A Proof of Theorem 1

Proof. Let {X;},>0 denote the continuous-time process defined by the SDE (1) initiated from the
target stationary distribution, driven by the Brownian motion {B; };>¢. Since the continuous-time
transition kernel preserves the stationary distribution, the marginal distribution of { X, },>( remains
to be the stationary distribution for all ¢ > 0.

We denote by t; (k = 0,1,...) the timestamps of the Markov chain obtained by discretizing the
continuous-time process with a numerical integration scheme and assume the Markov chain has a

constant step size h that satisfies the conditions in the theorem statement. We denote by X, the kth
iterate of the Markov chain. In the following, we derive a recursion for the quantity

1/2
A= | -]

Fix k € N. We define the process {X ¢ h+>0 such that it is the Markov chain until ¢, starting from
which it follows the continuous-time process defined by the SDE (1). We let {X’t}t>0 and the
Markov chain X}, (k= 0,1,...) share the same Brownian motion {B; };>0. Suppose {ft}t>0 is a
filtration to which both {Bt}t>0 and { B, }+>¢ are adapted. Conditional on F;, , let Xy, , and Xy, ,,
be coupled such that

> 2 —2a S o2
E [HthH - XU:+1H2 |}—tk} <e 2ol Hth B thHz' (11)
This we can achieve due to exponential Ws-contraction. We define the process { Z} s>+, as follows
ZS == (XS —Xs) - (th —th) .

Note [“*"o(X,) dB,s — [/*" 0(X,) dB, is a Martingale w.r.t. {Fy, 4 }¢>0, since it is adapted
and the two component [t 1ntegrals are Martingales w.r.t. the considered filtration. By Fubini’s
theorem, we switch the order of integrals and obtain

E [Zi,,,|F] = / TR [B(X,) - b(X)|F] ds

tr

By Jensen’s inequality,
5 Bl <n [ R [0 - 001 15 as

< (b h/ [, = XI5 17, ] ds. (12)
For s € [tg, tx + h], by Young’s inequality, Jensen’s inequality, and Itd isometry,

B [I1X, - XI5 1]

tr ty

K U‘Xt’“ S %, 4 / T (b(Xu) = b(X.)) du+ / (0(X.) — 0(X.)) dB. 2@]

2

<4||x,, —th|\§+4(s—tk)/t E [[6(X.) — b} 172, ] du
k

4[ E [||U(Xu) — (X)) |ftk] du

<4 X, — thH§ +4(s — t)pa (b)? / E MXu - Xqu |]:tk} du

ty

+4u§(g)2/t E[||X, — Xul} 17 v
k

S
<4 Xy, —X}kHi+4(u1<b)2+uf(a)2)/t E[I\Xu—xuugmk} du

k
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By the integral form of Gronwall’s inequality for continuous functions,

E ([, = %[5 <dexp (4 (m0)* + 15 (0)2) (s = ) | Xo, = Koo
Plugging this result into (12), by b < 1/ (81 (b)* + 8t (0)?),
pu(b)*h

I8 Zo bl < e [ (407 + @) 1) — 1] X = Xu]
81 (b)2h? B
—M (11 (0) + 1§ (0)%) || X — Xu |2
<8pa (01 | Xs, — X} 13

By direct expansion,

E [Hth+1 - kaﬂ ||§ |ffk] = ”ka - X’fk Hi +E [HZtk+1 H; ‘ftk] +2 <th- - kavE [ka+1|]:fk}> :
(14)

Combining (11) (13) and (14), by the Cauchy-Schwarz inequality,
B [ 7] < (62 1) [, — Ko 25, Ko [ ]
<2 ||th - th H2 ||]E [Ztk+1 |]:tk}
<8 (WA || Xe, — Xo, |2

‘2
2.

E | Zually) =B [E {1 Z0 3 1Fue ]| < S1(0)0E {thk - XkHj = 81 (D)hA2.

I

—811 (b)h Hth ~ X

Hence,

Let A3 = SA}/ 2 pr(b)Y2 + 2)\§/ ®. Then, by the Cauchy—Schwarz inequality, we obtain a recursion
r - 2
A2 =F HthH - XkHM

[ _ _ - 2
=E Hth+1 - th+1 + th+1 - Xk-HHJ

r _ ) _ . 2 _ _ .
=K ||th+1 - th+1 ||2 + Hth+1 - Xk-H‘ 9 +2 <th+1 - th+17th+1 - Xk+1>]
_ 2 [Ty = ~ 2 17
_E [E {thkﬂ — X |]-‘tkH +E|E ’thﬂ _ XMH2 |\ Fi

+2E |E [<th+1 - th+1ath+1 - Xk+1> |]:tk:|:|

=E [E

—

||th+1 7th+1||; |‘Ftk” +E |E

_ ~ 2 17
th+1 - Xk+1H2 |‘Ftk
+9E <th ~ X, ,E {Xml - Xmlﬂk} >}

+2E <Ztk+17th-+1 - Xk+1>}

— _ ~ 2
<E |:E |:||th+1 = X ||§ |}—tk” +E [E |:Hth+1 - Xk+1H2 |‘Ftk}:|

911/2
A

+2E [Hth - Xt’“”i} 1/2E [HE [Xt,m — Xk+1|.7-”tk}

971/2 _ B 271/2
+2E ([ Zill] T E Mxtkﬂ - XWM
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<em2OMAZ 4 AR 4 20y PR Ay + 8Py (0) 2R 4

<(1— ah) A7 + AshP P2 A + A PP

<(1—ah) A + %hAi + §A§h2pl + A\ h?P

<(1—ah/2) A7 + (8\3/a + A1) hPP1, (15)
where the third to last inequality follows from e =2 < 1 — ah when ah < 1/2, and the second to
last inequality follows from the elementary relation below with the choice of k = a/2

4
ARh'Y?  \shPt < KAZh + ;/\?,,hQT’l.

Letn=1—ah/2 < e ah/2 < q, By unrolling the recursion,
AR <(1—ah/2) A1 + (8\3/a + Ay) B*P
<nFAT+ (L+n+- 0" (8N /o + Ap) B2
<n" A5+ (8\3/a+ M) W1 /(1 — 1)
=n" A2+ (16A%/a® + 2\ Ja)h?P L,

Let v, and v* be the measures associated with the kth iterate of the Markov chain and the target
distribution, respectively. Since W3 is defined as an infimum over all couplings,

I/VQ(V/€7 l/*) <A < e_ahk/4AQ + (16)\%/0&2 + 2)\1/0&)1/2]1171_1/2.

To ensure W5 is less than some small positive tolerance €, we need only ensure the two terms in the
above inequality are each less than €/2. Some simple calculations show that it suffices that

2 [64(16am(0) +ha) 2 ) T 1
h —\/ 1 2 4 24 A— A , 16
< <e a? + @ 2 8ui1(b)2 + 8ul(0)2 (16)

1/(p1—1/2)
k> [(2\/64(16)\1,&1@) + X2) + 2)‘1) vV 2a Vv (8u1(b)2 +8H117(U)2>] glog (%) .

€ a? o €

Note that for small enough positive tolerance e, when the step size satisfies (16), it suffices that

1/(p1—1/2) A
k= <2\/64(16A1M1(b) the) 2A1) glog (20) _ (e -1/,
€

€ o? o

B Proof of Theorem 2

B.1 Moment Bounds

Verifying the order conditions in Theorem 1 for SRK-LD requires bounding the second, fourth, and
sixth moments of the Markov chain. In principle, one may employ an exponential moment bound
argument using a Lyapunov function. However, in this case, the tightness of the final convergence
bound may depend on the selection of the Lyapunov function, and reasoning about the dimension
dependence can become less obvious. Here, we directly bound all the even moments by expanding
the expression. Intuitively, one expects the 2nth moments of the Markov chain iterates to be O(d").
The following proofs assume Lipschitz smoothness of the potential to a certain order and dissipativity.

Definition B.1 (Dissipativity). For constants «, B > 0, the diffusion satisfies the following

(Vf(x),z) > % |z - B, Vz e R

For the Langevin diffusion, dissipativity directly follows from strong convexity of the potential [24].
Here, o can be chosen as the strong convexity parameter, provided 3 is an appropriate constant of
order O(d).
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Additionally, we assume the discretization has a constant step size h and the timestamp of the kth
iterate is ¢y, as per the proof of Theorem 1. To simplify notation, we define the following

i =4 (VAR + V().
v =V2 (; + ;6) Ex1Vh,
o =V3 (; - %) v
V2 :%nk+1\/ﬁv

where 41, Nk+1 i1 N (0, 1;) independent of Xk for all £ € N. We rewrite f[l and ﬁg as
Hy = Xi + AH, = Xi +v1 + vg,
E[2 = Xk + Aﬁg = Xk + ’Ull + v — Vf(Xk)h

B.1.1 Second Moment Bound

Lemma 4. If the second moment of the initial iterate is finite, then the second moments of Markov
chain iterates defined in (9) are uniformly bounded by a constant of order O(d), i.e.

- 2
E ["Xk" } <Uy, forallk €N,
2

)
where Us = E [HXO H } + Ng, and constants N1 to Ng are given in the proof, if the step size
2

2 2
he1n 2T, m2,1(f) a 3

m22(f) " () (Pmaa(f) | 2N, 1 4°

Proof. By direct computation,

[l == (B 9500) § 4 220,002

:
=&+ [ + a2 n
- <Xk,Vf(I§1) +Vf(f12)>h
+ 242 (R €y ) 112
—2'/? <Vf(H1) + Vf(ﬁ2),fk+1> h/2.

In the following, we bound each term in the expansion separately and obtain a recursion. To achieve
this, we first upper bound the second moments of Hy and Hy for h < 2d A 2mg 1 (f)/m2,2(f).

- 2 - 2 9 9 - 2
E (a7 | = |[Xe], + B [loal 17 ] + B [loall 17] < R, +3n,
- 2 . 2 - 2 9 2 2
B, 17| =%, + s, 2 + B {317 ] + B (el 7]
+2<Xk,Vf(Xk)>h
- 2 - 2 9 - 2
s (14 ) 0

~ 12 - 112
< amscm s
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Thus,
- - 2 - 2 ~ 2
E U)Vf(Hl) + Vf(Hz)H2 |ftk} <9F U]vjf(fah)H2 + HVf(Hz)H2 |ftk]
contpafoe ] 1)
e

where N1 = 271’2,2(‘](') (2 + 47T2’1(f)) and N2 = 27T2’2(f) (Gd + 2)
Additionally, by the Cauchy-Schwarz inequality,

~E[( V(). 1) 1F, ] <E[||VF0D)| gl 17

e e R (W

<i/dma2(f) (1 +E [H]}le ‘Ftk:| 1/2)
<y/dmaa(f) (1+ HX,CHQJM/%). a7

Similarly,

—E (V7)1 ) 1] <E [|[V 10| ksl 17 ]

= MW ()| ftk] "k [N

<i/dma2(f) (1 +E {H]}}Hi |]:tk} 1/2)
<\Jdma(f)(1+ HXkH2 +2y/moa(f)h HXkH2 +3dh).(18)

Combining (17) and (18), we obtain the following using AM-GM,

_9l/2R [<Vf(1:11) n Vf(ﬁg),§k+1> |ftk} W32 <N, HXkH2 h3/2 4 N,
1~ 112 N2
<= HX’“H % 4+ 25 4 NyRPY2.
2 2 2

where N3 = 2\/2(17(2)2(]") (1 + \/71'271(']“)) and N4 = 2\/2d7T2’2<f) (1 + \/@)

Now, we lower bound the second moments of H; and Hy by dissipativity,
~ 2 - 2
(LA SN
=12 2 2 = |12
p i S (T R (N e S I

E {HHQHE |ft,€} —E {ka — V(X + 0, + v

17|
= & +|or a2 & [l 1217 + E (el 1]
+2 <X’k, Vf(f(k)> h

-2 all ~ 112
[l 2 (5 %))

18



~ o2
<[
2
Additionally, by Stein’s lemma for multivariate Gaussians,

E ({910, 00 ) 17| =20 ( + jé)ﬁ [ADHE)IF] < 25 ()b,

E (V). 02) 1P| =ghE [AG)E)IF,] < Sdus(HP

B [(wr).e) 7] =2 (- 1) E (A E] < duson

E [(VF(f),02) 17, ] =g hE [AG) ()7, ] < diss(1)h.
Therefore, by dissipativity and the lower bound (19),

~E[(Vi(H), %) |1F] =~ [(V(), ) 17| + E[(TR(H), 01+ 0) 7]

<- 58 ||&] 1] + 5+ B (Vs 0+ ) 17]

<_2 kau + B+ 3dus(f)h. (20)

To bound the expectation of — <V f (H 2 X k> we first bound the second moment of A H. 2,
~ 12 - 2
E U’AHQHQ ftk} —E {HVf(Xk)h o+ UQHQ |]-'tk}

= |er 12+ B 11217 + B [l 7]

-2
<mo2(f) <1 n HX’“H > h? + dh. @1)
2
Notice the second equality above also implies
R 2 1/2
fosciol <z Jarfin])

By Taylor’s Theorem with the remainder in integral form,
1
Vf(Hz) =Vf(Xk)+ R(tks1) = VF(Xg) +/ V2f (Xk + TAHQ) AH, dr.
0

Since V f is Lipschitz, V2 f is bounded, and

Rl < [ |92 (Resram)]|
By (21) and (22),
(V1) V(K0 1F,] = - ||V~ (ERG)IFL] TR
< IE[R(txs)|Flll [ VA0,

o], ar < ot 2]

<E[IR(te+1)]1 7] |

wrix)]

<pa(P)E [[[ari] 17| [V
<ps2(f)E AH, z |-7:tk: - va Xk)”z
<pa(f)E 1INz zmk_ et
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<pio(F)maa(f) (1 4 kaHZ) h+ d.
Therefore, for h < 1 A a/(4pas(f)m2.2(f)).
-sf(oni 1)1
~E[(Vf(H), Ha )+ (VF(H2), VF(Xi)) h = (V f(2), 05 + v2) | Fo |
<- %E [HHz\) m] + 8- E[(VF(H), V(%)) \Fo |+ B [(V (), 0] + vz ) | 5,
<- kau2 +aph+ B+ pa(f)maa(f) (1 + HXkHD h? + dh -+ 2dps(f)h
<= SR+ @8 + malPmaalh) + d+ 2dus(P) R+ 5. 23)
Combining (20) and (23), we have
E KVf(ﬁIl) + Vf(f[z),f(k> |ftk} < —%a HXkHz + N5, (24)

where N5 = (af + pa(f)ma,2(f) +d+ 5dps(f)) + 25.
Putting things together, for h < 3a,/(2N; + 4), we obtain

[HXMH |]-'tk] —HX’“H +E[HVf ) + V() H ftk} +2dh
—E (X, V() + V() )| F | B
—2V/2R [<Vf<ﬁm V), € ) 1Fo | 12

N.
2h2 + 2dh

S Ll
—whHXkH + Nsh
4 2
1= 2 N2
g |l 5 S N

(1= o 220 s

+ Noh?/4 + 2dh + Nsh + N2h/2 + Nyh3/?

3 _op2
< (1 - 8ah> HX’“H2 + Noh?/4 + 2dh + Nsh + N2h/2 + Nah®/2,
For h < 1, by unrolling the recursion, we obtain the following
~ 2 ~ 2
E [HX’“Hz] <E {HXOM +Ng, forallk €N,

where

1
No = 5~ (2N + 16d + 8N; + 4N3 + 8N;) = O(d).
(@

B.1.2 2nth Moment Bound

Lemma 5. Forn € Ny, if the 2nth moment of the initial iterate is finite, then the 2nth moments of
Markov chain iterates defined in (9) are uniformly bounded by a constant of order O(d"), i.e

E {ka

2n
) } < Uy, forallk e N,
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where

- 2n
Z/{Qn:E|:HXO :| +7(N7n+N12n)7
2 3an

and constants N7 p, to N12 p, are given in the proof, if the step size

2
h<1A 2d /\27T2’1(f)/\ @ A 3a /\min{( 3al ) :l:2,...,n}.

m22(f)  m22(f)  4dpa(f)me2(f)  2N1 +4 8N11,

Proof. Our proof is by induction. The base case is given in Lemma 4. For the inductive case, we
prove that the 2nth moment is uniformly bounded by a constant of order O(d"), assuming the
2(n-1)th moment is uniformly bounded by a constant of order O(d"~1).

By the multinomial theorem,

2n - 1/2 1/2 2n
ka+1 —E HXk—th+2 Epiih H2
[ 2 ~ 1|2 2 2
=E[ (113 + ||V £, 2 + 2 llgesalf o
-2 <)~(k7 @f> h+23/2 <Xka§k:+1> hl/2 —23/2 <€f, fk+1> h3/2) }
A n . 3ks SkG kg | 3kg
:E _1 k4+k6 2k3+k4+ —+ h2k2+k3+k4+ + =2
2. D (kl...k6> ’
Lk1+--+kg=n
|5 9], el (29 ) 7 (R (Vi)
~ 2n
_F [HX,CH2 +Ah+Bh3/2} ,
where
2(n—1) 2(n—1) 2(n—2) 2
A_ZnHXk ||§k+1|\272nHXk <Xk,Vf>+4n(n71 ka <Xk,§k+1> ,

2k1+ky+ks 2kg+ky+kg

1€kl "0

B<Z23"( kﬁ) H

k1+--+kg
2k2+k3+k4+§+42i>1

Now, we bound the expectation of A using (24),

_ p2(n—1) _ 12(n—1) 3 =12 Ns _ 12(n—1)
E[A|F] §2dnHXk:H2 +2nHXkH2 —gaHXkH + 3 +4dn(n—1)HXkH2

3 - |12n ~ 112(n—1)
<- ZomHXk |+ (2dn + nNs + ddn(n — 1)) HX,CH .
Moreover, by the inductive hypothesis,
3 ~ 2n
E[4] =E [E [A|Fy,]] < —{anE U]XkHQ } + Nrn, 25)

where N7, = (2dn + nNs + 4dn(n — 1)) Us,—1) = O(d™).
Next, we bound the expectation of B. By the Cauchy—Schwarz inequality,

2k1+ka+ks 2ko+ka+ke
E[BIF,] =) 2% (k /%) %, U\ 1, lgeall3He e |7,

ki+-+kg=
k Sk
2k2+k3+k4+75+76>1

()

ki+-+kg=n
k 3k
2ky+k3t+kgt+ 2 +55>1
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4ko+2ks+2ke 1/2

. 1/2
xE[HVfH Ifﬂ} E [[lgesll3 e | 7,

2
Let x(d)? be a chi-squared random variable with d degrees of freedom. Recall its nth moment has a

closed form solution and is of order O(d™) [57]. Now, we bound the 2pth moments of H, and H,
for positive integer p. To achieve this, we first expand the expressions,
2p

~ ||2p ~
|5, = | %+ o e

- 12 - - P
= <HX]€H2 + H’Ung + ||U2||§ +2 <Xk71)1> +2 <Xk,’l)2> + 2 <’Ul71)2>)

< 9Jja+js+ie ( p . > HXk
=2 T

j1+--+ie=p

2j1+jat+7s o e
||U1 H§J2+J4+]6 ||’U2 ||§J3+JO+J6

2

) . ~ |1291+Ja+75
<5 j2f2+%f4+fs+%mhf‘2“3+%“25”6<‘ - > % o
J1 .- J6 2

J1++ie=p

2jo+ja+ti 2j5+3s+i
X € 15777 e |57
p ~ ||2J1+Jatds Vot jati %jatisti
S223p<]‘1 J6> HX’“HQ ||§k+1||232+34 Jje an+1”2js Js5+J6

q1++ie=p

E 3p p 2j1+ia+is || 5, [|2Py 2d2+iati 2p_, 2j3+is+i 2
; 2<j j>(“£“M%+“#“KMU+”$W%Mﬁ
1 +--

J1+etie=p
4pap > |17 2p 2p
<23 L[ Xk, A Mk lls” + a5 )

where the second to last inequality follows from Young’s inequality for products with three variables.

Therefore,
-2 -2
o R P Y N S R
2 2
Similarly,
- ||2p ~ ~ , 2p
e, =% = 9 s 0
= 12 v 2 2 ’ 2
<(||%e|| + [0, 2+ et + vl

—9 <Xk Vf(f(k)> ht2 <Xk,vg + v2> —9 <Vf(5(k),v’1 n v2>)p
2j1+jat+Js

< ymm%.P.”&H
Z Ji---Je 2

J1tetie=p

4pap > |1%P % P 2p 2p
<ovp (| &+ ||V AED|| + lgnnalF + Imesa )

V(Xk) [v] + w5775 e

~ H 2j2+jatje

2

Therefore,
~ 112p ~ 112p
E [HH2H2 |]:tk] <213 (1 + 9.0, (f)) HX’“‘L + 29130 (1 0 () + E [x(d)2]) . 27)
Thus, combining (26) and (27),

?ﬂWﬂ%W?EJ

E [HW(HI)

-~ 2p 1
[[9s] 7] <3
<yraanE 2 |A ]+ | 7]

2| % ||** 2
<N )2 || K|+ Non(p)?,
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where the p-dependent constants are

M) =223 (maay () (14 g2 ) )

Non(p) = (T2,2p(f) (21'3PE [x(d)*] + 2*3P 72 2p(f) + 1))

Since Ng ,(p) does not depend on the dimension, let

o
V]

=0(d?).
Ng., = max{Ng p (2ko+katke) : ki,....k6EN, ky+-+ko=n, 2ka+ks+ha+ 5+ 25651},

The bound on B reduces to

3n n ~ ||12k1+katEs 1/2
T I s

2
ki+-+kg=n
k 3k
2kotkzt+hat+ 5+ 50 >1

X (N&n
SBI + BQa

- ||12k2+katks
X
2

+ Ng,n(2k2+k4+k6))

where

Bl = Z 2% <k n >]E [X(d)4k3+2k5+2k6]1/2 N&n

ki+--+kg=n .- N6
g +hg+hy+ 554356 50

By = Z 2% <k n >]E [X(d)4k3+2k5+2k6]1/2 N97n(2k2+k4+k6)

k1+--+kg=n 1.--16
g +hg+hg+ 554356 51

)

~ (|12k1+2ka+2ks+ks+ke
X
2

H27€1+k4+/€5
2

X

In the following, we bound the expectations of B; and By separately. By Young’s inequality for
products and the function z ~— x'/(2k3+Fks+k6) being concave on the positive domain,

2k1+2ko+2ks+ks+ke

E [X(d)4k3+2k5+2k6] 1/2N8 . Xk‘
’ 2

2n
2k3+ks+k . . TR ToRe |, 2k +2ko+2kgtks+ke || & |12
SN&n( 3+2n2+ Q]E[X(d)4k3+2k5+2k6]4k3+2k5+2k6 42kt 2+2n4+ 5+kg HX’“H n

2
2n
5 .

<Moo (B [@?]" + | %

Hence,
3n n n - 2n
el 2%y, g, )on (B 000"+ 5] )
oy otk =n 1-..-Kg 2
n - 2n
2% 6" Ng 0, (d” + ka i > . (28)
Similarly,
2k1+ka+ks

1
E [x(d)**e 2828 |2 Ny 1 (20 + ko)

%
2

2n
3ko T 2k3 T hyThsT2kg +‘

< (elx@s 2452, st 5l

- 2n
§N1o,n+HXk ,

where

2n
Nig,n = max{ (E[X(d)4k3+2k5+2k6]%Ng,n(2k2+k4+ke)) Ry F 2R3 FRaFhs F2ke

ki1,...,k6 €N, k1+---+ke=n, 27€2+k3+k4+k75+¥>1} = O(dn)
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Hence,

E(Bs|F, | <) 2% (kl B kﬁ) <N10,n + | %

ki+---+kg=n

2n
2

. - 2n
<25 6n (Nlo,n + HXk , ) : (29)
Therefore, combining (28) and (29),
- 2n
E[B] =E[E [B1 + B|Fy,]] < NitaE [HXkHQ } + Nizn, (30)

where

Nitn =2%6" (1+ Ns,n)

Niz =2 6" (Ng nd" + Nig,) = O(d™).
Thus, when h < (3na/8N11 )2, by (25) and (30),

2n _ § 3/2 ~
< 1 4anh—|—N11’nh E Xk

~ 2n
E [kaﬂ , } + Noh + Nig h*/?
- 2n
< (1 — ganh) E [HXkuz } + N7 ph + N12,nh3/27

Hence,

2n

2 3an

- 2n 8
:| SE |:HX0 9 :| +7(N7,7L+N12,n)-
B.2 Local Deviation Orders

We first provide two lemmas on bounding the second and fourth moments of the change in the
continuous-time process. These will be used later when we verify the order conditions.

Lemma 6. Suppose X, is the continuous-time process defined by (3) initiated from some iterate
of the Markov chain X defined by (9), then the second moment of X, is uniformly bounded by a
constant of order O(d), i.e.
E[IX3] <t foralit>o,
where Uy = Us +2(8 + d)/a.
Proof. By Itd’s lemma and dissipativity,
SE[IXE] = - UV, X)) + 24 < —aE [IX]2] +2(5 + a)
Moreover, by Gronwall’s inequality,
E[IX.)3] <e™E [I1Xol3] +2(8 + d)/a < Uy + 28+ d) Jo = .
O

Lemma 7 (Second Moment of Change). Suppose X, is the continuous-time process defined by (3)
initiated from some iterate of the Markov chain X defined by (9), then

E [||Xt - X0||§] < Cot = O(dt), forall0<t<1,

where Co = 2m 5(f) (1 4+ U3) + 4d.
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Proof. By Young’s inequality,
2

E [||Xt - Xong} —E [H— /Ot V/(X,) ds+ V2B,

2
2

2
+2|Bll3
2

<2E /tVf(XS) ds

0

<2t [ B [IvsxIE] as-+48 [12E]

t
< 27r272(f)t/ E [1+ ||XS||§] ds + 4dt
0
< 2mo0(f) (14 Us) t + 4dt.
O

Lemma 8. Suppose X is the continuous-time process defined by (3) initiated from some iterate
of the Markov chain X defined by (9), then the fourth moment of X, is uniformly bounded by a
constant of order O(d?), i.e.

E [llXtHg} <Uy, forallt>0,

where Uy = Uy + (23 4 6)U3 /.

Proof. By Itd’s lemma, dissipativity, and Lemma 6,

d

SB[ IXel3] = — 4 [ 3 (T £(X0), X0 + 12E [ 3]

< - 2aE [|1X,3] + (48 +12)E [I1X,13]
< - 20E [| Xll3] + (48 + 12)t4.
Moreover, by Gronwall’s inequality,
E[IXel] <e™E [|1Xol3) + (28 +6)ts/a
Uy + (26 + 6)Us Ja = UL,
O

Lemma 9 (Fourth Moment of Change). Suppose X, is the continuous-time process defined by (3)
initiated from some iterate of the Markov chain X defined by (9), then

E [||Xt - X0||‘21} <O = O(d*?), forall0 <t <1,

where Cy = 8o 4(f) (1 +U}) + 32d(d + 2).

Proof. By Young’s inequality,
_ . 4
E [||Xt onH;‘} =E H/ V(X,) ds+ V2B,

0

2

=E (H—/Ot Vf(X,) ds+ V2B,

< (2

2\ 2
2)
2 2
2
+4||Bt||2>
2

/0 VA(X) ds
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t 2
(% / IV 5 (X ds+4||Bt||§) ]

2

t
<E |8t2 (/0 ||Vf(Xs)|§dS> +32| Bl

<st’ [ B [Iv70x )] as + 328 11

t
§877274(f)t3/ E[1+ X013 ds +32d(d + 2)¢2
0

<8moa(f) (1 +Uy) 2 + 32d(d + 2)t?

B.2.1 Local Mean-Square Deviation

Lemma 10. Suppose X; and X, are the continuous-time process defined by (3) and Markov chain
defined by (9) for time t > 0, respectively. If Xy and X, are initiated from the same iterate of the
Markov chain X and share the same Brownian motion, then

- 2
E [th _ X, 2] < Cott = O(d*tY), forall0 <t <1,

where
Co =801 (1 -+ UDY2 (ol )P maa(F)12 + pa )P ()'1?)
+ (8724(f) (1 +Uy) + 116d> + 90d + 8Co) s (f)>-

Proof. Since the two processes share the same Brownian motion,
/ VI(X,) ds+ = (Vf(H1)+Vf(H2)) 31)
By 1t6’s lemma,
VIO =V - [ (PRI - A1) (X)) dut VE [ T1(X,) dB,
=V f(Xo) = V2(X0)Vf(Xo)s + V2V f(Xo)Bs + R(s),

where the remainder is
RE) = [ (VXTI + PV CK) dut [ (96 (X, du
Ry (s) Ra(s)
+\f/ (V2f(X,) — V2f(Xo)) dB, .

R3(s)

We bound the second moment of R(s) by bounding those of R;(s), Ra(s), and R3(s) separately.
For Ry (s), by the Cauchy—Schwarz inequality,

2

2‘|

)
/ (V2A(X0)VF(X) — V2 F(X0) V(X)) du

0

E IR (51 H / (V2I(X)VI(X) = V2F (X0)V f(X0) du

+2E

=2E

/0 (V2F(X)VF(X0) — VEF(X0) V(X)) du

j
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< [ B[V (X)) ~ V2 (X0) VA2 du

+2S/OS]E [||V2f(X0)Vf(Xu) fVQf(XO)Vf(XO)H;} du
<2s [ B [||V205) = V2100 [, 197 (X))

w25 [ B[V, VA - VAC)I] du
<2ua7Ps [ B (1 - Kol 19 CXIE] du

(PP [ B[V, 12 - Xol3] du
<2ua(rPs [ B 16 - xoll) B [Iv 00N du

(s [ B[Vl B [1x - X0l au
<2l Praa( DM (14U [

+ 2 () 2msa(F)2C 2 1+ Uy s /Sudu

0
01/2 (1 ‘H/[/)lm ( o (f)2m3a(f)Y? + MS(f)27T2,4(f)1/2> s°. (32)

j

For R2(s), by Lemma 34,

E (|1 (5)113] =E [

gs/éE U’&(Vf) (X.) j du
0
<us(f)2d*s®. (33)
For R3(s), by Itd isometry,
2
B [1raol] =22 || [ (72500 - 925 0x0) as,
2

=2E { /0 [V2£(X.) — V2£(Xo)| dU}

<2us(f)? /OSE [HXU - Xng} du

<2s(£)°Co [ du
0
<p3(f)2Cos2. (34)
Thus, combining (32), (33), and (34),
EIR($)II3] <4E || Ba(5)]13] +4E [ Ra()[13] + 4B 1 Ra(s) 3]

<00+ UDY2 (ol )2 a2+ a1 Pmaa (P2
+4p3(f)? (d* + Co) s
Next, we characterize the terms in the Markov chain update. By Taylor’s theorem,

Vf(Hy) = Vf(Xo) + V*f(Xo)AH1 + pa(2),
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Vf(Hy) = Vf(Xo) + V2f(Xo)AHy + po(t),

where

1
pl(t) = /(; (1 — T)ng(XO + TAﬁl)[Agl, Aﬁl] dT,

1
pa(t) = /0 (1 —7)V3f(Xo + 7AHy)[AH,, AH,) dr,

0
We bound the fourth moments of AH; and AH,,

200+ o)

s [|am]]] -2 4

2

32 41 8 4
<= s
<SE [Iw)l3] + 5E [1B:03]

32 & 32 o 8
=T E[w@+5 Y E[WOE[W0°] + gdd+ 2

i=1 i,j=1,i#j

32dtS  32d(d—1)t°  8d(d+ 2)t?
<= -
TR 9 - 9

32d  32d(d—1)  8d(d+2)\ ,

== t

( 3 " 9 T
<2d(6d + 5)t*.

Similarly,

~ 4 4
O

H—Vf(Xo)t +V2 (1\1}(@ — \}éBt)

(200 o)

2

4
<SE[IIVf(Xo)l3] #* + SE

2
<8 4144 2
<8mo.4(f)E |14 || Xoll5| t* + 16d(6d + 5)t

<8mo4(f) (1 +Uy) t* + 16d(6d + 5)t*
<8 (maa(f) (1 +Uy) + 2d(6d + 5)) t2.

Using the above information, we bound the second moments of p; (¢) and p2(t),

1
/ (]. - T)v?)f(X() +TAI‘]1)[AI:I1, Aﬁl] dr
0

Ehmm@=EU ]
1 - - - 2

g/ E [Hv3f(Xo+7-AH1)[AH1, AHI}HJ dr
0

g/l E {Hv?)f(xo +7AH;)
0

2 _ 4
‘AH1H } dr
op 2
1 4
<untr? [ & [[am]] o
<2d(6d + 5)p3(f)*t*.
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Similarly,

& [l 0E] <patr? [ & [|as])] ar

<8 (m2,4(f) (1 + Us) + 2d(6d + 5)) p3(f)*t*.
Plugging these results into (31),

X, X, = —/0 R(s) ds — £ (p1(0) + pa(1)).
-

<at /OtIE (1R()I3] ds + 2E o1 (8)]3] + B [lloa (1) 3]

SO+ UDY2 (a2 s £ + i £ a1V 10
+ (8m2.4(f) (1 +Us) + 11642 + 90d + 8Cy) pz(f)t*
<Cot*.

Thus,
2
E {HXt _ X,

H_ /Ot R(s) ds — % (p1(t) + pa(t))

2

B.2.2 Local Mean Deviation

Lemma 11. Suppose X; and X, are the continuous-time process defined by (3) and Markov chain
defined by (9) for time t > 0, respectively. If X, and X are initiated from the same iterate of the
Markov chain X and share the same Brownian motion, then

E [H]E [Xt - Xt\fo] Hz] < O3t° = O(BHD), forall0 <t <1,
where
Cs =4 (O L+ (o £)Pmaa ()2 4 () maa(£)?) + Codua($)?)

+ ()2 m2a() (1+U0) + S0a(1)? (maal) (1 +Us) +73(d +4)°).

Proof. The proof is similiar to that of Lemma 10 with slight variations on truncating the expansions.
Recall since the two processes share the same Brownian motion,

X, - X = /O VI(X,) ds+ 5 (V) + V().
By Itd’s lemma,
VI =V - [ (PRI - A1) (X)) dut VE [ T31(X,) dB,
=V f(Xo) — V2f(Xo)Vf(Xo)s + V2V2f(X0)Bs + AV ) (Xo)s + R(s),

where the remainder is

R(s) = / (VP R(X)VI(X) + V2 F(X0) V(X)) du

Ri(s)
+ [ (BN e6) - & (x0) du

Rg (b)
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+\f/ (V2f(X,) — V2f(Xo)) dB,.

R3(s)

By Taylor’s theorem with the remainder in integral form,
. . 1 . .
Vf(Hy) =V f(Xo) + V> f(Xo)AH; + §V3f(Xo)[AH1, AH ]+ pi(t),

Vf(Hy) = Vf(Xo)+ V2f(Xo)AH + %VSf(Xo)[Aﬁg, AH,] + pa(t),

where

1t - - - -
f)1(t) = 5/ (1 - T)2v4f(X0 +7'AH1)[AH1, AHq, AHl} dr,
0

1 [t N N N N
pa2(t) = 5/ (1—7)2V*f(Xo + TAH)[AH,, AHy, AH,) dr
0

Now, we show the following equality in a component-wise manner,
t2

LB [B(v5) (50)] + 5B [V F000) 91 (X0), T1(X0)] =

'k [v3f(X0)[Aﬁ1, Aﬁlﬂ n E]E [VBf(XO)[AHQ, AHQ]} . (35)
To see this, recall that odd moments of the Brownian motion is zero. So, for each 8 f,
E (Al V2(0:f)(Xo) A )| =E [E[Tr (AF)T ARV (0:0)(Xo) ) 15 |
—E | Tv (E [(AfL)TAH|Fy| V2(0:/)(Xo) )|

—2 3+ 7z ) BIAGH (X))
Similarly,
E [<Aﬁ2,v2(aif)(X0)Aﬁ2>} —E [E [T&" ((Aﬁ2)TAﬁ2v2(aif)(X0)) IfoH
—E [Tr (]E {(AEB)TAHQU-'O} V20, f(Xo)ﬂ

1 1
=2t = — —= | E[A(0:f)(X
(5 75 Eld@Xo)

+ 1B [(Vf(X0), V2(9:)(X0) V f (X0))]
Adding the previous two equations together, we obtain the desired equality (35).

Next, we bound the second moments of R;(s) and Ry(s). For R;(s), recall from the proof of
Lemma 10,

E (|18 )]13] = E[IR @3] < €1 (04 1) (mafPmsal§)72 4 (1P moa(1)?)
Additionally for R (s),

2

J

B[ R:(5)2] =&

< (& ||&@n e - &@n ] au

(39 (%0 - Bwh (00) du

<Eps(rPs [ B (1% = Xol] du

§00d2u4(f)25/ u du
0
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3
S
<Cod*us(f)*=

Since R3(s) is a Martingale,

e[ 300

2

= HE [/Ot Ri(s) ds|]-"0] +E Uot Ry (s) dsfo}

<2 HIE [/Ot Ra(s) ds|]—'0] 2

42 H]E M Ra(s) ds|f0}

<2t [ B[R0 + 1Rt a.

2

2
2

2

Therefore,

= [ 724

2] §2t/0t [||Rl $)||5 + || Ra(s M

2
<1 (LU (o rsalDY2 + s Praa()2) €
+ Codpa(f)2°.

Next, we bound the sixth moments of AH 1 and AHQ. Note for two random vectors a and b, by
Young inequality and Lemma 31, we have

E [la+0lS] <& | (20l + 21013) | < 32 [Jol + 1]

To simplify notation, we define

m:x/i(;+\}é>§\/i, ngﬁ(;_;é)m,

Vg = %n\/i where &, "% N(0, 1),

We bound the sixth moments of vy, v] and vy using 1/2 4+ 1/\/6 < 1, 1/2 — 1/v/6 < 1/2 and the closed
form moments of a chi-squared random variable with d degrees of freedom x(d)? [57],

E [lloa 5] <SE [15] £ = 8 [x(d)°] £ = 8d(d + 2)(d + 4)¢* < 8(d + 2)*F*,
E[llvfl13] <E [ngg} £ =E [x(d)°] ¥ = d(d +2)(d + 4)t* < (d+4)°1,
E [leall] =575 [I918] £ = 55E )] € = Siod(d + DA+ 06 < o+ 9%,
Then,
E {HAHlHH =E [[lo + vall3] < 32 [lon} + lozll3| < 288(d+ 4)°¢°
- 6 , 6
B |[Af])] =& [1-97Ct0t + o+ 0]
<82E [V £(Xo)t3] £° + 32E [} + vl ]

<82m6(f) (1+E [ Xol13] ) ¢ + 10248 [[jof 3 + [jeal?]
<32ma6(f) (14 Us) 3 + 2048(d + 4)3¢3
<32 (ma,6(f) (1 +Us) + 64(d +4)) £

Now, we bound the second moments of p1 (¢) and po(t) using the derived sixth-moment bounds,

1

(
)

|:||p1 [H f(X0+TAH1)[AH1, AHl, AHl]
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<7 swp [V )| E || A
_4z€Rd P ' 2

<72u4(f)?(d + 4)%t7.
Similarly,

[ROHEE [H; [ 4 G 4 AT AR AL, AT

2
J
1 2 A
<q o [71G) 2 B |

<8ua(f)? (ma,6(f) (1 + Us) + 64(d + 4)%) t2.

Thus,
s || [~ %) [
t 3 t t 2
([l [ £ as+ Lo 0x0) Vf(Xo)]+201(t)+2pz(t)|f0]H]
<[ [ 7 st 2 + BB [V 0w £ (%), AR

+2E [0 + 172(0)113]

<4 (1 (U™ (na())Pms.a(h)M2 + us(F)Pr2a()2) + Codpua (1)) £
+ 1ns(FVE 195 (Xo) 3] #
+ 7204 (f)?(d + 4)3t° + 8ua(f)? (ma,6 (L + Us) + 64(d + 4)°) t°

<4 (011/2 (1+up'? (Nz(f)2W3,4(f)1/2 + M3(f)27T2,4(f)1/2) + Codu4(f)2> t°
b pa(f)ma(f) (14 ) £

+ 814 (f)? (m2,6(f) (1 +Us) + T3(d + 4)%) ¢°
<Cst°.

B.3 Invoking Theorem 1

Now, we invoke Theorem 1 with our derived constants. We obtain that if the constant step size

h<1ACy,A ! N 1
" 20" 8 (b)2 + 8k ()2
where
2d 2121 (f) o 3a , ( 3al )2
Ch = A== A A A 1=2,3
" mn(f) D men(f) T due(P)mea(f) 2Ny + 2Nz + 4 mm{ 8N11,1 e

and the smoothness conditions on the strongly convex potential in Theorem 2 holds, then the uniform
local deviation bounds (7) hold with A\; = C5 and Ay = (', and consequently the bound (8) holds.

This concludes that to converge to a sufficiently small positive tolerance e, @(de*Q/ 3) iterations are
required, since Cs is of order O(d?), and C5 is of order O(d?).

C Proof of Theorem 3

C.1 Moment Bounds

Verifying the order conditions in Theorem 1 for SRK-ID requires bounding the second and fourth
moments of the Markov chain.
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The following proofs only assume Lipschitz smoothness of the drift coefficient b and diffusion
coefficient o to a certain order and a generalized notion of dissipativity for It6 diffusions.

Definition C.1 (Dissipativity). For constants o, 3 > 0, the diffusion satisfies the following
~2(b(x), ) - o(@)2 > all2lls — 8, forallx € R

For general It6 diffusions, dissipativity directly follows from uniform dissipativity, where /3 is an
appropriate constant of order O(d). Additionally, we assume the discretization has a constant step
size h and the timestamp of the kth iterate is t; as per the proof of Theorem 1. To simplify notation,
we rewrite the update as

Xiy1 = X + b(Xp)h + 0(Xp)rr1h? + Vi1, &err ~ N(0,1a),

where
(i Fr(i Fr(i - J RN
0 = (a™) = () ) 02, Vi = 53T
i=1
Note that &1 and Y are not independent, since we model Iy = Iy, Imy) " as Epr1hY/2.

Moreover, we define the following notation
Iy =iy Imiy) s AHY =o(X)I b~ 2  i=1,...,m.
Hence, the variables H fi) and H éi) can be written as
A9 = %o+ ARD, A = %, — AHO,

We first bound the second moments of Y}, using the following moment inequality.

Theorem 12 ([41, Sec. 1.7, Thm. 7.11). Let p > 2. If {Gs}s>0 is a d x m matrix-valued process, and
{Bi}i>0 is a d-dimensional Brownian motion, both of which are adapted to the filtration {Fs} s>
such that for some fixed t > 0, the following relation holds

t
E [/ G5l ds} < 0.
0

t 1)\ ?/? t
‘/ G, dB,|| | < (p(pQ)) tP=2/2E U G II% ds] .
0 0

In particular, equality holds when p = 2.

Then,

E

p
2

The above theorem can be proved directly using [t6’s lemma and It6 isometry, with the help of
Holder’s inequality. The theorem can also be seen as a natural consequence of the Burkholder-Davis-
Gundy Inequality [41].

Corollary 13. Let even integer p > 2. Then, the following relation holds
P plp—1Y\" : |17
] < (B2 o0 (1 ) e

Proof. Itis clear that the integrability condition in Theorem 12 holds for the inner and outer integrals
of AH)_ Hence, by repeatedly applying the theorem,

oo

5[

: Iftk} =E [HU(Xk)I(‘,z‘)

te41 s ~ )
=E ‘ / / o(Xy) dB, dBY
tr tr

() e e
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p
|~7:tk] B—P/2
2

p
|‘7:tk:| ds
2
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_ <p(p2_1)>ph1/ttk+1 S(pz)/z/t:]E[Ha(Xk)Hz 7] duds

k

p(p—1)\* - |[P/?
< (1) e (v )
O
Lemma 14 (Second Moment Bounds for Y3,). The following relation holds
- 2 -2
E {HYMHQ |]—‘tk} <2234 m2 i (0)2n T 4 (o) (1 + HXkHQ) B3
Proof. By Taylor’s Theorem with the remainder in integral form,
Hy,;fgl \2 - ] oK + AHD) — 0y( X, — Aﬁ(i))H2 h1/2
1
= ’ / (Vai(f(k + TAﬁ(i)) — Voi(f(k — TAﬁ(i))) AH® dr|| n'/?
0 2
1 ~ ~ . ~ ~ . ~ .
<pl/? / Hw,@ck +TAHD) = Vo (X, = rAHD)| |AHY| a7
0 op
NP
§u2(0)h1/2 HAH(’) / 27 dr
2Jo
o112
<pia ()2 HAH“) - (36)
By (36) and Corollary 13,
PP NI -2
E U v |]—'tk} <p2(0)E U(AHW 2 |J—'tk} h < 6*ps(0)?nt 4(0) (1 + HXkH2> &
Therefore,
- 2 m < NPT -2
E {HYH1H2 |]—'tk} <2 ;E [HY,§+>1 ’2 |.7—'tk] < 2234 m s (0)?nF 4 (o) (1 + HX’“H2> he.
O

To prove the following moment bound lemmas for SRK-ID, we recall a standard quadratic moment
bound result whose proof we omit and provide a reference of.

Lemma 15 ([24, Lemma F.1]). Let even integer p > 2 and f : R — R¥™ be Lipschitz. For
& ~ N(0, I.,,) independent from the d-dimensional random vector X, the following relation holds

E[F(X)EN5] < (p — DME[|[f(X)IIE] -
C.1.1 Second Moment Bound

Lemma 16. If the second moment of the initial iterate is finite, then the second moments of Markov
chain iterates defined in (10) are uniformly bounded, i.e.

- 2
E [HXkHJ <V, forallkeN
where
- 2
Vo= [[%o[,] + ..

and constants My and Mo are given in the proof, if the constant step size

Oé2

h<1A ! A
m2 AME
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Proof. By direct computation,

2

2

2 (K 0(K0) ) b+ 2 (Ko oK) ) B2 42 (Ko, Vi)
+2 <b()~(;€), U(Xk)€k+l> W32+ 2 <b(Xk), Yk+1> h

+2 <U(Xk)fk+17 f/k+1> hl/2.

~ 2 ~ 2 - 2 ~ 2 ~
[, = 5l = ool + loogenl, -+ [

By Lemma 15 and dissipativity,
E {2 (Ko b(Z0) Y+ [ r(Ki)asn Hz h|]-'tk] =2 (K, b(Xi) ) b+ “U(Xk)”i h
<ol
We bound the remaining terms by direct computation. By linear growth,
ke < v (11 i)
By Lemma 14, for h < 1 A 1/m?2,
E [H%Hz mk] <234m?us(0)*¥ 4 (0) (1 " kauj) s
<2234y (0)?rF (o) (1 + HXkHz) h3/2.
By Lemma 14,
JER MNP IR TN
} R 9 1/2
<l [ ]
<2231 (o) ¥ 4 (0) /2 (1 + kaHz) W32,
Similarly, by Lemma 14,
B (%0 o 5] < 0] [, 17
5 B 9 1/2
<[l )
§2232mu2(0)71{4(0)1/271'171(b) (1 + Hf(kHz> B3/2.

By Lemma 14 and Lemma 15,

. {<U(Xk)§k+1’?k+1> “Ftk} <E U(Xk)kaHQ HY/HIHQ |-7:t,€}
[ 2 1/2 9 1/2
<E||oCtsnl) 17| |[fn] 7]

r B 9 1/2 B 9 1/2
s Jocsal 1) e[ 7

~ 2
§2232mu2(0)7{4(0)1/27{2(0)1/2 (1 + HXkH2> B3/2.
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Putting things together, for h < 1 A o?/(4M?),
- 2 ~ 2
E MX’”ng |]-'tk] < (1-ah+ Mptl?) ka“Q + Bh + My h*/?
~ 2
<(1 - ah/2) HXkH2 + Bh + Myh3?,
where
My =m12(b) + 2°3*mpsz (o) 4 (o) (1 + pa (o)t 4(0)? + m10(b) + 7T1F,2(0)1/2) :
Unrolling the recursion gives the following for A < 1 A 1/m?
~ 2 -2
5] <e [J5]] +2 (54 a0 1o

- 2
<E [HXOH } + M, forallkeN,
2

where
My =2 (ﬂ + 71.2(b)m1.2(b) + 223212 (0)mE 4 (0) /2 (1 + 12 (0)mE 4 ()2 4 o (b) + 7{2(0)1/2)) Ja.
O
C.1.2 2nth Moment Bound
Before bounding the 2nth moments, we first generalize Lemma 14 to arbitrary even moments.
Lemma 17. Let even integer p > 2 and Zk+1 = ?kﬂh*?’/ 2. Then, the following relation holds
2p
~ P 2p(2p — 1 ~ ||P
| 17] <o (P22 bt (14 ).
Proof. Fori € {1,2,...,m}, by (36),
(@ (Z
|24, = 5% < paton 280
Hence, by Corollary 13,
E[|29. " 17.] <pe(oyrnE |||ag®]” |7
k+1]], e | <pz(o) ) |
2p(2p — 1)\ % P
syt (P0) o (14 )
The remaining follows easily from Lemma 31. O

Lemma 18. Forn € N, if the 2nth moment of the initial iterate is finite, then the 2nth moments of
Markov chain iterates defined in (10) are uniformly bounded, i.e.

- 2n
E [HX,C
2

} <Vs,, forallkeN
where

Vo = E [HXO

n 2 — n n n
5 :| + % (6])2(”_1) +223n 110 ns Wl’gn(b)ﬁf’sn(d)l/ng(0’)2 )7

hein ta® al212
—_— —_— min L= P £ .
m2 " a2 N 2, e

if the step size




Proof. Our proof is by induction. The base case is given in Lemma 16. For the inductive case, we
prove that the 2nth moment is uniformly bounded by a constant, assuming the 2(n-1)th moment is
uniformly bounded by a constant.

By the multinomial theorem,

~ 2 2
2 [ - 2

~ 12 ~ 2 ~ 2 ~
(Bl ol + o Eergi [+ i

+2 <)~(k, b(Xk)> h+2 <Xk70()~(k)§k+1> A% 42 <Xk:a Yk+1>

+2 <b(Xk), a(Xk)gk+1> W32 49 <b(Xk), ?k+1> h
+2 <U(Xk)§k+1> 37k+1> hl/z) Ftk]

~ 12 ~ 2 ~ 2 - 2
2| ([l ot + oo [+ 2

) <Xk, b(f(k)> ht2 <)2k, a<xk>5k+1> B2 4 2 <;zk, zk+1> h3/2
+2 <b()~(k)7 J(Xk)gk+1> W32 4 2 <b(Xk), Zk+1> B/
+2 <U(Xk)§k+1, Zk+1> h2>n|]:tk‘|

_ "Xk"z" +E[A|F,) h+E[B|F, | h*2,

where by the Cauchy—Schwarz inequality,

A =[R20 (2SR o8 [2) #2027 (e (Rugra).

<o, " V& | leEogn | |2
_Z kl "‘kIO H k 2 ( k) 9 U( k)€k+1 9 k+1 ) s
(k1,.- k10)€J
the indicator set
J:{(kh"-aklo)GNlO:k1+"'+/€1o=n,
k 3k 3k 5k
2k2+k3+3]€4+k5+?6+77+78+79+2k10>1}7

and with slight abuse of notation, we hide the explicit dependence on ky, .. ., k1o for the exponents

1 =2k + ks + kg + k7,
Do =2k + ks + kg + ko,
p3 =2k3 + ke + ks + k1o,
py =2ky4 + k7 + ko + k10-

By dissipativity,

E[A|F,] < —na HXk

2 2(n—1)
H . 37)
2 2

Note that p; + pa + p3 + ps = 2n. Since h < 1 A 1/m?, we may cancel out the m factor in some of
the terms. One can verify that the only remaining term that is m-dependent is

<Xk, Zk+1> — O(mh?/?).

Using this information, Lemma 17, Lemma 15, the Cauchy—Schwarz inequality, and p3 + p4 < 2n,
E[B|F,]
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p2 1

o ) I
<y (k ) 5
"I

Xk)

B [l

P4 |]__ j|
2 te | T

2

)

2ps 1/2 ~ ey 1/2
H R)en | 1| E szﬂm | m

71'1 p2 <1+ HXk

) (@ = el @) (14 5] )

Hm

n
<2 (1 R, 5 man ) 2 = 0 st (8pi>2”47r54m<")”2<k1 klo>m

K1soees k10)€J

X piz(0)"* (8p3) " 71 g, (o) (1 + HXk

n " 2n n n,_8n n
o (14 [ e ("

ky,...,k10€N
ki+--+kio=n

2n
) . (38)
2

By the inductive hypothesis, (37) and (38), and h < 1 A n?a?/(4M3,,), we obtain the recursion

n—1)
]+M3h3/2

<9n—lygnsn Qn(b)ﬂ'lF,Sn(U)l/2M2(0)2nm (1 + HXI“

HQn

~ 2n i
E [IEI [HX’”le J—}kH < (1-nah+ My h*?) E ka i ] + nBhE {ka‘

M~ 2n
< (1~ nah+ My,*?) | %] ] BVt b+ Ma o

<(1—-nah/2)E [Hf(kHzn +nBVo—1)h + Mg,nhB/Q’
where the constant M3 ,, = 223”*110”n8"7r172n(b)7rf,5;n(0)1/2u2(0)2”m.
For h < 1 A 1/m?, by unrolling the recursion, we obtain
E {HX’,c z"} <E U’XO
where

Von = E “]XO

2n 2
} + oo (nm/z(n—l) + Ms,nhl/z) < Va,, forallkeN,

2n 2
i } +@ (ﬁvz(nq)+223n_110nn8n7T1,2n(b)7T£8n( )1/2M2( )2n>

C.2 Local Deviation Orders

In this section, we verify the local deviation orders for SRK-ID. The proofs are again by matching up
terms in the It6-Taylor expansion of the continuous-time process to terms in the Taylor expansion of
the numerical integration scheme. Extra care needs to be taken for a tight dimension dependence.

Lemma 19. Suppose X, is the continuous-time process defined by (1) initiated from some iterate of
the Markov chain X defined by (10), then the second moment of X, is uniformly bounded, i.e.

E [||Xt||§] <V, forallt>0.
where Vo, = Vo + 3/

Proof. By It0’s lemma and dissipativity,

d
B [1X3] =E [2(X0, b(X0) + lo(X0) 7] < —ak [1X)3] +
Moreover, by Gronwall’s inequality,

E [||th|§} <e ™E [||Xo||§] +8/a<Vy+Bla=V
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Lemma 20 (Second Moment of Change). Suppose X, is the continuous-time process defined by (1)
initiated from some iterate of the Markov chain X defined by (10), then

E [||Xt - Xoug} < Dot, forall0<t<1,
where Dy = 2 (71,2(b) + 7} 5(0)) (1 + V).

Proof. By It6 isometry,

2
E[HXt X0|| ’ ds—l—/ o(X,) dB;
2
t 2 t 2
<9E /b(XS) ds +’/ o(X,) dB,
0 2 0 2

<2t [ B [lo0c )] as+2 [ B[ocx,

)]
< 27r1,2(b)t/0tE 14+ 1113 ds +2nf 4(0) /Ot]E 1+ 1X113] s
<2 (71'172(1)) + 71{2(0)) (14+V))t.

To bound the fourth moment of change in continuous-time, we use the following lemma.

Lemma 21 ([24, adapted from Lemma A.1]). Assuming {X;}i>0 is the solution to the SDE (1),
under the condition that the drift coefficient b and diffusion coefficient o are Lipschitz. If o has
satisfies the following sublinear growth condition

lo@) e < 7lu(e) (1+ 121) . forattw e R I=1,2,...,
and the diffusion is dissipative, then for n > 2, we have the following relation
Al < = Nall3 + n,

where the (infinitesimal) generator A is defined as

o Ef (X)X = 2] — f(2)
Af () = lim v :

and the constant 3, = O(d?).

Proof. By definition of the generator and dissipativity,

Aﬂxnz=nnﬂ§f2@aMw»+—§an“QWﬂxn@—%ﬁﬁliflwu€*4«wdxxT»vaxaoTu»»
<= 2ty + 2 a2 4 22 2y (0) (14 )

an nin —2) 1 Bn  n(n—2) P
——Eﬂuw+——;—w&wwms +(2+f2ﬁA@ Joll3

By Young’s inequality,

n(n — 2) =

- no1 n(n—2) 8\ " o1 /onN St
e MO C T CY

1 (nn-2)\" n( 8 nt —lan
< ( o () 4

n 2 ’ an
(n_2)n F n Oé(’fl— 1) n
WWM(U) +T||93||2~
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Similarly,

(5 + 20t el (2 7%—2)%52(0)) (;) S ()7

We define the following shorthand notation
( B 2)n n n
Jei) Wﬂfz(‘ﬂ =0(d?),
Bn  n(n—2) 2 any 5 n
B = ( >+ (F) T = o),
Putting things together, we obtain the following bound

Allally < = 2 fally + 2= o A2 oy g0 4 52

< — 2 all; .

where 3, = 81 + A7 = O(d?). 0

Lemma 22. Suppose X, is the continuous-time process defined by (1) initiated from some iterate of
the Markov chain X defined by (10), then the fourth moment of X; is uniformly bounded, i.e.

E [ IIZL} <Vj, forallt>0,

where V) = V4 + B4/
Proof. By Dynkin’s formula [48] applied to the function (¢, z) — et Hac||;l and Lemma 21,

t
B (I3 170 =Xl + [ B [aet X5+ e A3 1) s
0

t
<Xl + [ B [0 115 = e X + e Al ] ds

et — 1

= | Xollz + Bu.

Hence,
E[1Xl5) = E [E [1Xl; 1) | <e™E [|Xoll3] + Bs/a < Vi + Bafor = V.
O

Lemma 23 (Fourth Moment of Change). Suppose X, is the continuous-time process defined by (1)
from some iterate of the Markov chain X defined by (10), then

E [||Xt _ X0||;*] < D2, forall0<t<1,
where Dy = 8 (m1,4(b) + 361 4(0)) (14 V)).

o

Proof. By Theorem 12,
4

E (11X, - Xoll3] =

/Ot b(X,) ds+/OtJ(XS) .|

/ b, ds 2 / "o(x.) 4B,

<se’ [ & [lp0x 1] as+2ss [ o0t ]

<8 (m1,4(b) + 3677 4(0)) (1+ V)) t°.

4 4

"

2
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C.2.1 Local Mean-Square Deviation

Lemma 24. Suppose X; and X, are the continuous-time process defined by (1) and Markov chain
defined by (10) for time t > 0, respectively. If X; and X are initiated from the same iterate of the
Markov chain X, and they share the same Brownian motion, then

- 12
E {th — XtM < Dst?, forall0 <t <1,
where

16 16
Ds :(16D0u1(b)2 + = pa(0) 2y E DY (1 + Vi P ym? + 5 1(0)'m* Dy

3
+ 1641 (0) m12(0)* (1 + Va)m + 4mPpa(0)?m] 4(0) (1 + V3)

+ 278 m s (0)* 7] 4 (0) (1 4+ W) ).
Proof. Recall the operators L and A; (i = 1,...,m) defined in (5). By Itd’s lemma,

t
X, — Xo :/ b(X,) ds + o(Xo) By
0

+ZZ//AZJZ dB”dBlMZ// (0:)(X,) du dBS

i=1 1=1
/b( s) ds + o (Xo) BH—ZZ//VU, Wo1(X.) dBO dBY + S(b),
i=1 [=1
where
(t):i/;/osvm(xu ) du dBY 4 = ii/ / V2oi(X X.), 01(X.)] du dBY .
=1 i=11=1
S1(t) Sa(t)

By Taylor’s theorem with the remainder in integral form,

oi(HY) = 6:(Xo) + Vo (Xo) AHD + ¢{ (1),

oi(Hy") = 0i(Xo) = Vou(Xo) AHY + 6 (1),
where
, 1 o
RO / (1 — 7)V20;(Xo + TAHN[AHD, AHD] dr,
0
. 1 B -
D0 = [ 0=V~ rARO)ARY, MO ar
0
AHD = i ou(X0) 2.
= Vi
Hence,

/ (Voi(Xy)o1(Xy) — Vo (Xo)o1(Xo)) dBY dBY)
0
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Since b is p1 (b)-Lipschitz,

t 2 t
B || [ 006 - o) as ]<m<b>2t | E[1x - xol3] as
0 2 0
t
<p1(b)*t | Dgys ds
0
1
§§D0M1(b)2t3
We define the following,
m.om t ps
A(t) =Ay(t) + Aog(t) = > > / / (Vo (Xu)o1(Xy) — Vo (Xo)o1( X)) dBY dBY,
. 0 0

where

_ii/ / (Voi(Xy)o1(Xy) — Vo (Xo)oy (X)) dBY dBWY,
:ZZ/ / (Voi(Xo)o(X,) — Vo (Xo)o(Xo)) dBY dBY.

i=1 (=170 JO

E (401 ii / | B (190X, = Vou(Xo)n (X)) du as
si_ S [ [ B [Ivete) - ok, o] auas
S Tl _ Vo 4 M2 o 41/2us
>3 [ [ = [vex - voutxont,] & [loexan]  ava
<pia(0)2m a(0) 22 // X, XOH E[1+]X. H du ds
oo D (1)
Similarly,

B[] =323 [ [ B 1ot - Voxm(xa)l?,] duas

=1 l=1
SZZ/ / E[IVai(Xo) 13, llon(Xu) = ou(Xo) 3] du ds
i=11=170 J/0
<p(o QZZ/ / lou(X) = a1(Xo)ll3] du ds
i=1 [=1
<pa(o)*m // |1 X — Xoll ] du ds
< g (0)'m? Dyt w0

By It6 isometry,
isioiE] =3 [s [ B [IoetnasxlE] au s
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<Z / s [ B[V, 10X 1] du ds
gm(a)zmg(by;/() S/O E[1+ %3] du ds

1
=5m(0)*ma(b)” (1 +V3) mt*. 4D

Similarly,
2
1 m t s m
J[EXOTHES O EU |3 o), o) du ds}
=1 =1 2
1 L gt s
SZmZZ/ s/ E {||V201(X o(Xu), o1(X)| ] du ds
i=1 (=170 /0
1 m.om t s
SszZ/O s/ [||v2az X)) o (x )||4} du ds
=1 1=1
Si@ff ) m1a(0 m/ / 1+ | Xy ||]duds
Séaz(U)QmA(U)m (1+ V)t (42)
By Corollary 13,
E {HAFI@ z] —E {E [HAH(” ”

2
<o'slu (@ |1+ %] 2
<6y 4(0) (14 Va) £,
Now, we bound the second moments of qbgi) (t) and gbg) (1),

[ f] <[ [ 0 - v o ramoan®, agoyar
0

1

<E U'VQU,;(XOqLTAﬁ(")) ’ ‘AFI(” j
<6 pa(0)*my 4(0) (1 + Vo)t?. (43)
Similarly,
. 2
E[Hdé”(t)M <642 (o) 4(0)(1+ Vo)t (44)

Hence, by (43) and (44),

1
E |||=
[2

i=1

> (1) - 0" w) Vi

j gi’ftéE [Hdn“(t) - ¢é"’(t)Hz]

§2234m2,u2(0)27r£4(0)(1 + Vo) 3. 45)

1

Combining (39), (40), (41), (42), and (45),

2
| <om ]
2

+ 32 141 (1) + 1 4> (1) ]

E [HXt ~ X,

/O (b(X,) — b(Xo)) ds
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+32E [Hsl(t)n; + ||52(t)||§]

2> (0 - 0) Vi

2
+ 32E ‘

2
16 16
§(16D0u1(b)2 + §u2(0)277i/42 1/2(1 + VI1/2) 2+ g,ul(a)‘lmQDo
+ 1671 (0)?m1,2(0)* (1 + Va)m + 4m® o (0)*m7 4 (0) (1 + V)

+273%m? (o)1 4(0) (1 + Vz))t3

C.2.2 Local Mean Deviation

Lemma 25. Suppose X; and X, are the continuous-time process defined by (1) and Markov chain
defined by (10) for time t > 0, respectively. If Xy and X, are initiated from the same iterate of the
Markov chain X, and they share the same Brownian motion, then

. 2
E {HE [Xt — Xt|]-"0} M < Duth, forall0<t<1,

where
4 2 / 1 2 / 2
gm(b) m12(0) (14 V3) + g#z(b) m14(0) (L+Vy)m

+ 243550 g (0) 2 4 (o) ( + V¥ 4))

e

Proof. Recall the operators L and A; (i = 1,...,m) defined in (5). By Itd’s lemma,

m t
Xi — Xo =b(Xo)t + Z / oi(X,) dBY

+Z//A dB.Y) ds+// ) du ds

Xot—i—Z/ dB(Z)—FZ//Vb X,) dBW ds + 5(t),

t s 1 m t s
:/ / Vb(X,)b(X,) du ds+ 3 Z/ / V(X)) [0i(Xy), 04(X,)] du ds.
0o Jo = Jo Jo
Sl (t) 5,2 (t)
Now, we bound the second moments of Sy (¢) and Sa(%),

E |50 l / Vb(X,)b(X,) du ds 21
gt/o 5/0 E [||Vb(xu) (X2 ] du ds

t s
<t [ [ E[IVBOG) 2, 1013 du as
t S
gm(b)zm(b)t/ s/ E 1+ 1 X012] du ds
0 0

1
<3#(0)*ma(b) (1+ V) ¢, (46)

where
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Similarly,
2

%Z/ /s V2b(Xo)[0i(Xu), 0i(Xy)] du ds

E [||5a(1) 3] =B 2 Jy Jy

2

sﬁfit/ots/:E [[[926(X)[03(X0), o X)]|[5] du ds
s’jffjt/ots/osla [[[926(X) 12, los(X) 3] du s

<7Zu2(b)2§:t/0ts/osE [||oi(Xu)||ﬂ du ds

i=1
t s
S—ug(b)27r1,4(a)t/ s/ E 141 X02] du ds
4 0 0

1
< pha(0)*m () (14 Vg) m?t!, 47)

7

~ 3
<3%557F (0)E {1 + HX,QM £

By Corollary 13,

E [HAE{(“
2

6 o

} —E {E {HAH@
<3557F (o) (1 + vj’/“) £

Now, we bound the second moment of the difference between q&li) (t) and (;55” (1),

Cam®

. . 2 1 . ~
E {Hgb(f) (t) — ¢g>(t)Hz] <E U Hv%i(xo +rAHD) = V20,(Xo — TAHD)
0

4
:|d7'
2

4
dT:|
2

op

1 T o
<pz(o)’ / E[HQTAH(’) 2HAH@
0

6
]

<2285 130l g (o) (14 V1) £, (48)
Hence, combining (46), (47), and (48),

o[- ] ] -2

<4 [[|S1(0)]; + [ S2(0)]I5] + 4B

S%uz(a)QE [HAIW)

2

E[S(t)| 7] —E

2

BYCCE a:é”(twﬂ

2

<(SmOPma®) (14 V) + 2tV alo) (14 V) m?

+ 213750 1 (0) 2T (o) (1 +v¥ 4>)t4.

C.3 Invoking Theorem 1

Now, we invoke Theorem 1 with our derived constants. We obtain that if the constant step size

h<1AC /\i/\ 1
"7 20" 8y ()2 + 8k ()2
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where

e
LRV VERRS VN

and the smoothness conditions in Theorem 3 of the drift and diffusion coefficients are satisfied for a
uniformly dissipative diffusion, then the uniform local deviation bounds (7) hold with A\; = D3 and
Ao = Dy, and consequently the bound (8) holds. This concludes that to converge to a sufficiently

small positive tolerance €, O(d3/*m?e~1) iterations are required, since Dj is of order O(d®/?m?),
and Dy is of order O(d®/?m?). Note that the dimension dependence worsens if one were to further
convert the Frobenius norm dependent constants to be based on the operator norm.

D Convergence Rate for Example 2

D.1 Moment Bound

Verifying the order conditions in Theorem 1 of the EM scheme for uniformly dissipative diffusions
requires bounding the second moments of the Markov chain. Recall, dissipativity (Definition C.1)
follows from uniform dissipativity of the It6 diffusion.

Lemma 26. [f the second moment of the initial iterate is finite, then the second moments of Markov
chain iterates defined in (4) are uniformly bounded, i.e.

-2
E {HX;CH } <Whs, forallk €N,
2
where Wy = [HXOH ] + 2(m1,2(b) + B)/«, if the constant step size h < 1 A o /(271 2(D)).

Proof. By direct computation,
ofl 17+ g,
+2 (K b(X) ) -2 K (K)o ) 12
X

+2 (b(Xp), (X)) B2,

Recall by Lemma 15 and dissipativity,

[€uaal, = + Jocx

E {2 (Z0,b(X0)) b+ Ho()”ck)gkﬂ Hj h|ftk} <-a HX’“HE h+ Bh.
By odd moments of Gaussian variables being zero and the step size condition,
3 [ L] - o o o
<(1— ah+ m2(b)h?) HXkHz + 1 2(b)R% + Bh
<(1-ah/2) kauz + m12(b)h? + Bh.
By unrolling the recursion,

E [HX"“HE} <E MXOHZ} +2(m12(b) + B)/a, forallk € N.

D.2 Local Deviation Orders

Before verifying the local deviation orders, we first state two auxiliary lemmas. We omit the proofs,
since they are almost identical to that of Lemma 6 and Lemma 7, respectively.
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Lemma 27. Suppose X, is the continuous-time process defined by (1) initiated from some iterate of
the Markov chain X defined by (4), then the second moment of X, is uniformly bounded, i.e.

E {”XtHg} <Wh + B/a=WSi, forallt > 0.

Lemma 28. Suppose X, is the continuous-time process defined by (1) initiated from some iterate of
the Markov chain X defined by (4), then

E [||Xt - Xoug} < Eot, forallt>0,
where Eq = 2 (m1,5(b) + 71 5(0)) (1 + Wj).

D.2.1 Local Mean-Square Deviation

Lemma 29. Suppose X; and X, are the continuous-time process defined by (1) and Markov chain
defined by (4) for time t > 0, respectively. If X, and X, are initiated from the same iterate of the
Markov chain X and share the same Brownian motion, then

-2
E [th _ XtM < B, forall0<t<1,
where Ey = (p1(b)* + 1 (0)?) E,.

Proof. By It6 isometry and Lipschitz of the drift and diffusion coefficients,

<2UE U 1b(X on)|2ds}+2E [/ lo(Xs) — o(Xo)|2 ds]

2 2

E [th —XtHz] <9F +2E /Ot (0(X,) — 0(Xo)) dB,

/0 (b(X.) — b(X)) ds

2 2

<2 ()t + 1§ (0)?) / B [X. - XolZ] as

< (1 (b)* + 1 (0)?) Eot®.

D.2.2 Local Mean Deviation
Lemma 30. Suppose X; and X, are the continuous-time process defined by (1) and Markov chain
defined by(4) for time t > 0, respectively. If X, and X, are initiated from the same iterate of the
Markov chain X and share the same Brownian motion, then

- 2

E {HE [Xt _ Xt|]-"0} H } < Bot®, forall0<t<1,
2

where Es = 1 (b)FEo /2.

Proof. By Itd’s lemma,

t
X, - Xo :/ b(X,)ds + o(Xo) By
0

+ZZ//AI ) dB® 4B +Z// (05)(X,) du dBS.

i=1 [=1

Since the last two terms in the above inequality are Martingales,

E[X, - Xo|Fo] = E [ / (b(X.) — b(X0)) dsfo} .
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Hence, by Jensen’s inequality,

e[ e~ ]| = [ o -y ]

2

2‘|
K 2

gul(b)t/ E [|1X, — o] ds
0

<1 (b)Eot® /2.

]

IA

E / (b(X,) — b(Xo)) ds

D.3 Invoking Theorem 1

Now, we invoke Theorem 1 with our derived constants. We obtain that if the constant step size

« 1 1
— A=A ,
2m2(0)  2a 81 ()% + 8y (0)?

and the smoothness conditions of the drift and diffusion coefficients are satisfied for a uniformly
dissipative diffusion, then the uniform local deviation bounds (7) hold with \; = E; and Ay =
E5, and consequently the bound (8) holds. This concludes that for a sufficiently small positive
tolerance e, @(de‘z) iterations are required, since both F and Es are of order O(d). If one were
to convert the Frobenius norm dependent constants to be based on the operator norm, then F is
of order O(d(d + m)?), and Es is of order O(d(d + m)). This yields the convergence rate of

O(d(d +m)?e2).

h<1A

E Convergence of SRK-LD Under an Unbiased Stochastic Oracle

We provide an informal analysis on the scenario where the oracle is stochastic. We denote the
new interpolated values under the stochastic oracle as H; and Ho, and the new iterate value as

X). We assume (i) the stochastic oracle is unbiased, i.e. E[Vf(z)] = f(z) for all z € R, (ii)
the stochastic oracle has finite variance at the Markov chain iterates and “interpolated” values, i.e.

E[|[Vf(Y) = Vf(Y)|2] < 02d, for some finite o, where Y may be X, Hy, or H°, and (iii) the
randomness in the stochastic oracle is independent of that of the Brownian motion.

Fix iteration index k € N, let [);Lk) and D,(Lk) denote the local deviations under the exact and stochastic
oracles, respectively. Then, assuming the step size is chosen sufficiently small such that the Markov
chain moments are bounded,

R 2 M =k
o o], e ot

o]

) - " 2
+9E U'D,(f) - Dﬁl’“)M

l\)l Il\?

ng: o] + am {H@f(ﬁl)w(ﬁl)m 1 4E U(@f(ﬁgw(ﬁg)m

<2k || D] +4a2d+4]EMVfH2 Y f(Hy) + V(Hs) — Vf(H M
<O(h* + o?).

Similarly, one can derive the new local mean deviation,

= [z 17

) <2 [l (o7 ] e [0l - DA

2
.
SThere is slight ambiguity in terms of which iteration’s interpolated values should H, and H, correspond to.

For notational simplicity, we have avoided using a subscript or superscript for the iteration index k, and almost
always make H; and Hs appear along with the original iterate X}.
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<6 & [ ][]+ |21 - 51

=0(h® + o?).

One can replace the corresponding terms in (15) and obtain a recursion. Note however, to ensure
unrolling the recursion gives a convergence bound, one need that o < O(ah).

F Auxiliary Lemmas

We list standard results used to develop our theorems and include their proofs for completeness.
Lemma 31. Forzq,...,z, € Rand m,n € N, we have

m n m
E T; < mn! E x.
i=1 i=1

Proof. Recall the function f(x) = 2™ is convex for n € N. Hence,

(Z;ril %)n < Dy T

m - m

Multiplying both sides of the inequality by m™ completes the proof. O

Lemma 32. For the d-dimensional Brownian motion { By }>o,
t s
Zo= [ [ aBsas~ a7 (0.612/9).
0o Jo

Proof. We consider the case where d = 1. The multi-dimensional case follows naturally, since we
assume different dimensions of the Brownian motion vector are independent. Let ¢, = dk, we define

m—1 m—1
Sm =3 By (teyr —tr) = Y (Bu,, — By,) (tk — 1)
k=0 k=1

Since S;, is a sum of Gaussian random variables, it is also Gaussian. By linearity of expectation and
independence of Brownian motion increments,

; 7m71 —t)? - ? t s—1)° ds=t° as m — 0o
E [Sm} = ]; (ty —t)°E |:(Btk+1 Btk) } H[) (s—1)"d t3/3 = 00,

Since S,, 3 Z; as m — oo by the strong law of large numbers, we conclude that Z;, ~ A (0, t3/3).

Lemma 33. Forn € N and the d-dimensional Brownian motion { B };>o,

E[|BZ"] = t"d(d +2)-- (d + 20 ~2)

Proof. Note || B ||§ may be expressed as the sum of squared Gaussian random variables, i.e.
d
IBill; =Y ¢ where & ™ N(0,1).
i=1

Observe that this is also a multiple of the chi-squared random variable with d degrees of freedom
x(d)?. Its nth moment has the following closed form [57],

I'(n+9)

r(s)

E [x(d)*"] = 2" =d(d+2)---(d+2n—2).

Thus,
E [||Bt||§"] — "E [x(d)>"] = t"d(d+2) - (d + 2n — 2).
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Lemma 34. For f : R? — R which is C°, suppose its Hessian is ji3-Lipschitz under the operator
norm and Euclidean norm, i.e.

[V2f(z) = V£ ()

Then, the vector Laplacian of its gradient is bounded, i.e.

op < 13 lz—ylly, forallz,ye R

H&(Vf)(m)”2 <dus, forall z € R

Proof. See proof of Lemma 6 in [12]. O

Lemma 35. For f : R? — R which is C*, suppose its third derivative is y-Lipschitz under the
operator norm and Euclidean norm, i.e.

V3 (@) = V@), < malle —ylly. Joralle,y € R

Then, the vector Laplacian of its gradient is dji4-Lipschitz, i.e.

|3vn@ - B3vnHw)||, < dualle ~yll,-

Proof. Let g(z) = A(f)(z). Since f € C*, we may switch the order of partial derivatives,

1BV @) - AN, = IVg(@) = Ve,

By Taylor’s theorem with the remainder in integral form,

1
IV9(e) - Vo), = H [ Pt @) ar

2

ol =yl dr

1
S/O V29 (y + 7(z — )

< sup [[V2g(2)
z€Rd

ol =l

Note that V2g(z) can be written as a sum of d matrices, each being a sub-tensor of V4 (), due to
the the trace operator, i.e.

d
Vig(x) =Y Gi(z), where Gi(x)jr = Dijif(x).

i=1

Since the operator norm of V* f () upper bounds the operator norm of each of its sub-tensor,

d
IV29(@)l,,, < D NG @)l < d [V ()],
i=1

Recall the third derivative is p4-Lipschitz, we obtain

Vg(z) = Vgy)ll, <dus |z —yl,-

G Estimating the Wasserstein Distance

For a Borel measure p defined on a compact and separable topological space X, a sample-based
empirical measure /1, may asymptotically serve as a proxy to y in the W, sense for p € [1, c0), i.e.

Wy (ks fin) = 0.

This is a consequence of the Wasserstein distance metrizing weak convergence [62] and that the
empirical measure converges weakly to p almost surely [60].
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However, in the finite-sample setting, this distance is typically non-negligible and worsens as the
dimensionality increases. Specifically, generalizing previous results based on the 1-Wasserstein
distance [17, 16], Weed and Bach [64] showed that for p € [1, c0),

Wp(uﬂ ﬂn) Z nil/t7

where ¢ is less than the lower Wasserstein dimension d,(u). This presents a severe challenge in
estimating the 2-Wasserstein distance between probability measures using samples.

To better detect convergence, we zero center a simple sample-based estimator by subtracting the null
responses and obtain the following new estimator:

~ 1 . . N . R R N
WQZ(Uv v) 25 (WZQ(U'M Un) + W22(/J;u V;L) - W22(P4n7 N;L) - W22(Vn7 V;L)) )

where 7, and 7], are based on two independent samples of size n from i, and similarly for ,, and 7,
from v. This estimator is inspired by the contruction of distances in the maximum mean discrepancy
family [31] and the Sinkhorn divergence [49]. Note that the 2-Wasserstein distance between finite
samples can be computed conveniently with existing packages [25] that solves a linear program.
Although the new estimator is not guaranteed to be unbiased across all settings, it is unbiased when
the two distributions are the same.

Since our correction is based on a heuristic, the new estimator is still biased. To empirically
characterize the effectiveness of the correction, we compute the discrepancy between the squared
2-Wasserstein distance for two continuous densities and the finite-sample estimate obtained from
i.i.d. samples. When p and v are Gaussians with means m, my € R?% and covariance matrices
Y1, Y € R¥? we have the following convenient closed-form

W (1,v) = llmi = ma3 4+ Tr (21 + 2o — 2(21/°8,5/%)12)

17.5 -=- vanilla -~- vanilla
| = corrected 15.0{ — corrected
15.0
3 8125
212.5 rel
s 510.0
v 10.0 (]
E S 75
=2 75 =
) )
£ 5.0 g 5.0 L
¢ \d
e 2.5 o
2 ...-w""‘“ R o ’
0.0 = 0.0 ach
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
dimensionality dimensionality
(a) different in mean (b) different in covariance

Figure 2: Absolute value between W3 (1, ) and the sample averages of estimators W22 (vanilla) and

WQQ (corrected) for Gaussian p and v. Darker curves correspond to larger number of samples used to
compute the empirical estimate (ranging from 100 to 1000). (a) my = 0, mo = 14,31 = 39 = 1.
O)ymy=me =0,%1 =14, = Id/2 + 1d1;1r/5.

We compare the vanilla estimate W22 (1, v,n) and the corrected estimate WQQ( i, v, n) by their magni-
tude of deviation from the true value W3 (p, v):

W3 (p,v) — EIWS (1, v, )]

C | WE ) = BV (a,m)].

where the expectations are approximated via averaging 100 independent draws. Figure 2 reports the
deviation across different sample sizes and dimensionalities, where 1 and v differ only in either mean
or covariance. While the corrected estimator is not unbiased, it is relatively more accurate.

In addition, Figure 3 demonstrates that our bias-corrected estimator becomes more accurate as the
two distributions are closer. This indicates that our proposed estimator may provide a more reliable
estimate of the 2-Wasserstein distance when the sampling algorithm is close to convergence.
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Figure 3: Absolute value between W3 (u, ) and the sample averages of estimators WQQ (vanilla) and

W22 (corrected) for Gaussian i and v. Darker curves correspond to larger number of samples used
to compute the empirical estimate (ranging from 100 to 1000). We fix d = 20 and interpolate the
mean and the covariance matrix, i.e. m = amy + (1 — a)msg, X = a¥; + (1 — @)Xz, € [0, 1].
@m;=0,mg =214, =3 =13.b)my =mg =0,%1 =213, = Id/2 + 1d1;r/5.

H Additional Numerical Studies
In this section, we include additional numerical studies complementing Section 5.

H.1 Strongly Convex Potentials

We first include additional plots of error estimates in I¥3 and the energy distance for sampling from
a Gaussian mixture and the posterior of BLR. The results indicate that the reduction in asymptotic
error is consistent across problems with varying dimensionalities that we consider. In the end, we
conduct a wall time analysis and show that SRK-LD is competitive in practice.

H.1.1 Additional Results

Figure 4 shows the estimated W5 error as the number of iterations increase for the 2D and 20D
Gaussian mixture and BLR problems with the parameter settings described in Section 5. We observe
consistent improvement in the asymptotic error across different settings in which we experimented.

=== EM(0.25) === EM (0.25) === EM(0.5)
— EM(1.25) 3 —— EM(1.25) —— EM(2.5)
—-—— -1 === SRK-LD (0.25) —_— g
100 o 104y Tmam | 102\ e = oen

N e O

= -

] T 5 | N\ T

£ 107 £ 10 £ 100

= 5 £

€ £ £

o c o

102 107! 100
0 10 20 30 40 0 10 20 30 40 0 25 50 75 100 125 150 175 200
iterations iterations iterations
(a) Gaussian Mixture (2D) (b) Gaussian Mixture (20D) (c) BLR (20D)

Figure 4: Error in W2 for strongly log-concave sampling. Legend denotes*scheme (step size)”.

In addition to reporting the estimated squared W5 values, we also evaluate the two schemes by
estimating the energy distance [58, 59] under the Euclidean norm. For probability measures x4 and v
on R? with finite first moments, this distance is defined to be the square root of

Dp(p,v)* = 2E[|Y = Z|l,] - E[|Y = Y',] —E[|Z - Z'|l,], (49)

ii.d. iid. o . .
where Y, Y’ "< prand Z, Z' "< v. The moment condition is required to ensure that the expectations
in (49) is finite. This holds in our settings due to derived moment bounds. Since exactly computing
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the energy distance is intractable, we estimate the quantity using the following (biased) V-statistic [55]

P 2
Di(u,v) = =3 V= Zill = —5 > Y Vi =Yl = —5 >0 12— Zil,.
i=1 j=1 i=1 j=1 i=1 j=1
ii.d. ) iid. ) . .

where Y; "X pfori = 1,...,mand Z; "X vforj = 1,...,n. Figure 5 shows the estimated
energy distance as the number of iteration increases on a semi-log scale. We use 5k samples each for
the Markov chain and the target distribution to compute the V-statistic, where the target distribution
is approximated following the same procedure as described in Section 5.1. These plots show that
SRK-LD achieves lower asymptotic errors compared to the EM scheme, where the error is measured
in the energy distance. This is consistent with the case where the error is estimated in W3.
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Figure 5: Error in D% for strongly log-concave sampling. Legend denotes*“scheme (step size)”.

H.1.2 Asymptotic Error vs Dimensionality and Step Size

Figure 6 (a) and (b) respectively show the asymptotic error against dimensionality and step size for
Gaussian mixture sampling. We perform least squares regression in both plots. Plot (a) shows results
when a step size of 0.5 is used. Plot (b) is on semi-log scale, where the quantities are estimated for a
10D problem.

H.1.3 Wall Time

Figure 7 shows the wall time against the estimated W23 of SRK-LD compared to the EM scheme for
a 20D Gaussian mixture sampling problem. On a 6-core CPU with 2 threads per core, we observe
that SRK-LD is roughly x 2.5 times as costly as EM per iteration. However, since SRK-LD is more
stable for large step sizes, we may choose a step size much larger for SRK-LD compared to EM, in
which case its iterates converge to a lower error within less time.

H.2 Non-Convex Potentials

We first discuss how we approximate the iterated It6 integrals, after which we include additional
numerical studies varying the dimensionality of the sampling problem.
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Figure 7: Wall time for sampling from a 20D Gaussian mixture.

H.2.1 Approximating Iterated It6 Integrals

Simulating both the iterated It6 integrals I(; ;) and the Brownian motion increments /(;) exactly is
difficult. We adopt the Kloeden-Platen-Wright approximation, which has an MSE of order h?/n,
where n is the number of terms in the truncation [33]. The infinite series can be written as follows:

Ty Iy — how

Ty = 5 + Aw,

where & 1, &k, ik, Mk Hg- N(0,1). A(1,5) is known as the Lévy area and is notoriously hard to
simulate [66].

For SDE simulation, in order for the scheme to obtain the same strong convergence order under the
approximation, the MSE in the approximation of the It6 integrals must be negligible compared to
the local mean-square deviation of the numerical integration scheme. For our experiments, we use
n = 3000, following the rule of thumb that n < h~! [33]. Although simulating the extra terms
can become costly, the computation may be vectorized, branched off from the main update, and
parallelized on an additional thread, since it does not require any information of the current iterate.

Wiktorsson et al. [66] proposed to add a correction term to the truncated series, which results in
an approximation that has an MSE of order h2/n?. In this case, n oc h~1'/2 terms are effectively
required. We note that analyzing and comparing between different Lévy area approximations is
beyond the scope of this paper.

H.2.2 Additional Results

Figure 8 shows the MSE of simulations starting from a faithful approximation to the target. We adopt
the same simulation settings as described in Section 5.2. We observe diminishing gains as the dimen-
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sionality increases across all settings with differing 5 and ~ parameters in which we experimented.
These empirical findings corroborate our theoretical results. Note that the corresponding diffusion in
all settings are still uniformly dissipativity, yet the potential may become convex when £ is large.
Nevertheless, the potential is never strongly convex when £ is positive due to the linear growth term.
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Figure 8: MSE for non-convex sampling.
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