
Supplemental Material: Transfer Anomaly Detection
by Inferring Latent Domain Representations

Atsutoshi Kumagai
NTT Software Innovation Center

NTT Secure Platform Laboratories
atsutoshi.kumagai.ht@hco.ntt.co.jp

Tomoharu Iwata
NTT Communication Science Laboratories

tomoharu.iwata.gy@hco.ntt.co.jp

Yasuhiro Fujiwara
NTT Communication Science Laboratories

yasuhiro.fujiwara.kh@hco.ntt.co.jp

1 Datasets Details

The synthetic dataset consists of eight double circles (domains) around the (0, 0). Each double
circle has outer and inner circles that consist of normal and anomalous instances, respectively. Each
instance of the outer circle was generated from the point on the unit circumference by adding the
Gaussian noise with the (0.1)2 variance. Each instance of the inner circle was generated from the
point on the circumference of a 0.05 radius by adding the Gaussian noise with the (0.1)2 variance.
After this generation, the center of each double circle was arranged at 45-degree intervals on the
unit circumference to create eight different double circles. We used the ‘7’-th domain as the target
domain and the rest as the source domains. In each source domain used for training, we used 1,050
(50 anomalous and 1,000 normal) instances for training, and 210 (10 anomalous and 200 normal)
instances for validation.

The MNIST-r1 is derived from the MNIST, which was introduced by Ghifary et al. [3]. Each domain
is created by rotating the images in multiples of 15 degrees: 0,15,30,45,60, and 75. Each domain
has 1,000 images, which are represented by 256-dimensional vectors, of 10 classes (digits). We
selected the ‘4’ digit as the anomalous class and the rest as the normal class. The average anomaly
rate N+

d /(N
+
d +N−

d ) is 0.1. In each source domain used for training, we randomly selected 80% of
instances for training and 20% for validation.

The Anuran Calls2 is a real-world dataset collected from frog croaking sounds, which is used in the
multi-task anomaly detection study [4]. We picked five major species of AdenomeraAndre (Ade),
Ameeregatrivittata (Ame), HylaMinuta (Hyl), HypsiboasCinerascens (HCi), and HypsiboasCordobae
(Hco), as domains, in which the first ten MFCCs features were used the same as Idé et al. [4]. We
used the species of Rhinellagranulosa as the anomalous instances the same as Idé et al [4] and
assigned 13 anomalous instances to each domain. Each domain has different anomalies. As a result,
each domain has 686 instances on average, and the average anomaly rate N+

d /(N
+
d +N−

d ) is 0.024.
In each anomalous/normal class of source domain used for training, we randomly selected 70% of
instances for training and 30% for validation.

The Landmine3 is a real-world dataset which is well-used in multi-task learning studies [10]. It
consists of 29 domains, and each instance is a nine-dimensional vector extracted from radar image
that captures a region of landmine fields. Each domain has 511 instances on average, and the average
anomaly rate N+

d /(N
+
d + N−

d ) is 0.062. Among the 29 domains, domains 1–15 correspond to

1https://github.com/ghif/mtae
2https://archive.ics.uci.edu/ml/datasets/Anuran+Calls+%28MFCCs%29
3http://people.ee.duke.edu/ lcarin/LandmineData.zip

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



regions that are relatively highly foliated while the other domains 16–29 correspond to regions that
are bare earth or desert. We used ten domains that consist of the first five (1-5) and the last five
(25-29) domains. We normalized each feature vector by `2-normalization. In each source domain
used for training, we randomly selected 70% of instances for training and 30% for validation.

The IoT4 contains real network traffic data, which are gathered from nine IoT devices infected by
malware. The IoT has normal and malicious traffic instances. Each instance is a 115-dimensional
vector and was normalized by `2-normalization. We used the devices that had normal data. We
treated each device as a domain and randomly choose instances from the first 5,000 traffic data from
each normal/attack file of each device file. As a result, for each source domain for training, we used
1,000 (50 anomalous and 950 normal) instances for training, 100 (5 anomalous and 95 normal) for
validation.

For MNIST-r, Anuran Calls, and Landmine, we randomly selected 60% of normal instances for
training, 10% of normal instances for validation, and 30% of normal instances and the remaining
anomalous instances for testing from each target domain. For the synthetic dataset, we used 1,000
normal instances for training, 200 normal instances for validation, and 1,000 normal and 50 anomalous
instances for testing from the target domain. For IoT, we randomly selected 950 normal instances
for training, 50 normal instances for validation, and 1,900 normal and 1,900 anomalous instances
for testing from each target domain. Note that validation normal instances in the target domain were
used for the AE.

2 Experimental Setup Details

2.1 Proposed Method Variants

We evaluated two variants of the proposed method: ProT and ProS. ProT uses normal instances in the
target domain as well as anomalous and normal instances in the source domains for training. ProS
does not use normal instances in the target domain for training. Instead, ProS infers the anomaly
score function of the target domain using the set of training normal instances in the domain. For
the AE networks of both methods, the encoder was a feed-forward neural network with one-hidden
layer with 100 hidden nodes and rectified linear unit (ReLU) activations. Similarly, the decoder
was a feed-forward neural network with one-hidden layer with 100 hidden nodes and the ReLU
activation. For MNIST-r, sigmoid function was used for the output of the decoder. For Anuran Calls,
Landmine and IoT, the tanh function was used for the output of the decoder. The output sizes of
the encoder were 1, 20, 5, 5, and 20 for Synthetic, MNIST-r, Anuran Calls, Landmine, and IoT,
respectively. For µφ(X−

d ) and ln σ2
φ(X

−
d ) of qφ(zd|X−

d ), we used feed-forward neural networks
with one-hidden layers. Specifically, the shared single-layer neural network with 100 nodes and
ReLU activations was used as η, and different single-layer neural networks were used as ρ. We took
average of η(x−

dn) before applying ρ to reduce the data size difference of each domain. That is, we

used τ(X−
d ) = ρ

(
1
N−

d

∑N−
d

n=1 η(x
−
dn)
)

as neural networks for inferring the latent domain vectors,

µφ(X
−
d ) and ln σ2

φ(X
−
d ). Note that these neural networks are also included in the definition of the

deep sets [11]. The latent domain vector zd was concatenated with the input xd for the anomaly score
functions.

2.2 Comparison Methods

We compared the proposed method with eight methods: NN, NNAUC, AEAUC, AE, OSVM, CCSA,
TOSVM, and OTL.

AE is the autoencoder [8]. We used the same network architecture as the proposed method.
Specifically, we used the two feed-forward neural networks with one-hidden layers with 100 hidden
nodes and ReLU activations as the encoder and the decoder, respectively. The output function for the
decoder and the number of the encoder outputs were the same as that of the proposed method.

OSVM is the one-class support vector machine [9], which is an extension of the support vector
machine to one-class classification. We used the RBF kernel as a kernel function of OSVM.

4https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT

2



NN is the feed-forward neural network classifier. We used a feed-forward neural network with
one-hidden layer with 100 hidden nodes, ReLU activations, and a softmax output function.

NNAUC is the feed-forward neural network classifier for class-imbalanced data. NNAUC uses the
differentiable AUC loss instead of the cross entropy loss in NN to deal with the class-imbalance.

AEAUC is the autoencoder based classifier for class-imbalanced data [5]. The loss function of
AEAUC consists of two terms: the anomaly score of normal instances and the differentiable AUC
regularizer. We used the reconstruction error as the score function for a fair comparison. AEAUC is
obtained from the proposed method on the source domains by omitting the latent domain vectors.

CCSA is a recently proposed method for semi-supervised domain adaptation [7]. CCSA learns
domain-invariant features by introducing the contrastive semantic alignment loss, which brings
instances with the same labels closer and separates instances with different labels in the hidden space.
CCSA can be used when the target domain has only the normal class [7]. CCSA used NN as the base
neural network.

TOSVM is the transfer one-class support vector machine [1]. This method belongs to the two-step
approach for transfer anomaly detection. TOSVM first learn features using anomalous and normal
instances in source domains, and then perform OSVM using the normal instances in the target domain
with the pre-trained features. We used the hidden layer of NN as the pre-trained features.

OTL is the one-class data transfer learning [2]. OTL predicts anomalous class distributions from
normal class distributions in the target domains using target normal instances and anomalous and
normal source instances. OTL learns classifiers for the target domain with the estimated distribution.

2.3 Hyperparameters

We selected hyperparameters using average validation AUC on the source domains for all methods
except for AE. AE used the validation reconstruction error on the target domains. For CCSA, the regu-
larization parameter for contrastive semantic alignment loss γ was chosen from {0.01, 0.1, 0.25, 0.5}.
For OSVM and TOSVM, the kernel parameters was selected from {10−3, 10−2, . . . , 103}. For OTL,
the number of the weak classifiers was chosen from {10, 50, 100, 500, 1000}. For the proposed
method and AEAUC, the regularization parameter λ was chosen from {0, 0.1, 1, 10, . . . , 104}. The
dimensionality of the latent domain vector K of the proposed method was chosen from {1, 5, 10, 20},
and the sample size of the reparametrization trick L was set to one for training and ten for testing.
We set the weight parameters αd as one for all domains used for training, and the regularization
parameter for the latent domain vectors β = 1 for all datasets. We used the Adam optimizer [6] with
a learning rate of 0.001. The maximum numbers of epochs were 200, 500, 1000, 300, and 200 for
Synthetic, MNIST-r, Anuran Calls, Landmine, and IoT, respectively. We evaluated the test AUC when
the method obtained the best validation AUC after 15 epochs to avoid over-fitting. We conducted
experiments on ten different datasets for each target domain and reported the mean test AUC.

3 Additional Experimental Results

3.1 Results for Another Synthetic Dataset

To obtain further insights, we investigated how the proposed method works using another two-
dimensional synthetic dataset, called Synthetic2.

Figure 1a represents Synthetic2, which consists of five aligned double circles (domains). Each
double circle (domain) has outer and inner circles that consist of normal and anomalous instances,
respectively. The d+1-th domain was created by shifting d-th domain 2.5 in the x-axis direction. We
used the ‘4’-th domain as the target domain and the rest as the source domains. In each source domain
used for training, we used 1,050 (50 anomalous and 1,000 normal) instances for training, and 210 (10
anomalous and 200 normal) for validation. For the target domain, we used 1,000 normal instances for
training, 200 normal instances for validation, and 1,050 (50 anomalous and 1,000 normal) instances
for testing. The validation normal instances in the target domain were used for the AE.

3



(a) Synthetic2 (b) Latent Domain Vectors (c) Anomaly Score

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

A
U
C

ProT

ProS

AEAUC

(d) AUC

Figure 1: (a) Synthetic2 consists of five aligned double circles (domains). Anomalous and normal
source instances are represented by orange and blue points, respectively. Anomalous and normal
target instances are represented by red and green points, respectively. (b) Posteriors of the latent
domain vectors estimated by ProS. Each point denotes the mean of each posterior. (c) Heatmap of
anomaly scores on the target domain obtained by ProS. Darker color indicates higher anomaly score.
(d) Average and standard error of AUCs when λ was changed.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 1 10 100 1000 10000

A
U
C

ProT

ProS

AEAUC

(a) MNIST-r

β

.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 1 10 100 1000 10000

A
U
C

λ

(b) Anuran Calls

0.5

0.55

0.6

0.65

0.7

0.75

0 0.1 1 10 100 1000 10000

A
U
C

λ

(c) Landmine

0.75

0.8

0.85

0.9

0.95

1

0 0.1 1 10 100 1000 10000

A
U
C

λ

(d) IoT

Figure 2: Average AUCs over the target domains of each dataset when λ was changed. The x-axis
denotes λ and the y-axis denotes AUC.

Figure 1b represents an example of the posterior of the latent domain vectors estimated by ProS with
K = 2. We found that the estimated latent domain vectors were consistently aligned in order. This
indicates that the proposed method was able to capture the property of domains (parallel translation)
as the latent domain vectors. Figure 1c shows an example of the heatmap of anomaly scores on the
target domain obtained by ProS. We found that ProS was able to give high (low) anomaly scores to
the anomalous (normal) region on the target domain. Figure 1d shows average and standard deviation
of AUCs on the target domain when changing the value of λ. We confirmed that ProT and ProS
obviously outperformed the others when the values of λ were relatively large.

3.2 Dependency of the Regularization Weight for the AUC loss λ

Figure 2 showed the average and standard error of AUCs over all target domains of each real-world
dataset when changing the regularization weight λ of the AUC term. We used AEAUC as a baseline
since it is obtained from ProS by omitting the latent domain vectors. The best λ for ProT and ProS
differed across datasets. We found that ProT constantly outperformed the others for all datasets except
Landmine when λ was changed. For Landmine, ProT showed better results than the others when λ
was not small. Similarly, ProS constantly outperformed AEAUC for MNIST-r and IoT and showed
better results when λ was relatively large for Landmine. For Anuran Calls, ProS deteriorated the
performance compared with AEAUC except for λ = 1. However, even Anuran Calls, we confirmed
that ProS was able to select λ = 1 safely by using validation data on the source domains.

3.3 Dependency of the Dimension of the Latent Domain Vector K

Figure 3 showed the average and standard error of AUCs over all target domains of each real-world
dataset when changing the dimension of the latent domain vectors K. For MNIST-r and Anuran
Calls, ProT constantly performed better than ProS for all K. For Landmine and IoT, ProT and ProS
performed almost the same for all K. For MNIST-r and Landmine, ProT and ProS performed better
as the value of K increased. In contrast, ProT and ProS showed the best AUCs when K = 1 for
Anuran Calls. Although the optimal K depends on datasets, we were able to obtain it using validation
data on the source domains.

4



0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

1 5 10 20

A
U
C

K

ProT

ProS

(a) MNIST-r

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 20

A
U
C

K

(b) Anuran Calls

0 20

0.74

0.68

0.69

0.7

0.71

0.72

0.73

0.74

1 5 10 20

A
U
C

K

(c) Landmine
0.988

0.979

0.98

0.981

0.982

0.983

0.984

0.985

0.986

0.987

0.988

1 5 10 20

A
U
C

K

(d) IoT

Figure 3: Average AUCs over the target domains of each dataset when K was changed. The x-axis
denotes K and the y-axis denotes AUC.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 0.01 0.1 1 10 100

A
U
C

ProT

ProS

(a) MNIST-r

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 0.01 0.1 1 10 100

A
U
C

β

(b) Anuran Calls

0.7

0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

0 0.01 0.1 1 10 100

A
U
C

β

(c) Landmine

0.978

0.979

0.98

0.981

0.982

0.983

0.984

0.985

0.986

0.987

0.988

0 0.01 0.1 1 10 100

A
U
C

β

(d) IoT

Figure 4: Average AUCs over the target domains of each dataset when β was changed. The x-axis
denotes β and the y-axis denotes AUC.

3.4 Dependency of the Regularization Weight for the Latent Domain Vectors β

Figure 4 showed the average and standard error of AUCs over all target domains of each real-world
dataset when changing the value of the regularization weight for the latent domain vectors β. For
MNIST-r and Anuran Calls, ProT constantly performed better than ProS for all β. For Landmine
and IoT, ProT and ProS performed almost the same for all β. Although the best β for ProT and ProS
differed across datasets, both methods were relatively robust against the values of β.

References
[1] J. T. Andrews, T. Tanay, E. J. Morton, and L. D. Griffin. Transfer representation-learning for anomaly

detection. In Anomaly Detection Workshop in ICML, 2016.

[2] J. Chen and X. Liu. Transfer learning with one-class data. Pattern Recognition Letters, 37:32–40, 2014.

[3] M. Ghifary, W. Bastiaan Kleijn, M. Zhang, and D. Balduzzi. Domain generalization for object recognition
with multi-task autoencoders. In ICCV, 2015.

[4] T. Idé, D. T. Phan, and J. Kalagnanam. Multi-task multi-modal models for collective anomaly detection. In
ICDM, 2017.

[5] T. Iwata and Y. Yamanaka. Supervised anomaly detection based on deep autoregressive density estimators.
arXiv, 2019.

[6] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. arXiv, 2014.

[7] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto. Unified deep supervised domain adaptation and
generalization. In ICCV, 2017.

[8] M. Sakurada and T. Yairi. Anomaly detection using autoencoders with nonlinear dimensionality reduction.
In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, page 4.
ACM, 2014.

[9] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a
high-dimensional distribution. Neural computation, 13(7):1443–1471, 2001.

[10] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with dirichlet
process priors. Journal of Machine Learning Research, 8(Jan):35–63, 2007.

[11] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets. In
NeurIPS, 2017.

5


	Datasets Details
	Experimental Setup Details
	Proposed Method Variants
	Comparison Methods
	Hyperparameters

	Additional Experimental Results
	Results for Another Synthetic Dataset
	Dependency of the Regularization Weight for the AUC loss 
	Dependency of the Dimension of the Latent Domain Vector K
	Dependency of the Regularization Weight for the Latent Domain Vectors 


