
A Appendix

A.1 Extended considerations on WWL definiteness

We will now discuss the positive definite nature of our WWL kernel.

In general, whether distances obtained from optimal transport problems can be used to create positive
definite kernels remains an open research question. Several attempts to draw general conclusions on
the definiteness of the Wasserstein distance were unsuccessful, but insightful results on particular
cases were obtained along the way. First, we collect some of these contributions and use them to
prove that our WWL kernel for categorical embeddings is positive definite. Next, we elaborate further
on the continuous embeddings case, for which we provide conjectures on practical conditions to
obtain a positive definite kernel.

Before proceeding, let us reiterate some useful notions.
Definition 6. [36] A symmetric function k : X ⇥ X ! R is called a positive definite (pd) kernel if it
satisfies the condition

nX

i,j=1

cicjKij � 0, with Kij = k(xi, xj), (11)

for every ci 2 R, n 2 N and xi 2 X .

The matrix of kernel values K with entries Kij is called the Gram matrix of k with respect to
x1, . . . , xn. A conditional positive definite (cpd) kernel is a function that satisfies Equation 11 for all
ci 2 R with

Pn
i=1 ci = 0. By analogy, a conditional negative definite (cnd) kernel is a function that

satisfies
Pn

i,j=1 cicjKij  0 for all ci 2 R with
Pn

i=1 ci = 0.

For Euclidean spaces, obtaining kernels from distance functions is a well-studied topic.
Proposition 1. [17] Let d(x, x0

) be a symmetric, non-negative distance function with d(x, x) = 0.
If d is isometric to an L2-norm, then

kndd (x, x0
) = �d(x, x0

)

� , � 2 [0, 2] (12)
is a valid cpd kernel.

However, the Wasserstein distance in its general form is not isometric to an L2-norm, as the metric
space it induces strongly depends on the chosen ground distance [12]. Recently, Feragen et al. [11]
argued that many types of data, including probability distributions, do not always reside in Euclidean
spaces. Therefore, they define the family of exponential kernels relying on a non-Euclidean distance
d as

k(x, x0
) = e��d(x,x0)q for �, q > 0, (13)

and, based on earlier considerations from Berg et al. [4], show that, under certain conditions, the
Laplacian kernel (q = 1 in Equation 13) is positive definite.
Proposition 2. [11] The geodesic Laplacian kernel is positive definite for all � > 0 if and only if the
geodesic distance d is conditional negative definite.

Once again, considerations on the negative definiteness of Wasserstein distance functions cannot be
made on the general level. Certain ground distances, however, guarantee the negative definiteness of
the resulting Wasserstein distance. In particular, the Wasserstein distance with the discrete metric
(i.e., ⇢ in Equation 8) as the ground distance was proved to be conditional negative definite [16].

We will now leverage these results to prove that the Wasserstein distance equipped with the Hamming
ground distance is conditional negative definite; therefore, it yields positive definite kernels for the
categorical WL embeddings.

A.1.1 The case of categorical embeddings

When generating node embeddings using the Weisfeiler–Lehman labelling scheme with a shared
dictionary across all the graphs, the solutions to the optimal transport problem are also shared across
iterations. We denote the Weisfeiler–Lehman embedding scheme as defined in Definition 4 as fH

WL,
and let DfWL

W be the corresponding GWD on a set of graphs G with categorical labels. Let dHam(v, v
0
)

of Equation 8 be the ground distance of DfWL

W . Then, the following useful results hold.
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Lemma 1. If a transportation plan � with transport matrix P is optimal in the sense of Definition 1
for distances dHam between embeddings obtained with fH

WL, then it is also optimal for the discrete
distances ddisc between the H-th iteration values obtained with the Weisfeiler–Lehman procedure.

Proof. See Appendix A.2.
Lemma 2. If a transportation plan � with transport matrix P is optimal in the sense of Definition 1
for distances dHam between embeddings obtained with fH

WL, then it is also optimal for distances
dHam between embeddings obtained with fH�1

WL .

Proof. See Appendix A.3.

Therefore, we postulate that the Wasserstein distance between categorical WL node embeddings is a
conditional negative definite function.

Theorem 2. DfWL

W (·, ·) is a conditional negative definite function.

Proof. See Appendix A.4.

Proof of Theorem 1. Theorem 2 in light of Proposition 2 implies that the WWL kernel of Definition 5
is positive definite for all � > 0. ⇤
We will now consider the case of the definiteness of kernels in the continuous setting.

A.1.2 The case of continuous embeddings

On one hand, in the categorical case, we proved the positive definiteness of our kernel. On the
other hand, the continuous case is considerably harder to tackle. We conjecture that, under certain
conditions, the same might hold for continuous features. Although we do not have a formal proof
yet, in what follows, we discuss arguments to support this conjecture, which seems to agree with our
empirical findings.3

The curvature of the metric space induced by the Wasserstein metric for a given ground distance
plays an important role. First, we need to define Alexandrov spaces.
Definition 7 (Alexandrov space). Given a metric space and a real number k, the space is called an
Alexandrov space if its sectional curvature is � k.

Roughly speaking, the curvature indicates to what extent a geodesic triangle will be deformed in the
space. The case of k = 0 is special as no distortion is happening here—hence, spaces that satisfy this
property are called flat. The concept of Alexandrov spaces is required in the following proposition,
taken from a theorem by Feragen et al. [11], which shows the relationship between a kernel and its
underlying metric space.
Proposition 3. The geodesic Gaussian kernel (i.e., q = 2 in Equation 13) is positive definite for all
� > 0 if and only if the underlying metric space (X, d) is flat in the sense of Alexandrov, i.e., if any
geodesic triangle in X can be isometrically embedded in a Euclidean space.

However, it is unlikely that the space induced by the Wasserstein distance is locally flat, as not even
the geodesics (i.e., a generalisation of the shortest path to arbitrary metric spaces) between graph
embeddings are necessarily unique, as we subsequently show. Hence, we use the geodesic Laplacian
kernel instead of the Gaussian one because it poses less strict requirements on the induced space,
as stated in Proposition 2. Specifically, the metric used in the kernel function needs to be cnd. We
cannot directly prove this yet, but we can prove that the converse is not true. To this end, we first
notice that the metric space induced by the GWD, which we refer to as X , does not have a curvature
that is bounded from above.
Definition 8. A metric space (X, d) is said to be CAT(k) if its curvature is bounded by some real
number k > 0 from above. This can also be seen as a “relaxed” definition, or generalisation, of a
Riemannian manifold.
Theorem 3. X is not in CAT(k) for any k > 0, meaning that its curvature is not bounded by any
k > 0 from above.

3We observe that for all considered data sets, after standardisation of the input features before the embedding
scheme, GWD matrices are conditional negative definite.
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Proof. This follows from a similar argument presented by Turner et al. [42]. We briefly sketch the
argument. Let G and G0 be two graphs. Assume that X is a CAT(k) space for some k > 0. Then, it
follows [7, Proposition 2.11, p. 23] that if DfWL

W (G,G0
) < ⇡2/k, there is a unique geodesic between

them. However, we can construct a family of graph embeddings for which this is not the case. To
this end, let ✏ > 0 and fWL(G) and fWL(G

0
) be two graph embeddings with node embeddings

a1 = (0, 0), a2 = (✏, ✏) as well as b1 = (0, ✏) and b2 = (✏, 0), respectively. Because we use the
Euclidean distance as a ground distance, there will be two optimal transport plans: the first maps
a1 to b1 and a2 to b2, whereas the second maps a1 to b2 and a2 to b1. Hence, we have found two
geodesics that connect G and G0. Because we may choose ✏ to be arbitrarily small, the space cannot
be CAT(k) for k > 0.

Although this does not provide an upper bound on the curvature, we have the following conjecture.
Conjecture 1. X is an Alexandrov space with curvature bounded from below by zero.

For a proof idea, we refer to Turner et al. [42]; the main argument involves characterizing the distance
between triples of graph embeddings. This conjecture is helpful insofar as being a nonnegatively
curved Alexandrov space is a necessary prerequisite for X to be a Hilbert space [39]. In turn, Feragen
et al. [11] shows that cnd metrics and Hilbert spaces are intricately linked. Thus, we have some hope
in obtaining a cnd metric, even though we currently lack a proof. Our empirical results, however,
indicate that it is possible to turn the GWD into a cnd metric with proper normalisation. Intuitively,
for high-dimensional input spaces, standardisation of input features changes the curvature of the
induced space by making it locally (almost) flat.

To support this argumentation, we refer to an existing way to ensure positive definiteness. One can
use an alternative to the classical Wasserstein distance denoted as the sliced Wasserstein [32]. The
idea is to project high-dimensional distributions into one-dimensional spaces, hereby calculating the
Wasserstein distance as a combination of one-dimensional representations. Kolouri et al. [23] showed
that each of the one-dimensional Wasserstein distances is conditional negative definite. The kernel on
high-dimensional representations is then defined as a combination of the one-dimensional positive
definite counterparts.

A.2 Proof of Lemma 1

Proof. We recall the matrix notation introduced in Equation 2 of the main paper, where M is the cost
or distance matrix, P 2 � is a transport matrix (or joint probability), and h·, ·i is the Frobenius dot
product. Because we give equal weight (i.e., equal probability mass) to each of the vectors in each
set, � contains all nonnegative n⇥ n0 matrices P with

nX

i=1

pij =
1

n0 ,

n0X

j=1

pij =
1

n
, pij � 0 8i, j

For notation simplicity, let us denote by Dh
Ham the Hamming matrix DHam(f

h
WL(G), fh

WL(G
0
)),

where the ij-th entry is given by the Hamming distance between the embedding of the i-th node of
graph G and the embedding of the j-th node of graph G0 at iteration h. Similarly, we define Dh

disc to
be the discrete metric distance matrix, where the ij-th entry is given by the discrete distance between
feature h of node embedding i of graph G and feature h of node embedding j of graph G0. It is easy
to see that [Dh

Ham]ij 2 [0, 1] and [Dh
disc]ij 2 {0, 1} and, by definition,

DH
Ham =

1

H

HX

h=0

Dh
disc.

Moreover, because of the WL procedure, two labels that are different at iteration h will also be
different at iteration h+ 1. Hence, the following identity holds:

⇥
Dh

Ham

⇤
ij

⇥
Dh

disc

⇤
ij
,

which implies that [Dh
Ham]ij = 0 () [Dh

disc]ij = 0. An optimal transportation plan Ph for fh
WL

embeddings satisfies ⌦
Ph, Dh

Ham

↵

⌦
P,Dh

Ham

↵
8P 2 �.
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Assuming that Ph is not optimal for Dh
d , we can define P ⇤ such that

⌦
P ⇤, Dh

disc

↵
<
⌦
Ph, Dh

disc

↵
.

Because the entries of Dh
disc are either 0 or 1, we can define the set of indices tuples H =�

(i, j) | [Dh
disc]ij = 1

 
and rewrite the inequality as

X

i,j2H
p⇤ij <

X

i,j2H
phij .

Considering the constraints on the entries of P ⇤ and Ph, namely
P

i,j p
⇤
ij =

P
i,j p

h
ij = 1, this

implies that, by rearranging the transport map, there is more mass that could be transported at 0 cost.
In our formalism, X

i,j /2H
p⇤ij >

X

i,j /2H
phij .

However, as stated before, entries of Dh
d that are 0 are also 0 in Dh

Ham. Therefore, a better transport
plan P ⇤ would also be optimal for Dh

Ham:
⌦
P ⇤, Dh

Ham

↵
<
⌦
Ph, Dh

Ham

↵
,

which contradicts the optimality assumption above. Hence, Ph is also optimal for DH
disc.

A.3 Proof of Lemma 2

Proof. Intuitively, the transportation plan at iteration h is a “refinement” of the transportation plan at
iteration h� 1, where only a subset of the optimal transportation plans remains optimal for the new
cost matrix Dh

H . Using the same notation as for the Proof in Appendix A.2, and considering the WL
procedure, two labels that are different at iteration h will also be different at iteration h+ 1. Hence,
the following identities hold:

⇥
Dh

Ham

⇤
ij

⇥
Dh+1

Ham

⇤
ij

⇥
Dh

disc

⇤
ij

⇥
Dh+1

disc

⇤
ij

⇥
Dh

Ham

⇤
ij

⇥
Dh

disc

⇤
ij
.

An optimal transportation plan Ph for fh
WL(G) embeddings satisfies

⌦
Ph, Dh

Ham

↵

⌦
P,Dh

Ham

↵
8P 2 �,

which can also be written as
⌦
Ph, Dh

Ham

↵
=

1

h

�
(h� 1) ·

⌦
Ph, Dh�1

Ham

↵
+

⌦
Ph, Dh

disc

↵�
.

The values of Dh
Ham increase in a step-wise fashion for increasing h, and their ordering remains

constant, except for entries that were 0 at iteration h� 1 and became 1
h at iteration h. Hence, because

our metric distance matrices satisfy monotonicity conditions and because Ph is optimal for Dh
disc

according to Lemma 1, it follows that
⌦
Ph, Dh�1

Ham

↵

⌦
P,Dh�1

Ham

↵
8P 2 �.

Therefore, Ph is also optimal for fh�1
WL (G) embeddings.

A.4 Proof of Theorem 2

Proof. Using the same notation as for the Proof in Appendix A.2 and the formulation in Equation 2,
we can write

DfWL

W (G,G0
) = min

PH2�

⌦
PH , DH

Ham

↵

= min

PH2�

1

H

HX

h=0

hPH , Dh
disci.
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Let P ⇤ be an optimal solution for iteration H . Then, from Lemmas 1 and 2, it is also an optimal
solution for DH

disc and for all h = 0, . . . , H � 1. We can rewrite the equation as a sum of optimal
transport problems:

DfWL

W (G,G0
) =

1

H

HX

h=0

min

P⇤2�
hP ⇤, Dh

disci. (14)

This corresponds to a sum of 1-dimensional optimal transport problems relying on the discrete
metric, which were shown to be conditional negative functions [16]. Therefore, the final sum is also
conditional negative definite.

A.5 Data sets and additional results

We report additional information on the data sets used in our experimental comparison in Supple-
mentary Table A.1. Our data sets belong to multiple chemoinformatics domains, including small
molecules (MUTAG, PTC-MR, NCI1), macromolecules (ENZYMES, PROTEINS, D&D) and
chemical compounds (BZR, COX2). We further consider a movie collaboration data set (IMDB,
see [47] for a description) and two synthetic data sets SYNTHIE and SYNTHETIC-NEW, created
by Morris et al. [27] and Feragen et al. [10], respectively. The BZR-MD and COX2-MD data sets
do not have node attributes but contain the atomic distance between each connected atom as an edge
weight. We do not consider distances between non-connected nodes [24] and we equip the node with
one-hot-encoding categorical attributes representing the atom type, i.e., what is originally intended
as a categorical node label. On IMDB-B, IMDB-BINARY was used with the node degree as a
(semi-)continuous feature for each node [47]. For all the other data sets, we use the off-the-shelf
version provided by Kersting et al. [20].

Results on synthetic data sets are provided in Table A.2. We decided not to include those in the main
manuscript because of the severely unstable and unreliable results we obtained. In particular, for both
data sets, there is a high variation among the different methods. Furthermore, we experimentally
observed that even a slight modification of the node features (e.g., normalisation or scaling of the
embedding scheme) resulted in a large change of performances (up to 15%). Additionally, it has
been previously reported [10, 27] that on SYNTHETIC-NEW, a WL with degree treated as categorical
node label outperforms the competitors, suggesting that the continuous attributes are indeed not
informative. Therefore, we excluded these data sets from the main manuscript, as we concluded that
they could not fairly assess the quality of our methods.

A.6 Details on hyperparameter selection

The following ranges are used for the hyperparameter selection: the parameter of the SVM C =

{10�3, . . . , 103} (for continuous attributes) and C = {10�4, . . . , 105} (for categorical attributes);
the WL number of iterations h = {0, . . . , 7}; the � parameter of the WWL � = {10�4, . . . , 101}.
For RBF-WL and VH-C, we use default � parameter for the Gaussian kernel, i.e., � = 1/m, where
m is the size of node attributes. For the GH kernel, we also fix the � parameter to 1/m. For HGK,
we fix the number of iterations to 20 for each data set, except for SYNTHETICnew where we use

Table A.1: Description of the experimental data sets

DATA SET CLASS RATIO NODE LABELS NODE ATTRIBUTES EDGE WEIGHTS # GRAPHS CLASSES

MUTAG 63/125 X - - 188 2

NCI1 2053/2057 X - - 4110 2

PTC-MR 152/192 X - - 344 2

D&D 487/691 X - - 1178 2

ENZYMES 100 PER CLASS X X - 600 6

PROTEINS 450/663 X X - 1113 2

BZR 86/319 X X - 405 2

COX2 102/365 X X - 467 2

SYNTHIE 100 PER CLASS - X - 400 4

IMDB-BINARY 500/500 - (X) - 1000 2

SYNTHETIC-NEW 150/150 - X - 300 2

BZR-MD 149/157 X - X 306 2

COX2-MD 148/155 X - X 303 2
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Table A.2: Classification accuracies on synthetic graphs with continuous node attributes. Comparison
of hash graph kernel (HGK-WL, HGK-SP), GraphHopper kernel (GH), and our method (WWL).

METHOD SYNTHIE SYNTHETIC-NEW

VH-C 27.51± 0.00 60.60± 1.60
RBF-WL 94.43± 0.55 86.37± 1.37

HGK-WL 81.94± 0.40 95.96± 0.25⇤

HGK-SP 85.82± 0.28 80.43± 0.71

GH 83.73± 0.81 88.83± 1.42

WWL 96.04± 0.48⇤ 86.77± 0.98

100 (these setups were suggested by the respective authors [10, 27]. Furthermore, because HGK is
a randomised method, we compute each kernel matrix 10 times and average the results. When the
dimensionality of the continuous attributes m > 1, these are normalised to ensure comparability
among the different feature scales, in each data set except for BZR and COX2, due to the meaning of
the node attributes being location coordinates.

A.7 Runtime comparison

Overall, we note that WL and WL-OA scale linearly with the number of nodes; therefore, these
methods are faster than our approach. Because of the differences in programming language implemen-
tations of the different methods, it is hard to provide an accurate runtime comparison. However, we
empirically observe that the Wasserstein graph kernels are still competitive, and a kernel matrix can
be computed in a median time of 40 s, depending on the size and number of graphs (see Figure A.1).
For the continuous attributes, our approach has a runtime comparable to GH. However, although
our approach can benefit from a significant speedup (see discussion below and Section 5.2), GH
was shown to empirically scale quadratically with the number of graph nodes [10]. The HGK, on
the other hand, is considerably slower, given the number of iterations and multiple repetitions while
taking into account the randomisation.

To evaluate our approach with respect to the size of the graphs and recalling that computing the
Wasserstein distance has complexity O(n3log(n)), we simulated a fixed number of graphs with a
varying average number of nodes per graph. We generated random node embeddings for 100 graphs,
where the number of nodes is taken from a normal distribution centered around the average number of
nodes. We then computed the kernel matrix on each set of graphs to compare the runtime of regular
Wasserstein with the Sinkhorn regularised optimisation. As shown in Supplementary Figure A.1, the
speedup starts to become beneficial at approximately 100 nodes per graph on average, which is larger
than the average number of nodes in the benchmark data sets we used.

To ensure good performance when using the Sinkhorn approximation, we evaluate the obtained
accuracy of the model. Recalling that the Sinkhorn method solves the following entropic regularisation
problem,

P �
= argmin

P2�(X,X0)

hP,Mi � �h(P ),

we further need to select �. Therefore, on top of the cross-validation scheme described above, we
further cross-validate over the regularisation parameter values of � 2 {0.01, 0.05, 0.1, 0.2, 0.5, 1, 10}
for the ENZYMES data set and obtain an accuracy of 72.08± 0.93, which remains above the current
state of the art. Values of � selected most of the time are 0.3, 0.5, and 1.

A.8 Performance on isomorphic synthetic graphs

We performed an additional experiment to evaluate the difference between WL and WWL for noisy
Erdős–Rényi graphs (n = 30, p = 0.2). We report the relative distance between G and its permuted
and perturbed variant G0, w.r.t. a third independent graph G00 for an increasing noise level (i.e., edge
removal) in Figure A.2. We see that WWL is more robust against noise.
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Figure A.1: Runtime performance of the WWL Kernel computation step with a fixed number of
graphs. We also report the time taken to compute the ground distance matrix as distance_time.
Here, total_time is the sum of the time to compute the ground distance and the time taken to
solve the optimal transport (ot) problem for the regular solver or the Sinkhorn-regularised one. The
logarithmic scale on the right-side figure shows how, for a small average number of nodes, the
overhead to run Sinkhorn is higher than the benefits.
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Figure A.2: Relative distance between (Erdős–Rényi) graph G and its permuted and perturbed variant
G0 w.r.t. a third independent graph G00 for an increasing noise level.
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