ c2,
where c1, c2 are non-negative integers with c1 ≤ ar/b and c2 ≤ b. Observe that we can rewrite ξ(ar)

as

ξ(ar) =

 √b√
ar
·

ξ(b), ξ(b), ξ(b), . . . , ξ(b)︸ ︷︷ ︸
c1 times

 ,

√
c2√
ar
ξ(c2), 0, . . . , 0

 .
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Therefore, by triangle inequality, we have

‖ξ(ar)‖` ≤
√
b√
ar
· c1 · ‖ξ(b)‖` +

√
c2√
ar
· ‖ξ(c2)‖`

≤
√

b

ar
· ar
b
· ‖ξ(b)‖` +

√
b√
ar
· ‖ξ(b)‖` (c1 ≤ ar/b and c2 ≤ b)

≤ √r · ‖ξ(b)‖` + ‖ξ(b)‖` (a ≤ b ≤ ar)

≤ 2
√
r · ‖ξ(b)‖`. (r ≥ 1)

Now we apply Lemma 20 on both sides, which implies

M`(ar)√
log n

≤ O(
√
r ·M`(b))

as desired.

Properties of SymSketch. Now we introduce several properties of SymSketch.

The following lemma shows that for a data matrix A ∈ Rd, calculating SA requires Õ(nnz(A) +
poly(d)) time for a SymSketch S.

Lemma 22. For a given matrix A ∈ Rn×d, let S ∈ RO(d)×n be a SymSketch as in Definition 5.
SA can be computed inO(nnz(A))+poly(d) time in expectation, and inO(nnz(A) log n)+poly(d)
time in the worst case.

Proof. Since S is a SymSketch, S = ΠD̃ = Π ·


w0D0

w1D1

...
wtDt

, where Π ∈ RO(d)×O(n logn).

Since Di is a diagonal matrix, nnz(DiA) ≤ nnz(A), and thus nnz(D̃A) ≤ (t + 1) · nnz(A) =

O(nnz(A) log n), which implies D̃A can be computed in (t+ 1) · nnz(A) = O(nnz(A) log n) time.

On the other hand, the expected number of nonzero entries of DiA is 2−i nnz(A). Thus, D̃A has
O(nnz(A)) nonzero entries in expectation, which implies D̃A can be computed in O(nnz(A)) time.

Finally, notice that Π is a composition of Gaussian embedding and CountSketch embedding, which
implies ΠD̃A can be computed in nnz(D̃A) + poly(d) time.

The following lemma shows that with constant probability, for all x ∈ Rn, ‖Sx‖2 ≤ poly(n)‖x‖2.

Lemma 23. Let S ∈ RO(d)×n be a SymSketch as defined in Definition 5, then with probability at
least 0.9999 ‖S‖2 ≤ poly(n).

Proof. Notice that S = ΠD̃, since ‖S‖2 ≤ ‖Π‖2 · ‖D̃‖2, it suffices to bound ‖Π‖2 and ‖D̃‖2.
Since Π is a composition of Gaussian embedding and CountSketch embedding (Definition 12),

with probability at least 0.9999, ‖Π‖2 ≤ ‖Π‖F ≤ poly(n). Now consider D̃ =


w0D0

w1D1

...
wtDt

. By

Lemma 19, for all j ∈ [t], wj ≤ poly(n). Furthermore, ‖Dj‖2 ≤ 1 and t = Θ(log n), which implies
‖D̃‖2 ≤ poly(n).

Throughout this whole section we assume that for any non-zero vector x ∈ Rn, we have 1 ≤ |xj | ≤
poly(n) for all j ∈ [n]. Notice that this assumption is without loss of generality, as shown in the
following lemma.
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Lemma 24. For any non-zero vector x ∈ Rn, let x ∈ Rn be a vector with x = poly(n)·x
‖x‖∞ , and

x′ ∈ Rn where

x′i =

{
xi if xi ≥ 1

0 otherwise
.

For a symmetric norm ‖ · ‖`, suppose ‖S‖2 ≤ poly(n) and

α‖x′‖` ≤ ‖Sx′‖2 ≤ β‖x′‖`
for some α, β ∈ [1/poly(n),poly(n)], then

Ω(α)‖x‖` ≤ ‖Sx‖2 ≤ O(β)‖x‖`.

Proof. By triangle inequality and Lemma 18, we have

‖x‖` − n ≤ ‖x′‖` ≤ ‖x‖`.
By Lemma 19,

‖x′‖` ≥ ‖x′‖∞ = ‖x‖∞ = poly(n),

we have
(1− 1/ poly(n))‖x‖` ≤ ‖x′‖` ≤ ‖x‖`.

Notice that ‖Sx‖2 = ‖Sx′ + S(x− x′)‖2. By triangle inequality we have

‖Sx′‖2 − ‖S‖2‖x− x′‖2 ≤ ‖Sx‖2 ≤ ‖Sx′‖2 + ‖S‖2‖x− x′‖2.
By the given conditions, we have

(1− 1/ poly(n))‖Sx′‖2 ≤ ‖Sx‖2 ≤ (1 + 1/ poly(n))‖Sx′‖2,
which implies

Ω(α)‖x‖` ≤ ‖Sx‖2 ≤ O(β)‖x‖`.
Since x = poly(n)·x

‖x‖∞ , we have

Ω(α)‖x‖` ≤ ‖Sx‖2 ≤ O(β)‖x‖`.

By Lemma 24, we can focus on those non-zero vectors x ∈ Rn such that 1 ≤ |xj | ≤ poly(n) for all
j ∈ [n].

Definition 14. For a given vector x ∈ Rn, suppose for all j ∈ [n],

1 ≤ |xj | ≤ poly(n).

Let g = Θ(log n). For each i ∈ {0, 1, . . . , g}, we define

Li(x) = {j | 2i ≤ |xj | < 2i+1}.
For each i ∈ {0, 1, . . . , g}, we define Vi(x) ∈ Rn to be the vector

Vi(x) = (2i, 2i, . . . , 2i︸ ︷︷ ︸
|Li(x)|

, 0, . . . , 0).

For each i ∈ {0, 1, . . . , g}, we say a level i to be contributing if

‖Vi(x)‖` ≥ Ω (1/g) · ‖x‖`.
Lemma 25. Let g = Θ(log n). For a given vector x ∈ Rn such that for all j ∈ [n], 1 ≤ |xj | ≤ 2g,
there exists at least one level i ∈ {0, 1, . . . , g} which is contributing.

Proof. If none of i ∈ {0, 1, . . . , g} is contributing, then ‖x‖` ≤
∑g
i=0 ‖Vi(x)‖` ≤ 1/(2g) ·∑g

i=0 ‖x‖` ≤ 1
2‖x‖`, which leads to a contradiction.
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C.2 Proof of Lemma 9

Proof. Consider a fixed n′ ∈ [n]. By Lemma 20, we have

M
`
(n′)
a

= Ω
(
‖ξ(n′)‖

`
(n′)
a

)
= Ω

(
1 + c

√
n′
)

and
M
`
(n′)
b

= Ω
(
‖ξ(n′)‖

`
(n′)
b

)
= Ω

(
max

(
1, c
√
n′
))

.

It is also straightforward to verify that

max
x∈Sn′−1

‖x‖`a = 1 + c
√
n′

and
max

x∈Sn′−1
‖x‖`b = max

(
1, c
√
n′
)
.

Taking the ratio between maxx∈Sn′−1 ‖x‖` and M`(n′) for ` ∈ {`a, `b}, we complete the proof.

C.3 Proof of Lemma 10

Proof. Let G(x) =
√
x · G−1(1/x), where G−1(1/x) is the unique value in [0,∞) such that

G(G−1(1/x)) = 1/x. We first show that G(x) is an approximately decreasing function for x ∈
(0,∞). Let m,n be two real numbers with 0 < m ≤ n. We have 1/n ≤ 1/m, which implies
0 < G−1(1/n) ≤ G−1(1/m) by monotonicity of G. By the third condition in Assumption 1, we
have

G(G−1(1/m))

G(G−1(1/n))
≤ CG ·

(
G−1(1/m)

G−1(1/n)

)2

,

which implies √
n ·G−1(1/n) ≤

√
CG ·

√
m ·G−1(1/m).

Hence G(n) ≤ √CG ·G(m).

We are now ready to prove the lemma. Recall that for the Orlicz norm ‖ · ‖` = ‖ · ‖G, we have

mmc(`) = max
n′∈[n]

mc(`(n
′)) = max

n′∈[n]

maxx∈Sn′−1 ‖x‖`(n′)
M`(n′)

.

By Lemma 20, we have,

Ω(1) · ‖ξ(n′)‖`(n′) ≤M`(n′) ≤ O(
√

log n) · ‖ξ(n′)‖`(n′) .

Thus ‖ξ(n′)‖`(n′) provides an approximation to M`(n′) . By definition of ‖ · ‖G, we have

‖ξ(n′)‖`(n′) =
1√

n′ ·G−1(1/n′)
=

1

G(n′)
.

Hence
Ω(1) ≤M`(n′) ·G(n′) ≤ O(

√
log n).

Next, we compute maxx∈Sn′−1 ‖x‖`(n′) . For an arbitrary unit vector x ∈ Sn′−1, we denote

Bj = {i ∈ [n] : |xi| ∈ [1/2j , 1/2j−1)}
and bj = |Bj |. For each j, let xBj ∈ Rn be the vector such that

x
Bj

i =

{
xi if j ∈ Bj
0 otherwise

.

Note that non-zero coordinates in xBj have magnitude close to each other (within a factor of 2), we
thus have

‖xBj‖` = ‖xBj‖2 ·
∥∥∥∥ xBj

‖xBj‖2

∥∥∥∥
`

≤
√
bj

2j−1
·
∥∥∥∥ xBj

‖xBj‖2

∥∥∥∥
`

≤
√
bj

2j−2
· ‖ξ(bj)‖

`(bj)
=

√
bj

2j−2
· 1

G(bj)
.
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Similarly,

‖xBj‖` ≥
√
bj

2j+2
· ‖ξ(bj)‖

`(bj)
=

√
bj

2j+2
· 1

G(bj)
≥
√
bj

2j+2
· 1√

CG ·G(1)
.

We claim there exists an constant c > 0 such that∑
j>c logn
bj>0

‖xBj‖` ≤
∑

j′≤c logn

‖xBj′‖`.

To show this, by Lemma 14, for any b ≥ 1,

b =
G(G−1(1))

G(G−1(1/b))
≥ G−1(1)

G−1(1/b)
,

which implies

G−1(1/b) ≥ G−1(1)

b
.

Next, since ‖x‖2 = 1, there exists an 0 ≤ j̃ ≤ 4 log n such that bj̃ ≥ 1. Therefore,

‖xBj̃‖` ≥
1

2j̃+2
· 1√

CG ·G(1)
.

Thus, we have∑
j>c logn
bj>0

‖xBj‖` =
∑

j>c logn
bj>0

‖xBj‖2 ·
∥∥∥∥ xBj

‖xBj‖2

∥∥∥∥
`

≤
∑

j>c logn
bj>0

√
n

2j−2
· ‖ξ(bj)‖

`(bj)

≤
∑

j>c logn
bj>0

√
n

2j−2
· 1√

bjG−1(1/bj)
≤ n ·

√
n

2c logn−2
· bj√

bjG−1(1)

≤ n · 2j̃+2 ·
√
n

2c logn−2
·
√
CGn · ‖xBj̃‖` ≤ ‖xBj̃‖` ≤

∑
j′≤c logn

‖xBj′‖`

for some sufficiently large constant c.

Let
j∗ = argmaxj≤c logn ‖xBj‖`,

we have

‖xBj∗ ‖` ≤ ‖x‖` ≤
∑

j≤c logn

‖xBj‖` +
∑

j>c logn
bj>0

‖xBj‖` ≤ 2
∑

j≤c logn

‖xBj‖` ≤ O(log n) · ‖xBj∗ ‖`.

Thus,

max
x∈Sn′−1

‖x‖`(n′) ≤ O(log n′) max
x∈Sn′−1

‖xBj∗‖` ≤ O(log n′) max
x∈Sn′−1

‖xBj∗‖2 ·
∥∥∥∥ xBj∗

‖xBj∗‖2

∥∥∥∥
`

≤O(log n′) max
x∈Sn′−1

∥∥∥∥ xBj

‖xBj‖2

∥∥∥∥
`

≤ O(log n′) max
bj∗≤n′

‖ξ(bj)‖
`(bj)
≤ O(log n′) max

bj∗≤n′
1

G(bj∗)
≤ O(

√
CG log n′)

G(n′)
.

Thus, we have

mmc(`) = max
n′∈[n]

maxx∈Sn′−1 ‖x‖`(n′)
M`(n′)

≤ O(
√
CG log n).
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C.4 Contraction Bound of SymSketch

In this section we give the contraction bound of SymSketch. We first show that for a fixed vector
x ∈ Rn, ‖D̃x‖2 ≥ 1/poly(d log n) · ‖x‖` with probability 1− 2−Θ(d logn).

Lemma 26. Let D̃ be the matrix defined in Definition 5. For any fixed x ∈ Rn, with probability
1− 2−Θ(d logn), ‖D̃x‖2 ≥ 1/α0 · ‖x‖`, where α0 = O(mma(`, d) · log5/2 n) = O(

√
d log3 n).

Proof. The lemma follows from the following two claims. Recall that t = Θ(log n).

Claim 1. For any fixed x ∈ Rn. If there is a contributing level i∗ ∈ {0, 1, 2, . . . , g} such that
|Li∗(x)| = Θ(d log n) · 2j for some j ∈ [t], then with probability at least 1− 2−Θ(d logn),

‖wjDjx‖2 ≥ Ω

(
1

mma(`, d) · log5/2 n

)
‖x‖`.

Proof. Let yh be a random variable such that

yh =

{
1 if the h-th diagonal entry of Dj is 1

0 otherwise
.

Let Y =
∑
h∈Li∗ (x) yh. By Chernoff bound, we have

Pr[Y ≥ Ω(d log n)] ≥ 1− 2−Θ(d logn).

Conditioned on Y ≥ Ω(d log n), we have

‖wjDjx‖2
‖x‖`

=
wj‖Djx‖2
‖x‖`

≥ 2i
∗
wj
√
d log n

‖x‖`

≥ 2i
∗√

2jM`(2
j)

√
d log n

2i∗+1gM`(|Li∗ (x)|)
√

log n
√
|Li∗(x)|

≥ Ω(1/ log3/2 n) · M`(2
j)

M`(|Li∗ (x)|)

= Ω(1/ log3/2 n) · M`(2
j)

M`(|Li∗ (x)|/ log n)

· M`(|Li∗ (x)|/ log n)

M`(|Li∗ (x)|)

≥ Ω

(
1

mma(`, d) ·mma(`, log n) · log3/2 n

)

≥ Ω

(
1

mma(`, d) · log5/2 n

)
.

Here the first inequality follows from the fact that there are at least Ω(d log n) coordinates sampled
from Li∗(x). The second inequality follows from Lemma 20 and the fact that level i∗ is a contributing
level. The third inequality follows from |Li∗(x)| = Θ(d log n) · 2j and g = Θ(log n). The forth
inequality follows from Definition 13. The last inequality follows from Lemma 21.

Claim 2. For any fixed x ∈ Rn. If there is a contributing level i∗ ∈ {0, 1, 2, . . . , g} such that
|Li∗(x)| = O(d log n), then we have

‖w0D0x‖2 ≥ Ω

(
1

mma(`, d) · log5/2 n

)
‖x‖`.
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Proof.
‖w0D0x‖2
‖x‖`

=
w0‖x‖2
‖x‖`

≥ 2i
∗
w0

√
|Li∗(x)|

‖x‖`

≥ 2i
∗
M`(1)

√
|Li∗(x)|

2i∗+1gM`(|Li∗ (x)|)
√

log n
√
|Li∗(x)|

≥ Ω(1/ log3/2 n) · M`(1)

M`(|Li∗ (x)|/ log n)

· M`(|Li∗ (x)|/ log n)

M`(|Li∗ (x)|)

≥ Ω

(
1

mma(`, d) · log5/2 n

)
The first inequality follows from the fact that we only consider the contribution of the coordinates in
Li∗(x). The second inequality follows from Lemma 20 and the fact that level i∗ is a contributing
level. The third inequality follows from g = Θ(log n). The last inequality follows from Definition 13
and Lemma 21.

By Claim 1 and Claim 2, since any vector x ∈ Rn contains at least one contributing level, with
probability at least 1 − 2−Θ(d logn) we have ‖D̃x‖2 ≥ Ω(1/(mma(`, d) · log5/2 n)) · ‖x‖`. We
complete the proof by combining this with Lemma 21.

Now we show how to combine the contraction bound in Lemma 26 with a net argument to give a
contraction bound for all vectors in a subspace.
Lemma 27. Let S ∈ RO(d)×n be a random matrix. For any α0 = poly(n) and A ∈ Rn×d, if

1. ‖S‖2 ≤ poly(n) holds with probability at least 0.999;

2. for any fixed x ∈ Rn, ‖Sx‖2 ≥ 1/α0 · ‖x‖` holds with probability 1 − e−Cd logn for a
sufficiently large constant C,

then with probability at least 0.998, for all y ∈ Rn in the column space of A,
‖Sy‖2 ≥ Ω(1/α0)‖y‖`.

Proof. For the matrix A ∈ Rn×d, we define the set B = {y | y = Ax, ‖y‖2 = 1}. We define
N ⊂ Rn to be an ε-net of B as in Definition 8. By Lemma 13, we have |N | ≤ (1 + 1/ε)d, and for
all y ∈ B, there exists z ∈ N such that ‖y − z‖2 ≤ ε. We take ε = 1/poly(n) here.

Due to the second condition, since |N | ≤ eO(d logn), by taking union bound over all vectors in N ,
we know that with probability 1− e−Θ(d logn), for all z ∈ N , ‖Sz‖2 ≥ 1/α0 · ‖z‖`.
Now, for any vector y ∈ B, there exists z ∈ N such that ‖y − z‖2 ≤ 1/ poly(n), and we define
w = y − z.

‖Sy‖2 = ‖S(z + w)‖2
≥ ‖Sz‖2 − ‖Sw‖2 (triangle inequality)
≥ 1/α0 · ‖z‖` − ‖Sw‖2 (by the second condition)
≥ 1/α0 · ‖z‖` − ‖S‖2‖w‖2 (‖Sw‖2 ≤ ‖S‖2 · ‖w‖2)
≥ 1/α0 · ‖z‖` − poly(n) · ‖w‖2 (by the first condition)
≥ 1/α0 · ‖y − w‖` − poly(n) · ‖w‖2 (y = z + w)
≥ 1/α0 · ‖y‖` − 1/α0 · ‖w‖` − poly(n) · ‖w‖2 (triangle inequality)

≥ 1/α0 · ‖y‖` − 1/α0 ·
√
n‖w‖2 − poly(n) · ‖w‖2 (Lemma 19)

≥ 1/α0 · ‖y‖` − (1/α0 ·
√
n+ poly(n))ε (‖w‖2 ≤ ε)

≥ 0.5/α0 · ‖y‖`.
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Lemma 28. For a given matrix A ∈ Rn×d. Let S ∈ RO(d)×n be a SymSketch as defined in
Definition 5. With probability at least 0.995, for all x ∈ Rd, ‖SAx‖2 ≥ 1/α0 · ‖Ax‖` where
α0 = O(

√
d log3 n).

Proof. By Lemma 26 and Lemma 23, the two conditions in Lemma 27 are satisfied. By Lemma 27,
with probability at least 0.998, for all x ∈ Rd, ‖D̃Ax‖2 ≥ Ω(1/α0)‖Ax‖`. Since Π ∈ RO(d)×n(t+1)

is a composition of Gaussian embedding and CountSketch embedding with ε = 0.1, by Corollary 17,
with probability at least 0.999, for all x ∈ Rd, ‖ΠD̃Ax‖2 ≥ Ω(‖D̃Ax‖2). By a union bound, we
know that with probability at least 0.995, for all x ∈ Rd, ‖SAx‖2 ≥ Ω(1/α0)‖Ax‖`.

C.5 Dilation Bound of SymSketch

In this section we give the dilation bound of SymSketch. We first show that for any fixed x ∈ Rn,
with high probability, ‖D̃x‖2 ≤ poly(d log n) ·mmc(`) · ‖x‖`.
Lemma 29. Let D̃ be the matrix defined in Definition 5. For any fixed vector x ∈ Rn, with probability
1− δ, ‖D̃x‖2 ≤ α1/δ · ‖x‖`, where α1 = O(mmc(`) log5/2 n).

Proof. Consider a fixed vector x ∈ Rn. Recall that t = Θ(log n). Let c > 0 be a fixed constant. We
define the j-heavy level set Hj as

Hj =

{
i

∣∣∣∣ |Li(x)| ≥ c δ2j

log2 n
, 0 ≤ i ≤ g

}
.

Let Hj be the j-light level set, i.e., Hj = {0, 1, . . . , g}\Hj . Notice that∑
i∈Hj

|Li(x)| · 2−j ≤ g · cδ2j/ log2 n · 2−j ≤ O(δ/ log n).

By Markov’s inequality, with probability at least 1 − δ/(2t), no element from a j-light level is
sampled by Dj , i.e., for all i ∈ Hj , k ∈ Li(x), the k-th diagonal entry of Dj is 0. By taking union
bound over all j ∈ [t], with probability at least 1− δ/2, for all j ∈ [t], no element from a j-light level
is sampled by Dj . Let ζ denote this event. We condition on this event in the remaining part of the
proof. In the following analysis, we show an upper bound of ‖wjDjx‖22 for each j ∈ [t]. Let Hj be
the set of j-heavy levels.

Consider a fixed j ∈ [t], we have

E
Dj

[
‖wjDjx‖22

∣∣∣∣ ζ] = w2
j E
Dj

[
‖Djx‖22

∣∣∣∣ζ]
= w2

j E
Dj

[
n∑
h=1

(Dj(h, h))2x2
h

∣∣∣∣ ζ
]

= w2
j E
Dj

 g∑
i=0

∑
h∈Li(x)

(Dj(h, h))2x2
h

∣∣∣∣ ζ


= w2
j

1

2j

∑
i∈Hj

∑
h∈Li(x)

x2
h

≤ w2
j

1

2j

∑
i∈Hj

|Li(x)| · (2i+1)2.

Claim 3. w2
j2
−j ≤ O((M`(2

j))
2) .
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Proof.

w2
j2
−j = (‖(1, 1, . . . , 1, 0, . . . , 0)‖`)2 · 2−j

=

(∥∥∥∥ 1√
2j

(1, 1, . . . , 1, 0, . . . , 0)

∥∥∥∥
`

√
2j
)2

· 2−j

= (‖ξ(2j)‖`)2 · 2j · 2−j

= (‖ξ(2j)‖`)2

≤ O(M`(2
j)),

where the third step follows from the definition of ξ(2j), and the last step follows from Lemma 20.

Using the above claim, we have

w2
j

∑
i∈Hj

|Li(x)| · 22i−j

=
∑
i∈Hj

w2
j2
−j

(M`(|Li(x)|))2
· |Li(x)| · (M`(|Li(x)|))2 · 22i

≤ O

∑
i∈Hj

(
M`(2

j)

M`(|Li(x)|)

)2

· |Li(x)| · (M`(|Li(x)|))2 · 22i


≤ O

∑
i∈Hj

(
M`(2

j)

M`(|Li(x)|)

)2

w2
log |Li(x)| log n · 22i


= log n ·

∑
i∈Hj ,|Li(x)|≤2j

(
M`(2

j)

M`(|Li(x)|)

)2

· w2
log |Li(x)| · 22i

︸ ︷︷ ︸
♦

+ log n ·
∑

i∈Hj ,|Li(x)|>2j

(
M`(2

j)

M`(|Li(x)|)

)2

· w2
log |Li(x)| · 22i

︸ ︷︷ ︸
♥

,

where the second step follows from w2
j2
−j ≤ O((M`(2

j))
2) (Claim 3), and the third step follows

from |Li(x)| · (M`(|Li(x)|))2 ≤ O(w2
log |Li(x)| log n) (Lemma 20). It remains to upper bound ♦ and

♥.

To given an upper bound for ♦, we have

♦ ≤ O

 ∑
i∈Hj ,|Li(x)|≤2j

mma2(`, log2 n/δ) · w2
log |Li(x)| · 22i


≤ O

mma2(`, log2 n/δ)

(
g∑
i=0

wlog |Li(x)| · 2i
)2


≤ O
(
mma2(`, log2 n/δ)

)
‖x‖2`

≤ O(log3 n/δ)‖x‖2` ,

where the first step follows from the definition of mma, the second step follows from Minkowski
inequality, the third step follows from the definition of Li(x), wlog |Li(x)| and triangle inequality, the
last step follows from Lemma 21.
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To give an upper bound for ♥, we have

♥ ≤ O

log n ·
∑

i∈Hj ,|Li(x)|>2j

mmc2(`)w2
log |Li(x)| · 22i


≤ O

log n ·mmc2(`) ·
(

g∑
i=0

wlog |Li(x)| · 2i
)2


≤ O
(
log n ·mmc2(`) · ‖x‖2`

)
,

where the first step follows from (M`(2
j)/M`(|Li(x)|))2 ≤ O(log n ·mmc2(`)) (Lemma 3.14 in [7]).

Putting it all together, we have

E
Dj

[‖wjDjx‖22|ζ] ≤ log n · (♦+♥) ≤ O(log4 n/δ + log2 n ·mmc2(`))‖x‖2` .

Thus,

E
D̃

[‖D̃x‖22|ζ] ≤
t∑

j=0

E
Dj

[‖wjDjx‖22|ζ] ≤ O(log5 n/δ + log3 n ·mmc2(`))‖x‖2` .

By Markov’s inequality, conditioned on ζ, with probability at least 1− δ/2,

‖D̃x‖22 ≤ O(log5 n/δ + log3 n ·mmc2(`))‖x‖2`/δ.

Since ζ holds with probability at least 1− δ/2, with probability at least 1− δ, we have

‖D̃x‖2 ≤ O(log5/2 n/δ ·mmc(`)) · ‖x‖`.

Now we show how to use the dilation bound for a fixed vector in Lemma 29 to prove a dilation bound
for all vectors in a subspace. We need the following existential result in our proof.

Lemma 30 ([6]). Given a matrix A ∈ Rn×m and a norm ‖ · ‖, there exists a basis matrix U ∈ Rn×d
of the column space of A, such that

d∑
i=1

‖U i‖ ≤ d,

and for all x ∈ Rd,

‖x‖∞ ≤ ‖Ux‖.

Lemma 31. Given a matrixA ∈ Rn×d. Let S ∈ RO(d)×n be a SymSketch as defined in Definition 5.
With probability at least 0.99, for all x ∈ Rd,

‖SAx‖2 ≤ O(α1d
2)‖Ax‖`,

where α1 = O(mmc(`) · log5/2 n).

Proof. Recall that S = ΠD̃. Let U be a basis matrix of the column space of A as in Lemma 30. By
Lemma 29, for a fixed i ∈ [d], with probability at least 1 − 1/(100d), ‖D̃U i‖2 ≤ O(α1d)‖U i‖`.
By taking a union bound over i ∈ [d], with probability at least 0.999, for all i ∈ [d], ‖D̃U i‖2 ≤
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α1d‖U i‖`. Thus, for any x ∈ Rd,

‖D̃Ux‖2 ≤
d∑
i=1

|xi| · ‖D̃U i‖2

≤ ‖x‖∞ ·
d∑
i=1

‖D̃U i‖2

≤ ‖Ux‖` ·
d∑
i=1

‖D̃U i‖2

≤ O(α1d) · ‖Ux‖` ·
d∑
i=1

‖U i‖`

≤ O(α1d
2) · ‖Ux‖`,

where the first step follows from triangle inequality, the second step follows from |xi| ≤ ‖x‖∞ for
all i ∈ [d], the third step follows from ‖x‖∞ ≤ ‖Ux‖`, the fourth step follows from ‖D̃U i‖2 ≤
O(α1d)‖U i‖`, the last step follows from

∑d
i=1 ‖U i‖` ≤ d.

By Corollary 17, with probability at least 0.999, Π is an `2 subspace embedding with ε = 0.1

for the column space of D̃U . Thus, with probability at least 0.99, for all x ∈ Rd, ‖SAx‖2 ≤
O(α1d

2)‖Ax‖`.

C.6 Proof of Theorem 11

Proof. It directly follows from Lemma 28, Lemma 31 and Lemma 22.

D Missing Proofs of Main Theorems

D.1 Proof of Theorem 1

Let S ∈ RO(d)×n be a SymSketch as defined in Definition 5, and Π = O(
√
d log3 n) · S. By

Corollary 12, for a given matrix A ∈ Rn×d, with probability at least 0.9, for all x ∈ Rd,

‖Ax‖G ≤ ‖ΠAx‖2 ≤ κ‖Ax‖G,

where κ = O(
√
CGd

5/2 log13/2 n). We prove Theorem 1 by combining Theorem 8 with the
embedding matrix Π constructed above.

D.2 Proof of Theorem 2

Let S ∈ RO(d)×n be a SymSketch as defined in Definition 5. For a given data matrix A ∈ Rn×d
and response vector b ∈ Rn, we calculate x∗ = argminx ‖SAx−Sb‖2 and return x∗. The algorithm
runs in O(nnz(A) + poly(d)) time, since by Lemma 22, the expected running time for calculating
SA is O(nnz(A) + poly(d)), and x∗ = (SA)+Sb can be calculated in poly(d) time.

To see the correctness, let x = argminx ‖Ax− b‖`. With probability at least 0.99, we have

‖Ax∗ − b‖` ≤ O(
√
d log3 n)‖SAx∗ − Sb‖2

≤ O(
√
d log3 n)‖SAx− Sb‖2

≤ O(
√
d log3 n)‖D̃Ax− D̃b‖`

= O(
√
d log11/2 n) ·mmc(`) · ‖Ax− b‖`.

The first step follows by applying Lemma 28 on A, where we use A ∈ Rn×(d+1) to denote a matrix
whose first d columns are A and the last column is b. The second step follows from the fact that
x∗ = argminx ‖SAx− Sb‖2. The third step follows by Definition 5 and Corollary 17. The last step
follows by applying Lemma 29 on Ax− b.
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Figure 2: Experiments on Orlicz norm.

E Experiments

In this section, we perform experiments to validate the practicality of our methods.

Experiment Setup. We compare the proposed algorithms with baseline algorithms on the U.S.
2000 Census Data containing n = 5× 106 rows and d = 11 columns and UCI YearPredictionMSD
dataset which has n = 515, 345 rows and d = 90 columns. All algorithms are implemented in
Python 3.7. To solve the optimization problems induced by the regression problems and their sketched
versions, we invoke the minimize function in scipy.optimize. Each experiment is repeated for
25 times, and the mean of the loss function value is reported. In all experiments, we vary the
sampling size or embedding dimension from 5d to 20d, and observe their effects on the quality of
approximation.

Experiments on Orlicz Norm. We compare our algorithm in Section 2 with uniform sampling
and the embedding in [2]. We also calculate the optimal solution to verify the approximation ratio.
We try Orlicz norms induced by two different G functions: Huber with c = 0.1 and “`1 − `2”. See
Table 1 for definitions. Our experimental results in Figure 2 clearly demonstrate the practicality of
our algorithm. In both datasets, our algorithm outperforms both baseline algorithms by a significant
margin, and achieves the best accuracy in almost all settings.

Experiments on Symmetric Norm. We compare our algorithm in Section 3 (SymSketch) with
the optimal solution to verify the approximation ratio. We try two different symmetric norms:
top-k norm with k = n/5 and sum-mix of `1 and `2 norm (‖x‖1 + ‖x‖2). As shown in Figure 3,
SymSketch achieves reasonable approximation ratios with moderate embedding dimension. In
particular, the algorithm achieves an approximation ratio of 1.25 when the embedding dimension is
only 5d.
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Figure 3: Experiments on symmetric norm.
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