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1 Additional Results on Spectral Clustering

In the main paper, we visualize the n× n affinity matrices of K = 2 clusters with G = SO(3) for
spectral application, in the presence of edge noise. Here we provide another visualization of the
affinity measures for the results in Table 1 of the main paper, with K = 10 and G = SO(3). In Fig. 1,
we show the affinity matrices using single frequency (k = 1) VDM, power spectrum, and bispectrum.
The cutoff parameter mk and maximum frequency kmax are set as mk = K = 10 and kmax = 10. We
observe similar patterns for the 2-cluster example (see Fig. 4a in the main paper). For noisy examples
with p = 0.20 and 0.16, the cluster structure is more easily identified through our proposed affinities
compared to scalar edge weights used in the traditional spectral clustering [1], and frequency k = 1
VDM [2]. This again demonstrates the efficacy of our approach in estimating the cluster structures in
the presence of large level of noise on edges.

2 Performance under Different Choices of Parameters

In this section, we include more numerical results to show the performance of our methods under
different parameter settings and provide theoretical justification under a probabilistic model.

2.1 Nearest Neighbor Identification on Base Manifold

First, we analyze the spectral properties of the matrix Wk based on the random rewiring model [3].
Starting from the underlying true graph, we perturb the graph in the following way: with probability
1 − p, we remove the clean edge (i, j) ∈ E and create a link between i and some random vertex,
drawn uniformly at random from the remaining vertices that are not connected to i. If the link
between i and j is a rewired random link, then the associated group element gij is distributed over G
according to the Haar measure. The corresponding matrix Wk is a random matrix under this model.
If the distribution of g is the Haar measure on G, we have Eρk(g) = 0dk×dk

for k 6= 0. Therefore, we
get EWk = pW clean

k for k 6= 0, where W clean
k is the matrix with all links and group elements inferred

correctly (p = 1). Thus the matrix Wk can be decomposed as,

Wk = pW clean
k +Rk, (1)

where Rk is a Hermitian random matrix with random blocks. The upper triangular part of the matrix
contains independent random blocks with finite moments (the elements of Rk are all bounded).
Thus we use p to describe the signal-to-noise ratio of the observed graph. According to the matrix
perturbation theory, the top eigenvectors of Wk approximates the top eigenvectors of W clean

k as long
as the 2-norms of Rk is not too large.

We numerically test the sensitivity of our methods to the choice of parameters in application to the
nearest neighbor identification on base manifold. The set up of the experiments is similar to Section
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Figure 1: Similarity measure for K = 10 clusters with SO(3) group transformation. The underlying clean
graph is corrupted according to the random rewiring model. We show the plot of the affinity matrix by different
approaches. The clusters are of equal size and form 10 diagonal blocks in the clean affinity matrix (see the scalar
column at p = 1). Here we do not include the affinity of each node with itself and the diagonal entries are 0.

5 in the main paper. We simulate n = 104 data points uniformly sampled fromM = SO(3) and
build the clean neighborhood graph on B = S2. The random rewiring perturbation is then applied to
the clean graph and the nearest neighbors are identified based on the proposed affinities, with two
varying parameters: cutoff parameter mk and maximum frequency kmax. We evaluate by computing
the proportion (in percentage) of all identified nearest neighbor pairs (i, j)’s whose 〈vi, vj〉 > 0.95.
The results are shown in Tab. 1 and Tab. 2. We have the following observation.

Cutoff Parameter mk: Ideally, at each frequency k, the truncation cutoff mk, that is, selecting the
top mkdk eigenvectors of matrix Ãk = D

−1/2
k WkD

−1/2
k , should be set to include top eigenvectors

that are not largely perturbed by noise and have nontrivial correlation with the eigenvectors of the
clean matrix Ãclean

k . This value can vary between different frequencies. However, in practice, we set
mk to be a moderate constant for all k’s. In all the trials, we set kmax = 10. In Tab. 1, we observe
that the accuracy is first improved when mk increases since more information is included. However,
the accuracy degrades or gets saturated when mk is larger than a certain p dependent value due to the
effects of noise. This implies a moderate mk is needed for a trade-off between the useful information
and the impact of noise.

Maximum Frequency kmax: We test kmax from 2 to 100 and show the results in Tab. 2. We fix
mk = 20, when varying kmax. In the extremely noisy cases, such as p = 0.09 and 0.10, the results
improve when kmax increases within the range of the values we test. When p > 0.1, the accuracy first
increases but then degrades or gets saturated after a certain p dependent value of kmax. This indicates
that the optimal choice of kmax depends on the noise level. Under this particular noise perturbation
model, the higher the noise level is, the larger the kmax is needed. Also, since for all three proposed
affinities the computation complexity greatly increase with a growing kmax, it should be chosen that
our computation budget can afford.
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Table 1: The accuracy of nearest neighbor identification on base manifold with varying cutoff mk for M =
SO(3), G = SO(2) and B = S2. The maximum frequency is kmax = 10 in all the experiments. We compute the
proportion (in percentage) of identified neighbor pairs (i, j)’s whose 〈vi, vj〉 > 0.95, at different signal-to-noise
ratios p’s. For each method we highlight its best result in boldface.

p method Truncation cutoff mk
2 5 10 20 50 100

0.08

VDM 2.63 3.02 3.48 3.67 4.14 4.59
Power spec. (ours) 2.91 4.71 5.93 7.05 9.16 12.30

Opt (ours) 2.94 5.66 7.26 8.95 12.20 16.43
Bispec. (ours) 2.88 5.53 7.24 8.70 11.91 16.23

0.09

VDM 2.82 4.60 8.05 9.46 9.25 9.13
Power spec. (ours) 4.37 14.96 33.44 38.85 38.21 37.77

Opt (ours) 5.64 22.65 45.70 51.59 50.93 49.77
Bispec. (ours) 5.62 22.17 44.84 50.44 49.57 48.68

0.10

VDM 3.48 8.65 17.96 27.56 24.58 20.87
Power spec. (ours) 8.29 38.22 68.09 83.04 78.92 73.56

Opt (ours) 15.03 52.25 77.38 87.72 86.25 82.66
Bispec. (ours) 14.95 51.19 76.57 87.33 85.56 81.90

0.5

VDM 57.04 98.48 99.99 100 100 100
Power spec. (ours) 99.05 100 100 100 100 100

Opt (ours) 99.60 99.99 100 100 100 100
Bispec. (ours) 99.60 100 100 100 100 100

Table 2: The accuracy of nearest neighbor identification on base manifold with varying maximum frequency
kmax for M = SO(3), G = SO(2) and B = S2. The cutoff parameter is mk = 20 in all the experiments. We
compute the proportion (in percentage) of identified neighbor pairs (i, j)’s whose 〈vi, vj〉 > 0.95, at different
signal-to-noise ratios p’s. For each method we highlight its best result in boldface. Note that VDM only uses
single frequency kmax = 1.

p method Maximum frequency kmax
2 5 10 20 50

0.08

VDM — 3.67 —
Power spec. (ours) 4.12 5.23 7.05 9.52 11.45

Opt (ours) 4.06 5.39 8.95 16.59 29.17
Bispec. (ours) 4.03 5.26 8.70 15.73 26.55

0.09

VDM — 9.46 —
Power spec. (ours) 13.47 25.49 38.85 52.02 55.40

Opt (ours) 13.28 29.74 51.59 71.21 76.30
Bispec. (ours) 13.03 28.85 50.44 70.18 77.26

0.10

VDM — 27.56 —
Power spec. (ours) 43.66 69.29 83.04 90.15 90.56

Opt (ours) 43.42 73.69 87.72 93.01 92.07
Bispec. (ours) 42.15 72.55 87.33 93.05 93.20

0.5

VDM — 100 —
Power spec. (ours) 100 100 100 100 100

Opt (ours) 100 100 100 100 100
Bispec. (ours) 100 100 100 100 100

2.2 Spectral Clustering

We check the performance of our methods in spectral clustering under different parameter settings.
From the clean cluster graph, we apply the random rewiring perturbation as described above.

Cutoff Parameter mk: In the clean case, the number of non-zero eigenvalues of the weight
matrices Wk is dkK for K clusters. Therefore, each Wk has a low-rank structure and so is the
normalized Hermitian matrix Ãk = D

−1/2
k WkD

−1/2
k . Then a truncation at top dkK eigenvectors

(i.e. mk = K) is enough for clustering. In the noise case, following the model in (1), we are still able
to use the top dkK eigenvectors for clustering as long as the signal-to-noise ratio p is not too small.
Using less eigenvectors as mk < K will lead to loss of information and using mk > K will include
spurious information from noise. We conduct the experiments with K = 10 clusters, where each
cluster contains 50 points, and G = SO(2). We set p = 0.16, 0.2, 0.25 and kmax = 10. We vary the
cutoff mk from 2 to 100 and display the Rand indices of the clustering results from different methods
in Tab. 3. Tab. 3 shows that all of our proposed affinity measures achieve their best performance
when mk ≈ K and the performance degrades when mk is too small or too large. We conclude that
setting mk = K should be a good choice for spectral clustering.
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Table 3: Spectral clustering accuracy with varying cutoff mk: Rand index of spectral clustering results with
K = 10 clusters, G = SO(2) and kmax = 10. Each cluster has 50 points. We run 10 trials for all results. For
each method we highlight its best result in boldface.

p method Truncation mk
2 5 10 20 50 100

0.16

Scalar 0.828 ± 0.032 0.847 ± 0.020 0.865 ± 0.017 0.853 ± 0.014 0.834 ± 0.010 0.823 ± 0.012
VDM 0.825 ± 0.024 0.854 ± 0.021 0.879 ± 0.020 0.916 ± 0.015 0.925 ± 0.016 0.912 ± 0.019

Power spec. (ours) 0.849 ± 0.022 0.938 ± 0.018 0.979 ± 0.008 0.961 ± 0.010 0.955 ± 0.012 0.973 ± 0.007
Opt (ours) 0.878 ± 0.025 0.957 ± 0.016 0.966 ± 0.010 0.983 ± 0.007 0.960 ± 0.009 0.975 ± 0.008

Bispec. (ours) 0.869 ± 0.019 0.948 ± 0.013 0.975 ± 0.009 0.955 ± 0.014 0.957 ± 0.008 0.927 ± 0.016

0.20

Scalar 0.838 ± 0.032 0.881 ± 0.024 0.958 ± 0.017 0.941 ± 0.010 0.845 ± 0.028 0.830 ± 0.031
VDM 0.823 ± 0.027 0.903 ± 0.015 0.959 ± 0.011 0.958 ± 0.011 0.962 ± 0.008 0.982 ± 0.005

Power spec. (ours) 0.894 ± 0.019 0.985 ± 0.007 0.997 ± 0.002 0.996 ± 0.002 0.996 ± 0.002 0.995 ± 0.003
Opt (ours) 0.905 ± 0.020 0.993 ± 0.003 0.998 ± 0.001 0.996 ± 0.001 0.997 ± 0.001 0.974 ± 0.008

Bispec. (ours) 0.895 ± 0.021 0.986 ± 0.07 0.997 ± 0.002 0.996 ± 0.002 0.964 ± 0.017 0.917 ± 0.024

0.25

Scalar 0.850 ± 0.016 0.913 ± 0.018 0.985 ± 0.008 0.986 ± 0.009 0.864 ± 0.032 0.830 ± 0.022
VDM 0.854 ± 0.012 0.950 ± 0.011 0.992 ± 0.008 0.993 ± 0.005 0.993 ± 0.004 0.993 ± 0.005

Power spec. (ours) 0.948 ± 0.021 0.998 ± 0.001 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Opt (ours) 0.982 ± 0.008 0.999 ± 0.001 1 ± 0 1 ± 0 1 ± 0 1 ± 0

Bispec. (ours) 0.952 ± 0.013 0.998 ± 0.001 1 ± 0 1 ± 0 1 ± 0 1 ± 0

Maximum Frequency kmax: We run another experiment with K = 10 clusters, G = SO(2), and
mk = 10, with p = 0.16, 0.2, 0.25. Each cluster contains 50 points. We vary kmax from 2 to 100 and
show the Rand indices of clustering results in Tab. 4. We observe that the accuracy gets improved
with increasing kmax for all three proposed affinities. However, using a larger kmax increases the
computational complexities for all three affinity measures and the dimension of the irrep might
increase with k (e.g. the dimension of Wigner D-matrix at index k is 2k + 1), which is undesirable.
There is a trade-off between the statistical accuracy and computational complexity. Therefore, we use
a moderate kmax = 10 in the main paper.

Table 4: Spectral clustering accuracy with varying maximum frequency kmax: Rand index of spectral clustering
results with K = 10 clusters, G = SO(2) and mk = 10, each cluster has 50 points. We run 10 trials for all
results. For each method we highlight the best result in boldface. Note that the scalar input and VDM are only
for kmax = 0 and kmax = 1, respectively.

p method Maximum frequency kmax
2 5 10 20 50 100

0.16

Scalar — 0.865 ± 0 —
VDM — 0.879 ± 0 —

Power spec. (ours) 0.920 ± 0.019 0.958 ± 0.009 0.979 ± 0.004 0.981 ± 0.004 0.965 ± 0.007 0.985± 0.003
Opt (ours) 0.920 ± 0.014 0.951 ± 0.009 0.957 ± 0.008 0.988 ± 0.003 0.968 ± 0.005 0.993 ± 0.002

Bispec. (ours) 0.898 ± 0.025 0.960 ± 0.010 0.975 ± 0.008 0.976 ± 0.007 0.989 ± 0.005 0.990 ± 0.004

0.20

Scalar — 0.958 ± 0 —
VDM — 0.959 ± 0 —

Power spec. (ours) 0.991 ± 0.003 0.974 ± 0.008 0.997 ± 0.001 0.997 ± 0.001 0.999 ± 0.001 1 ± 0
Opt (ours) 0.970 ± 0.012 0.996 ± 0.002 0.998 ± 0.001 0.998 ± 0.001 0.999 ± 0.001 0.999 ± 0.001

Bispec. (ours) 0.989 ± 0.005 0.996 ± 0.002 0.997 ± 0.001 0.998 ± 0.001 1 ± 0 1 ± 0

0.25

Scalar — 0.985 ± 0 —
VDM — 0.992 ± 0 —

Power spec. (ours) 0.997 ± 0.001 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Opt (ours) 0.998 ± 0.001 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

Bispec. (ours) 0.996 ± 0.002 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
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