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Abstract

Evaluating novel contextual bandit policies using logged data is crucial in appli-
cations where exploration is costly, such as medicine. But it usually relies on the
assumption of no unobserved confounders, which is bound to fail in practice. We
study the question of policy evaluation when we instead have proxies for the latent
confounders and develop an importance weighting method that avoids fitting a
latent outcome regression model. We show that unlike the unconfounded case
no single set of weights can give unbiased evaluation for all outcome models,
yet we propose a new algorithm that can still provably guarantee consistency by
instead minimizing an adversarial balance objective. We further develop tractable
algorithms for optimizing this objective and demonstrate empirically the power of
our method when confounders are latent.

1 Introduction

Personalized intervention policies are of increasing importance in education [32], healthcare [3],
and public policy [26]. In many of these domains exploration is costly or otherwise prohibitive,
and so it is crucial to evaluate new policies using existing observational data. Usually, this relies
on an assumption of no unobserved confounding (aka unconfoundedness or ignorability): that
conditioned on observables, interventions are independent of idiosyncrasies that affect outcomes,
so that counterfactuals can be reliably and correctly predicted. In particular, this enables the use
of inverse propensity score (IPS) estimators of policy value [4, 21, 29] that eschew the need to
actually fit outcome prediction models and doubly robust estimators that work even if such models
are misspecified [8].

In practice, however, it may be unlikely that we observe confounders exactly. Nonetheless, if we
observe very many features they may serve as good proxies for the true confounders, which can enable
an alternative route to identification [22, 30]. In particular, noisy observations of true confounders can
serve as valid proxies. For example, if intelligence is latent but affects both selection and outcome, we
can instead use many noisy observations of intelligence such as school grades, IQ test, etc. Similarly,
many medical measurements taken together can serve as proxies for underlying healthfulness.

In this paper, we study the problem of policy evaluation from observational data where we observe
proxies instead of true confounders and we develop new weighting estimators based on optimizing
balance in the latent confounders. Unlike the unconfounded setting where IPS weights ensure balance
regardless of outcome model, we show that in this new setting there cannot exist any single of weights
that ensure such unbiasedness regardless of outcome model. Instead, we develop an adversarial
objective that bounds the conditional mean square error (CMSE) of any weighted estimator and,
by appealing to game theoretic and empirical process arguments, we show that this objective can
actually be driven to zero by a single set of weights. We therefore propose a novel policy evaluation
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method that minimizes this objective, thus provably ensuring consistent estimation in the face of
latent confounders. We develop tractable algorithms for this optimization problem. Finally, we
provide empirical evidence demonstrating our method’s consistent evaluation compared to standard
evaluation methods and its improved performance compared to using fitted latent outcome models.

2 Problem

2.1 Setting and Assumptions

We consider a contextual decision making setting with m possible treatments (aka actions or interven-
tions). Each unit is associated with a set of potential outcomes Y p1q, . . . , Y pmq P R corresponding
to the reward/loss for each treatment, an observed treatment T P t1, . . . ,mu, an observed outcome
Y “ Y pT q, true but latent confounders Z P Z Ñ Rp, and observed covariates X P X Ñ Rq. Our
data consists of iid observations Xi, Ti, Yi of X,T, Y . Both the latent confounders and potential out-
comes of unassigned treatments are unobserved. Note that Yi “ YipTiq encapsulates the assumptions
of consistency between observed and potential outcomes and non-interference between units.

A policy is a rule for assigning the probability of each treatment option given the observed covariates
X . Given a policy ⇡, we use the notation ⇡tpxq to indicate the probability of assigning treatment t
when observed covariates are x. We define the value of a policy, ⌧⇡, as the expected outcome that
would be obtained from following the policy in the population. Formally:
Definition 1 (Policy Value). ⌧⇡ “ Er∞m

t“1 ⇡tpXqY ptqs.
X Z

YT

Figure 1: DAG repre-
sentation of problem.

We encapsulate the assumption that Z are sufficient for unconfoundedness
and that X is a proxy for Z in the following assumption. Figure 1 provides
a representation of this setting using a causal DAG [36]. Note importantly
that we do not assume ignorability given X .
Assumption 1 (Z are true confounders). For every t P t1, . . . ,mu, Y ptq is
independant of pX,T q, given Z.

We next define the average mean outcome given Z and its conditional expectations given observables:
µtpzq “ ErY ptq | Z “ zs,

⌫tpx, t1q “ ErµtpZq | X “ x, T “ t
1s “ ErY ptq | X “ x, T “ t

1s,
⇢tpxq “ ErµtpZq | X “ xs “ ErY ptq | X “ xs.

We further define the propensity function and its conditional expectation given observables:
etpzq “ P pT “ t | Z “ zq ,
⌘tpxq “ P pT “ t | X “ xq “ E retpZq | X “ xs .

Finally, we denote by 'pz;x, tq the conditional density of Z given X “ x, T “ t. This density
represents the latent variable model underlying the observables. For example, this can be a Gaussian
mixture model, a PCA-type model as in [22], or a deep variational autoencoder as in [30]. Because
we focus on how one might use such a latent model rather than the estimation of this model, we just
assume we have some approximate oracle '̂ for calculating its values, such that '̂ “ '` Opp1{?

nq
in L

1. (Note that for fair comparison, in experiments in Section 5, we similarly let the outcome
regression methods use this oracle.)

We further make the following regularity assumptions:
Assumption 2 (Weak Overlap). E

“
e

´2
t pZq

‰
† 8

Remark 1. Given Assumption 2 it trivially follows that for every t P t1, . . . ,mu, x P X , z P Z that
etpzq ° 0 and ⌘tpxq ° 0.
Assumption 3 (Bounded Variance). The conditional variance of our potential outcomes given X,T

is bounded: VrY ptq | X,T s § �
2.

2.2 The Policy Evaluation Task

The problem we consider is to estimate the policy value ⌧⇡ given a policy ⇡ and data X1:n, T1:n, Y1:n.
One standard approach to this is the direct method [38], which given an estimate ⇢̂t of ⇢t predicts the
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policy value as

⌧̂
⇡
⇢̂ “ 1

n

nÿ

i“1

mÿ

t“1

⇡tpXiq⇢̂tpXiq. (1)

However this method is known to be biased and doesn’t generalize well [4]. Furthermore given
Assumption 1 ⇢̂ is not straightforward to estimate, since the mean value of Y observed in our logged
data given X “ x and T “ t is ⌫tpx, tq not ⇢tpxq, so fitting ⇢̂ would require controlling for the
effects of the unobserved Z.

An alternative to this is to come up with weights W1:n “ fW pX1:n, T1:nq according to some function
fW of the observed covariates and treatments, in order to re-weight the outcomes to look more like
those that would be observed under ⇡. Using these weights we can define the weighted estimator

⌧̂
⇡
W “ 1

n

nÿ

i“1

WiYi. (2)

This weighted estimator has the advantage that it does not require modeling the outcome distributions.
Furthermore we could combine the weights W1:n with an outcome model ⇢̂t to calculate the doubly
robust estimator [8], which is defined as

⌧̂
⇡
W,⇢̂ “ 1

n

nÿ

i“1

mÿ

t“1

⇡tpXiq⇢̂tpXiq ` 1

n

nÿ

i“1

WipYi ´ ⇢̂TipXiqq. (3)

The doubly robust estimator is known to be consistent when either the weighted or direct estimator is
consistent and can attain local efficiency [19, 39].

Various approaches exist for coming up with weights for either the weighted or doubly robust estima-
tors, which we discuss below. However none of these methods are applicable given Assumption 1,
and so we develop a theory for weighting using proxy variables in Section 3.

2.3 Related Work

One of the most standard approaches for policy evaluation is using the weighted or doubly robust
estimator defined in Eqs. (2) and (3), using inverse propensity score (IPS) weights. These are given
by Wi “ ⇡TipXiq{eTipZiq [5], where et are known or estimated logging probabilities. Since these
weights can be extreme, both normalization [2, 31, 41] and clipping [10, 12, 40] are often employed.
In addition some other approaches include recursive partitioning [14]. None of these methods are
applicable to our setting however, since we do not know the true confounders Z1:n.

An alternative to approaches based on fixed formulae for computing the importance weights is to
compute weights that optimize an imbalance objective function [1, 15, 17, 18]. For policy evaluation,
Kallus [16] propose to choose weights that adversarially minimize the conditional mean squared
error of policy evaluation in the worst case of possible mean outcome functions in some reproducing
kernel Hilbert space (RKHS), by solving a linearly constraint quadratic program (LCQP). Our work
follows a very similar style to this, however instead of using the true confounders we only assume
access to proxies, and we prove our theory for more general families of functions. This, we show,
provides a unique imperative – separate from stability and variance control – to obtain importance
weights via optimal balancing: while no single unbiased importance weights exist when we have
proxies instead of true confounders, optimal balancing obtains weights in a model-robust manner that
ensures consistency.

Finally there has been a long history of work in causal inference using proxies for true confounders
[11, 42]. As in our problem setup, much of this work is based on the model of using an identified latent
variable model for the proxies [9, 27, 34, 37, 43]. Some recent work on this problem involves using
techniques such as matrix completion [22] or variational autoencoders [30] to infer confounders from
the proxies. Additionally, there is recent work on robustness to unidentifiability due to unobserved
confounding [20, 23, 24]; in contrast we focus on a setting where, while confounders are unobserved,
effects are identifiable via proxies. In particular, there is a variety of work that studies sufficient
conditions for the identifiability of latent confounder models [6, 34, 37]. Our work is complementary
to this line of research in that we assume access to an accurate latent confounder model, but do not
study how to estimate such models. Furthermore our work is novel in combining proxy variable
models with optimal balancing and applying it to finding importance weights for policy evaluation.
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3 Weight-Balancing Objectives

3.1 Infeasibility of IPS-Style Unbiased Weighting

If we had unconfoundedness given X (i.e., Y ptq KK T | X), the IPS weights ⇡T pXq{⌘T pXq are
immediately gotten as the solution to making every term in the weighted sum Eq. (2) unbiased:

ErW pX,T q�TitY ptqs “ Er⇡tpXqY ptqs. (4)

Notably the IPS weights do not depend on the outcome function. However, without unconfoundedness
given X and given only Assumptions 1 to 3, this approach fails.
Theorem 1. If W px, tq satisfies Eq. (4) then for any t P t1, . . . ,mu

W pX, tq “ ⇡tpXq
∞

t1P⌧ ⌘t1 pXq⌫tpX, t
1q ` ⌦tpXq

⌘tpXq⌫tpX, tq , (5)

for some ⌦tpxq such that E⌦tpXq “ 0@t.

The proof of Theorem 1 is given in Appendix A.1.

Note that if we had unconfoundedness given X then ⌫tpx, t1q “ ⌫tpx, tq “ ⇢tpxq so that choosing
⌦tpXq “ 0 would recover the standard IPS weights. However, in our setting we generally have
⌫tpx, t1q ‰ ⌫tpx, tq, and so Theorem 1 tells us that we cannot do unbiased IPS-style weighted
evaluation without knowing the mean outcome functions ⌫tpx, t1q. In particular, there exists no single
weight function that is simultaneously unbiased for all outcome functions.

On the other hand, Theorem 1 tells us that there do exist some weights that give unbiased and
consistent policy evaluation via Eq. (2) or Eq. (3): we just may not be able to calculate them. The
existence of such weights motivates our subsequent approach, which seeks weights that mimic these
weights for a wide class of possible outcome functions.

3.2 Adversarial Error Objective

Over all weights that are functions of X1:n, T1:n, the optimal choice of weights for estimating ⌧⇡ via
Eq. (2) would minimize the (unknown) conditional MSE (CMSE):

Erp⌧̂⇡W ´ ⌧
⇡q2 | X1:n, T1:ns. (6)

In particular, the weights in Eq. (5) achieve Opp1{nq control on this CMSE for many outcome
functions, as long as the denominator is well behaved, which can be seen by applying concentration
inequalities to Eq. (6). However, as discussed above the outcome function is unknown and these
weights are therefore practically infeasible. Our aim is to find weights with similar near-optimal
behavior but that do not depend on the particular unknown outcome function. To do this, we will find
an upper bound for Eq. (6) that we can actually compute.

Let fit “ Wi�Tit ´ ⇡tpXiq and

J
˚pW,µq “

˜
1

n

nÿ

i“1

mÿ

t“1

fit⌫tpXi, Tiq
¸2

` 2�2

n2
}W }22,

where we embedded the dependence on µ inside ⌫tpx, t1q “ E rµtpZq | X “ x, T “ t
1s.

Theorem 2. Erp⌧̂⇡W ´ ⌧
⇡q2 | X1:n, T1:ns § 2J˚pW,µq ` Opp1{nq.

Note that J˚ above is defined in terms of the true posterior ', which is infeasible to compute in
practice. Therefore we define J by replacing the conditional measure of Z given X and T used
to compute ⌫t in J

˚ with the approximate measure given by '̂. Note that in the remainder of this
section and corresponding proofs we make slight abuse of notation by defining J in terms of ⌫t; these
⌫t terms should be interpreted below as defined in terms of the approximate conditional measure
given by '̂. Then applying the fact that '̂ “ '` Opp1{?

nq in L
1, we obtain the following corollary

which trivially follows from Theorem 2 and Slutsky’s theorem:

Corallary 1. Erp⌧̂⇡W ´ ⌧
⇡q2 | X1:n, T1:ns § 2JpW,µq ` Opp1{?

nq
a
JpW,µq ` Opp1{nq.
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Therefore, if we find weights that obtain Opp1{nq control on JpW,µq, we can ensure that we also
have Opp1{nq control on Erp⌧̂⇡W ´ ⌧

⇡q2 | X1:n, T1:ns. Combined with the following result, which
follows from [13, Lemma 31], this would give root-n consistent estimation.
Lemma 1. If Erp⌧̂⇡W ´ ⌧

⇡q2 | X1:n, T1:ns “ Opp1{nq then ⌧̂⇡W “ ⌧
⇡ ` Opp1{?

nq.

It remains to find weights that control JpW,µq. The key obstacle for this is that µ is unknown. Instead,
we show how we can obtain weights that control JpW,µq over a whole class of given functions µ.

Suppose we are given a set F of functions mapping Z to Rm, where each µ P F corresponds to a
vector of mean outcome functions µ “ pµ1, . . . , µmq. Then, motivated by Theorem 2 and Lemma 1,
we define our adversarial optimization problem as

W
˚ “ argmin

WPW
sup
µPF

JpW,µq. (7)

One question the reader might ask at this point is why not solve the above optimization problem
by ignoring the hidden confounders and directly balancing the conditional mean outcome functions
⌫tpx, t1q? The problem is that this would be impossible to do over any kind of generic flexible
function space, since we have no data corresponding to terms in the form ⌫tpx, t1q when t ‰ t

1, so
this is akin to an overlap problem. Conversely, if we were to ignore the conditioning on t and balance
against functions of the form ⌫tpxq “ ⌫tpx, tq this would be inadequate, as we couldn’t hope for such
a space to cover the true µ since we don’t assume ignorability given Z.

In light of these limitations, we can view what we are doing in optimizing Eq. (7), using an identified
model '̂pz;x, tq, as implicitly balancing some controlled space of functions ⌫tpx, t1q that do not have
this overlap issue between different t values. The following lemma makes this explicit, as it implies
that that the terms ⌫tpx, t1q are all mutually bounded by each other for fixed x and t:
Lemma 2. Assuming }µt}8 § b, under Assumption 2, for all x P X , and t, t

1
, t

2 P t1, . . . ,mu we
have

|⌫tpx, t2q| § ⌘t1 pxq
⌘t2 pxq

b
8bE

“
e

´2
t pZq | X “ x, T “ t1‰ |⌫tpx, t1q|.

3.3 Consistency of Adversarially Optimal Estimator

Now we analyze the consistency of our weighted estimator based on Eq. (7). Given Lemma 1, all we
need to justify to prove consistency is that µ P F and that infW supµPF JpW,µq P Opp 1

n q. Define Ft

as the space of all functions for treatment level t allowed by F . That is Ft “ tµt : Dpµ1
1, . . . , µ

1
mq P

F with µ
1
t “ µtu. We will use the following assumptions about F to prove control of J :

Assumption 4 (Normed). For each t P t1, . . . ,mu there exists a norm }¨}t on spanpFtq, and there ex-
ists a norm } ¨ } on spanpFq which is defined given some Rm norm as }µ} “ }p}µ1}1, . . . , }µm}mq}.
Assumption 5 (Absolutely Star Shaped). For every µ P F and |�| § 1, we have �µ P F .
Assumption 6 (Convex Compact). F is convex and compact
Assumption 7 (Square Integrable). For each t P t1, . . . ,mu the space Ft is a subset of L2pZq, and
its norm dominates the L

2 norm (i.e., infµtPFt }µt}{}µt}L2 ° 0).
Assumption 8 (Nondegeneracy). Define Bp�q “ tµ P spanpFq : }µ} § �u. Then we have
Bp�q Ñ F for some � ° 0.
Assumption 9 (Boundedness). supµPF }µ}8 † 8.

Definition 2 (Rademacher Complexity). RnpFq “ ErsupfPF
1
n

∞n
i“1 ✏ifpZiqs, where ✏i are iid

Rademacher random variables.
Assumption 10 (Complexity). For each t P t1 . . . ,mu we have RnpFtq “ op1q.

These assumptions are satisfied for many commonly-used families of functions, such as RKHSs and
families of neural networks. We shall prove this claim for RKHSs in Section 4.

In order to justify that we can control J , first we will show that these assumptions allow us to reverse
the order of minimization and maximization in our optimization problem. This means we can reduce
the problem to finding weights to control any particular µ rather than controlling all of F .
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Lemma 3. Let BpW,µq “ 1
n

∞n
i“1

∞m
t“1 fit⌫tpXi, Tiq. Then under Assumptions 5 to 7 for every

M ° 0 we have the bound

min
W

sup
µPF

JpW,µq § sup
µPF

min
}W }2§M

BpW,µq2 ` �
2

n2
M

2
.

Next, we note that Lemma 3 means that we can choose weights given µ to set BpW,µq “ 0, and
therefore we have our desired control as long as we can justify that these weights have controlled
euclidean norm. Using this strategy and optimizing for the minimum norm weights of this kind, we
are able to prove the following:
Lemma 4. Under Assumptions 4 to 10 we have infW supµPF JpW,µq “ Opp1{nq.

This is the key lemma in proving our main consistency theorem:
Theorem 3. Under Assumptions 4 to 10 and assuming that µ P F we have ⌧̂⇡W˚ “ ⌧

⇡ ` Opp1{?
nq.

This theorem follows immediately from our previous results, since µ P F and Lemma 4 imply that
JpW˚

, µq “ Opp1{nq. This combined with Corollary 1 imply that Erp⌧̂⇡W˚ ´ ⌧
⇡q2 | X1:n, T1:ns “

Opp1{nq, which in turn combined with Lemma 1 gives us our result. Furthermore, given some
additional assumptions, we can take advantage of L8 universal approximation of µ to obtain the
following corollary which does not depend on the assumption that µ P F :
Assumption 11 (Continuous Mean Outcome). For each t, µt is a continuous function of Z.
Assumption 12 (Universal Approximation). Fm is a universally approximating sequence of function
classes. That is, for every vector of continuous functions µ and every m, there exists f P Fm such
that }ft ´ µt}8 § ✏m for each t, and ✏m Ñ 0.
Corallary 2. Under Assumptions 4 to 12, and using a universally approximating sequence of function
classes Fn to compute W

˚, we have ⌧̂⇡W˚ “ ⌧
⇡ ` Opp1q.

This corollary follows from observing that by the universally approximating property of Fn, we can
obtain an Opp1{?

nq ` ✏ error bound for every ✏ ° 0 (where the Op term’s constants can depend
on ✏). Thus Opp1q error bound follows trivially. Note that the universal approximation property of
Assumption 12 is obtainable for many classes of functions such as Gaussian RKHSs [35].

4 Algorithms for Optimal Kernel Balancing

4.1 Kernel Function Class

We now provide an algorithm for optimal balancing when our function class consists of vectors of
RKHS functions. Formally, given a kernel K and corresponding RKHS norm } ¨ }K , we define the
space F

K as follows:

Definition 3 (Kernel Class). F
K “ tµ : ||µ|| § 1u, where ||pµ1, . . . , µmq|| “

a∞m
t“1 ||µt||2K .

Theorem 4. Assuming K is a Mercer kernel [44] and is bounded, FK satisfies Assumptions 4 to 10.

We can remark that the commonly used Gaussian kernel is both Mercer and bounded, so it satisfies the
conditions of Theorem 4. Given this, and assuming that FK covers the real mean outcome function
µ, we can apply Theorem 3 to see that solving Eq. (7) using F

K gives consistent evaluation.

Note that the F
K having maximum norm 1 is without loss of generality, because if we wanted the

maximum norm to instead be m we could replace the standard deviation � by �{m in our objective
function, resulting in an equivalent re-scaled optimization problem. To make this explicit, we will
replace � in the objective with �, where it is assumed that � is a freely chosen hyperparameter to
allow for varying regularization. For ease of notation below we define � to be the diagonal matrix
such that �ii “ � for every i.

4.2 Kernel Balancing Algorithm

In order to optimize Eq. (7) over a class of kernel functions as defined by Definition 3, we can
observe that the definition of JpW,µq looks very similar to the adversarial objective of Kallus [16],
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except that we have ⌫tpXi, Tiq terms instead of µtpXiq terms. This motivates the idea that, given
our identified posterior model '̂pz;x, tq, we may be able to employ a similar quadratic programming
(QP)-based approach. The following theorem makes this explicit, by defining a QP objective for W
that we can approximate by sampling from '̂:
Theorem 5. Define Qij “ ErKpZi, Z

1
jqs, Gij “ 1

n2 pQij�TiTj ` �ijq, and ai “
2
n2

∞n
j“1 Qij⇡Tj pXiq, where for each i Zi and Z

1
i are iid shadow variables, and the expectation is

defined condional on the observed data using the approximate posterior '̂. Then for some c that is
constant in W we have the identity

sup
µPFK

JpW,µq “ W
T
GW ´ a

T
W ` c.

Given this our balancing algorithm is natural and straightforward, and is summarized by Algorithm 1.
Note that we provide an optional weight space constraint W in this algorithm, since standard weighted
estimator approaches for policy evaluation regularize by forcing constraints such as W P n�n. Under
this kind of constraint our unconstrained QP becomes a LCQP. However our theory does not support
this constraint, and we find that it hurts performance in practice, especially when � is large, so we do
not use this constraint in our main experiments.

Algorithm 1 Optimal Kernel Balancing

Input: Data pX1:n, T1:nq, policy ⇡, kernel function K, posterior density '̂, regularization matrix
�, number samples B, optional weight space W (defaults to Rn if not provided)

Output: Optimal balancing weights W1:n

1: for i P t1, . . . , nu do
2: Sample Data. Draw B data points Zb

i from the posterior '̂p¨ ;Xi, Tiq
3: end for
4: Estimate Q. Calculate Qij “ 1

B2

∞B
b“1

∞B
c“1 KpZb

i , Z
c
i q

5: Calculate QP Inputs. Calculate Gij “ Qij�TiTj ` �ij , and ai “ 2
∞n

j“1 Qij⇡Tj pXiq,
6: Solve Quadratic Program. Calculate W “ argminWPW W

T
GW ´ a

T
W

5 Experiments

5.1 Experimental Setup

We now present a brief set of experiments to explore our methodology. The aim of these experiments
is to be a proof of concept of our theory. We seek to show that given an identified posterior model '̂
policy as discussed in Section 2.1, evaluation using the weights defined by Eq. (7) can give unbiased
policy evaluation even in the face of sufficiently strong confounding where standard benchmark
approaches that rely on ignorability given X fail. We experiment with the following generalized
linear model-style scenario:

Z „ N p0, 1q X „ N p↵T
Z ` ↵0,�Xq PT “ �

T
Z ` �0

T „ softmaxpPT q W ptq „ N p⇣ptqTZ ` ⇣0ptq,�Y q Y ptq “ gpW ptqq

In our experiments Z is 1-dimensional, X is 10-dimensional, and we have two possible treatment
levels (m “ 2). We experiment with a parametric policy ⇡ and multiple link functions g as follows:

⇡tpXq “ expp T
t Xq

expp T
1 Xq ` expp T

2 Xq
step: gpwq “ 3 tw•0u ´6 exp: gpwq “ exppwq cubic: gpwq “ w

3 linear: gpwq “ w

We experiment with the following methods in this evaluation:

1. OptZ Our method, using � “ � Identitypnq for � P t0.001, 0.2, 1.0, 5.0u.
2. IPS IPS weights based on X using estimated ⌘̂t.
3. OptX The optimal weighting method of Kallus [16] with same values of � as our method.
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4. DirX Direct method by fitting ⇢̂tpxq incorrectly assuming ignorability given X .

5. DirZ Direct method by first fitting µ̂t using posterior samples from '̂, then using the
estimate ⇢̂tpxq “ p1{Dq ∞D

i“1 µ̂tpz1
iq, where z

1
i are sampled from '̂p¨;x, tq.

6. D:W Doubly robust estimation using direct estimator D and weighted estimator W.

Finally we detail all choices for scenario parameters in Appendix B.1, and provide implementation
details of our methods in Appendix B.2.2

5.2 Results

We display results for our experiments using the step link function in Tables 1 and 2. For each
of n P t200, 500, 1000, 2000u we estimate the RMSE of policy evaluation using each method, as
well as doubly robust evaluation using our best performing weights, by averaging over 64 runs. In
addition, in Tables 3 and 4 we display the estimated bias from the evaluations. It is clear that the
naive methods that assume ignorability given X all hit a performance ceiling, where bias converges
to some non-zero value. In particular for IPS we separately ran it on up to one million data points
and found that the bias converged to 0.418 ˘ 0.001. On the other hand, for our method it appears
like we have consistency. This is particularly evident when we look at Table 3, as bias seems to be
approximately converging to zero with vanishing variance. We can also observe that doubly robust
estimation using either direct method does not appear to improve performance.

It is noteworthy that the DirZ benchmark method fails horribly, despite being a correctly specified
regression estimate. From our experience we observed that it is difficult to train the µt functions
accurately if there is a high amount of overlap in the '̂p¨;x, tq posteriors for fixed t. Therefore we
postulate that in highly confounded settings this benchmark is inherently difficult to train using a
finite number of samples from '̂p¨;x, tq, and the result seems to collapse to degenerate solutions.

Next we note that we observed similar trends to this using our other link functions, and other doubly
robust estimators. We present more extensive tables of results in Appendix C.1. In addition we
present some results there on the negative impact on our method’s performance using the constraint
W P n�n, as mentioned in Section 4.2.

Finally we provide some more detailed experiments investigating the impact of changing the dimen-
sionality of Z and the level of confounding by replacing Z with X in Appendix C.2 and Appendix C.3
respectively. In brief the results of these experiments are as expected: increasing the dimensionality
of Z gives the same overall pattern of results but with slower convergence, and increasing the level of
confounding strongly decreases the performance of benchmark methods, while our method appears
to maintain its unbiasedness.

6 Conclusion

We presented theory for how to do optimal balancing for policy evaluation when we only have
proxies for the true confounders, given an already identified model for the confounders, treatment,
and proxies, but not for the outcomes. We provided an adversarial objective for selecting optimal
weights given some class of mean outcome functions to be balanced, and proved that under mild
conditions these optimal weights result in consistent policy evaluation. In addition, we presented
a tractable algorithm for minimizing this objective when our function class is an RKHS, and we
conducted a series of experiments to demonstrate that our method can achieve consistent evaluation
even under sufficient levels of confounding where standard approaches fail.

For future work we note that the adversarial objective and theory presented here is fairly general,
and could be used to develop new algorithms for balancing different function classes such as neural
networks. Indeed neural networks with weight decay easily satisfy the conditions of both Theorem 3
and Corollary 2, and thus it might be possible to learn balancing weights by optimizing a GAN-like
objective. An alternative direction would be to study how best to apply this methodology when an
identified model is not already given.

2Code available online at https://github.com/CausalML/LatentConfounderBalancing.
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n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0 DirX:OptZ0.001 DirZ:OptZ0.001

200 .39 ˘ .07 .24 ˘ .02 .36 ˘ .02 .81 ˘ .02 .57 ˘ .06 .41 ˘ .07
500 .19 ˘ .02 .18 ˘ .02 .23 ˘ .02 .49 ˘ .02 .55 ˘ .03 .20 ˘ .02
1000 .11 ˘ .01 .11 ˘ .01 .13 ˘ .01 .27 ˘ .01 .49 ˘ .02 .11 ˘ .01
2000 .08 ˘ .01 .08 ˘ .01 .09 ˘ .01 .17 ˘ .01 .48 ˘ .01 .08 ˘ .01

Table 1: Convergence of RMSE for for policy evaluation using our weights.

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .47 ˘ .03 2.0 ˘ .03 2.1 ˘ .03 2.3 ˘ .02 2.5 ˘ .02 .52 ˘ .02 2.6 ˘ .02
500 .48 ˘ .03 2.0 ˘ .02 2.1 ˘ .02 2.3 ˘ .02 2.6 ˘ .02 .48 ˘ .02 2.6 ˘ .01
1000 .39 ˘ .02 2.0 ˘ .01 2.1 ˘ .01 2.3 ˘ .01 2.5 ˘ .01 .48 ˘ .02 2.6 ˘ .01
2000 .40 ˘ .01 2.0 ˘ .01 2.1 ˘ .01 2.3 ˘ .01 2.5 ˘ .01 .45 ˘ .02 2.6 ˘ .01

Table 2: Convergence of RMSE for benchmark methods.

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0 DirX:OptZ0.001 DirZ:OptZ0.001

200 .03 ˘ .39 .11 ˘ .21 .29 ˘ .21 .78 ˘ .18 .43 ˘ .38 .05 ˘ .40
500 .09 ˘ .17 .10 ˘ .15 .17 ˘ .16 .47 ˘ .15 .51 ˘ .19 .10 ˘ .18
1000 .02 ˘ .11 .05 ˘ .09 .08 ˘ .09 .25 ˘ .09 .47 ˘ .13 .04 ˘ .11
2000 .03 ˘ .07 .05 ˘ .06 .07 ˘ .07 .16 ˘ .07 .47 ˘ .09 .03 ˘ .07

Table 3: Convergence of bias for policy evaluation using our weights.

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0 DirX DirZ
200 .40 ˘ .25 1.9 ˘ .21 2.1 ˘ .20 2.3 ˘ .19 2.5 ˘ .18 .49 ˘ .18 2.6 ˘ .14
500 .43 ˘ .21 2.0 ˘ .16 2.1 ˘ .15 2.3 ˘ .14 2.6 ˘ .13 .45 ˘ .16 2.6 ˘ .12
1000 .37 ˘ .12 2.0 ˘ .10 2.1 ˘ .09 2.3 ˘ .09 2.5 ˘ .08 .46 ˘ .15 2.6 ˘ .11
2000 .39 ˘ .10 2.0 ˘ .08 2.1 ˘ .07 2.3 ˘ .07 2.5 ˘ .07 .42 ˘ .17 2.6 ˘ .11

Table 4: Convergence of bias for benchmark methods.
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