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Abstract

We provide single-model estimates of aleatoric and epistemic uncertainty for deep
neural networks. To estimate aleatoric uncertainty, we propose Simultaneous
Quantile Regression (SQR), a loss function to learn all the conditional quantiles
of a given target variable. These quantiles can be used to compute well-calibrated
prediction intervals. To estimate epistemic uncertainty, we propose Orthonormal
Certificates (OCs), a collection of diverse non-constant functions that map all
training samples to zero. These certificates map out-of-distribution examples to
non-zero values, signaling epistemic uncertainty. Our uncertainty estimators are
computationally attractive, as they do not require ensembling or retraining deep
models, and achieve competitive performance.

1 Introduction

Deep learning permeates our lives, with prospects to drive our cars and decide on our medical
treatments. These ambitions will not materialize if deep learning models remain unable to assess
their confidence when performing under diverse situations. Being aware of uncertainty in prediction
is crucial in multiple scenarios. First, uncertainty plays a central role on deciding when to abstain
from prediction. Abstention is a reasonable strategy to deal with anomalies [11], outliers [39],
out-of-distribution examples [69], detect and defend against adversaries [75], or delegate high-risk
predictions to humans [14, 27, 12]. Deep classifiers that “do not know what they know” may
confidently assign one of the training categories to objects that they have never seen. Second,
uncertainty is the backbone of active learning [68], the problem of deciding what examples should
humans annotate to maximally improve the performance of a model. Third, uncertainty estimation is
important when analyzing noise structure, such as in causal discovery [52] and in the estimation of
predictive intervals. Fourth, uncertainty quantification is one step towards model interpretability [3].

Being a wide-reaching concept, most taxonomies consider three sources of uncertainty: approxi-
mation, aleatoric, and epistemic uncertainties [20]. First, approximation uncertainty describes the
errors made by simplistic models unable to fit complex data (e.g., the error made by a linear model
fitting a sinusoidal curve). Since the sequel focuses on deep neural networks, which are known to
be universal approximators [15], we assume that the approximation uncertainty is negligible and
omit its analysis. Second, aleatoric uncertainty (from the Greek word alea, meaning “rolling a
dice”) accounts for the stochasticity of the data. Aleatoric uncertainty describes the variance of the
conditional distribution of our target variable given our features. This type of uncertainty arises due
to hidden variables or measurement errors, and cannot be reduced by collecting more data under the
same experimental conditions. Third, epistemic uncertainty (from the Greek word episteme, meaning
“knowledge”) describes the errors associated to the lack of experience of our model at certain regions
of the feature space. Therefore, epistemic uncertainty is inversely proportional to the density of
training examples, and could be reduced by collecting data in those low density regions. Figure 1
depicts our aleatoric uncertainty (gray shade) and epistemic uncertainty (pink shade) estimates for a
simple one-dimensional regression example.
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Figure 1: Training data with non-Gaussian noise (blue dots), predicted median (solid line), 65% and
80% quantiles (dashed lines), aleatoric uncertainty or 95% prediction interval (gray shade, estimated
by SQR Sec. 2), and epistemic uncertainty (pink shade, estimated by orthonormal certificates Sec. 3).

In general terms, accurate estimation of aleatoric and epistemic uncertainty would allow machine
learning models to know better about their limits, acknowledge doubtful predictions, and signal test
instances that do not resemble anything seen during their training regime. As argued by Begoli et al.
[5], uncertainty quantification is a problem of paramount importance when deploying machine learn-
ing models in sensitive domains such as information security [72], engineering [82], transportation
[87], and medicine [5], to name a few.

Despite its importance, uncertainty quantification is a largely unsolved problem. Prior literature on
uncertainty estimation for deep neural networks is dominated by Bayesian methods [37, 6, 25, 44, 45,
79], implemented in approximate ways to circumvent their computational intractability. Frequentist
approaches rely on expensive ensemble models [8], explored only recently [58, 49, 60], are often
unable to estimate asymmetric, multimodal, heteroskedastic predictive intervals.

The ambition of this paper is to provide the community with trust-worthy, simple, scalable, single-
model estimators of aleatoric and epistemic uncertainty in deep learning. To this end, we contribute:

• Simultaneous Quantile Regression (SQR) to estimate aleatoric uncertainty (Section 2),

• Orthonormal Certificates (OCs) to estimate epistemic uncertainty (Section 3),

• experiments showing the competitive performance of these estimators (Section 4),

• and an unified literature review on uncertainty estimation (Section 5).

We start our exposition by exploring the estimation of aleatoric uncertainty, that is, the estimation of
uncertainty related to the conditional distribution of the target variable given the feature variable.

2 Simultaneous Quantile Regression for Aleatoric Uncertainty

Let F (y) = P (Y ≤ y) be the strictly monotone cumulative distribution function of a target variable Y
taking real values y. Consequently, let F−1(τ) = inf {y : F (y) ≥ τ} denote the quantile distribution
function of the same variable Y , for all quantile levels 0 ≤ τ ≤ 1. The goal of quantile regression is
to estimate a given quantile level τ of the target variable Y , when conditioned on the values x taken
by a feature variable X . That is, we are interested in building a model ŷ = f̂τ (x) approximating the
conditional quantile distribution function y = F−1(τ |X = x). One strategy to estimate such models
is to minimize the pinball loss [23, 48, 47, 22]:

`τ (y, ŷ) =

{
τ(y − ŷ) if y − ŷ ≥ 0,
(1− τ)(ŷ − y) else.

To see this, write

E [`τ (y, ŷ)] = (τ − 1)

∫ ŷ

−∞
(y − ŷ)dF (y) + τ

∫ ∞
ŷ

(y − ŷ)dF (y),

2



where we omit the conditioning on X = x for clarity. Differentiating the previous expression:

∂E [`τ (y, ŷ)]

∂ŷ
= (1− τ)

∫ ŷ

−∞
dF (y)− τ

∫ ∞
ŷ

dF (y) = (1− τ)F (ŷ)− τ(1− F (ŷ)) = F (ŷ)− τ.

Setting the prev. to zero reveals the loss minima at the quantile ŷ = F−1(τ). The absolute loss
corresponds to τ = 1

2 , associated to the estimation of the conditional median.

Armed with the pinball loss, we collect a dataset of identically and independently distributed
(iid) feature-target pairs (x1, y1), . . . , (xn, yn) drawn from some unknown probability distribution
P (X,Y ). Then, we may estimate the conditional quantile distribution of Y given X at a single
quantile level τ as the empirical risk minimizer f̂τ ∈ arg minf

1
n

∑n
i=1 `τ (f(xi), yi). Instead, we

propose to estimate all the quantile levels simultaneously by solving:

f̂ ∈ arg min
f

1

n

n∑
i=1

E
τ∼U [0,1]

[`τ (f(xi, τ), yi)] . (1)

We call this model a Simultaneous Quantile Regression (SQR). In practice, we minimize this
expression using stochastic gradient descent, sampling fresh random quantile levels τ ∼ U [0, 1]

for each training point and mini-batch during training. The resulting function f̂(x, τ) can be used
to compute any quantile of the conditional variable Y |X = x. Then, our estimate of aleatoric
uncertainty is the 1− α prediction interval (α - significance level) around the median:

ua(x?) := f̂(x?, 1− α/2)− f̂(x?, α/2). (2)

SQR estimates the entire conditional distribution of the target variable. One SQR model estimates all
non-linear quantiles jointly, and does not rely on ensembling models or predictions. This reduces
training time, evaluation time, and storage requirements. The pinball loss `τ estimates the τ -th
quantile consistently [74], providing SQR with strong theoretical grounding. In contrast to prior
work in uncertainty estimation for deep learning [25, 49, 60], SQR can model non-Gaussian, skewed,
asymmetric, multimodal, and heteroskedastic aleatoric noise in data. Figure 2 shows the benefit of
estimating all the quantiles using a joint model in a noise example where y = cos(10 · x1) +N (0, 1

3 )
and x ∼ N (0, I10). In particular, estimating the quantiles jointly greatly alleviates the undesired
phenomena of crossing quantiles [77]. SQR can be employed in any (pre-trained or not) neural
network without sacrificing performance, as it can be implemented as an additional output layer.
Finally, Appendix B shows one example of using SQR for binary classification. We leave for future
research how to use SQR for multivariate-output problems.
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Figure 2: Estimating all the quantiles jointly greatly alleviates the problem of crossing quantiles.

3 Orthonormal Certificates for Epistemic Uncertainty

To study the problem of epistemic uncertainty estimation, consider a thought experiment in binary
classification, discriminating between a positive distribution P and a negative distribution Q. Con-
struct the optimal binary classifier c, mapping samples from P to zero, and mapping samples from Q
to one. The classifier c is determined by the positions of P and Q. Thus, if we consider a second
binary classification problem between the same positive distribution P and a different negative
distribution Q′, the new optimal classifier c′ may differ significantly from c. However, both classifiers
c and c′ have one treat in common: they map samples from the positive distribution P to zero.
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This thought experiment illustrates the difficulty of estimating epistemic uncertainty when learning
from a positive distribution P without any reference to a negative, “out-of-domain” distribution Q.
That is, we are interested not only in one binary classifier mapping samples from P to zero, but in
the infinite collection of such classifiers. Considering the infinite collection of classifiers mapping
samples from the positive distribution P to zero, the upper tail of their class-probabilities should
depart significantly from zero at samples not from P , signaling high epistemic uncertainty. This
intuition motivates our epistemic uncertainty estimate, orthonormal certificates.

To describe the construction of the certificates, consider a deep model y = f(φ(x)) trained on input-
target samples drawn from the joint distribution P (X,Y ). Here, φ is a deep featurizer extracting
high-level representations from data, and f is a shallow classifier grouping such representations
into classes. Construct the dataset of high-level representations of training examples, denoted by
Φ = {φ(xi)}ni=1. Second, train a collection of certificates C = (C1, . . . , Ck). Each training
certificate Cj is a simple neural network trained to map the dataset Φ to zero, by minimizing a loss
function `c. Finally, we define our estimate of epistemic uncertainty as:

ue(x
?) := ‖C>φ(x?)‖2. (3)

Due to the smoothness of φ, the average certificate (3) should evaluate to zero near the training
distribution. Conversely, for inputs distinct from those appearing in the training distribution, (3)
should depart from zero and signal high epistemic uncertainty. A threshold to declare a new input
“out-of-distribution” can be obtained as a high percentile of (3) across in-domain data.

When using the mean squared error loss for `c, certificates can be seen as a generalization of
distance-based estimators of epistemic uncertainty:

ud(x
?) = min

i=1,...,n
‖φ(xi)− φ(x?)‖2 = max

i=1,...,n
2φ(xi)

>φ(x?)− ‖φ(xi)‖,

which is a set of n linear certificates C>i φ(x?) = a>i φ(x?) + bi with coefficients fixed by the feature
representation of each training example xi. We implement k certificates on top of a h-dimensional
representation as a single h× k linear layer, trained to predict the k-vector “0” under some loss `c.
Since we want diverse, non-constant (at zero) certificates, we impose an orthonormality constraint
between certificates. Orthonormality enforces a diverse set of Lipschitz-1 certificates. Then, we
construct our Orthonormal Certificates (OCs) as:

Ĉ ∈ arg min
C∈Rh×k

1

n

n∑
i=1

`c(C
>φ(xi), 0) + λ · ‖C>C − Ik‖. (4)

The use of non-linear certificates is also possible. In this case, the Lipschitz condition for each
certificate can be controlled using a gradient penalty [31], and their diversity can be enforced by
measuring explicitly the variance of predictions around zero.

Orthonormal certificates are applicable to both regression and classification problems. The choice of
the loss function `c depends on the particular learning problem under study. As a rule of thumb we
suggest training the certificates with the same loss function used in the learning task. When using the
mean-squared error, linear orthonormal certificates seek the directions in the data with the least amount
of variance. This leads to an interesting interpretation in terms of Principal Component Analysis
(PCA). In particular, linear orthonormal certificates minimized by mean squared error estimate
the null-space of the training features, the “least-variant components”, the principal components
associated to the smallest singular values of the training features. This view motivates a second-order
analysis that provides tail bounds about the behavior of orthonormal certificates.
Theorem 1. Let the in-domain data follow x ∼ N (0,Σ) with Σ = V ΛV >, the out-domain data
follow x′ ∼ N (µ′,Σ′) with Σ′ = V ′Λ′V ′>, and the certificates C ∈ Rd×k be the bottom k
eigenvectors of Σ, with associated eigenvalues Γ. Then,

P
(
‖C>x‖2 − E[‖C>x‖2] ≥ t

)
≤ e−t2/(2 maxj Γj),

P
(
‖C>x′‖2 − E[‖C>x′‖2] ≥ t

)
≤ e−t2/(2 maxj Λ′j‖CjV

′
j ‖

2).

Proof. By the Gaussian affine transform, we have that C>x = N (0, CΣC>). To better understand
the covariance matrix, noteCΣ = CΓ = ΓC ⇒ CΣC> = ΓCC> = Γ. The equalities follow by the
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eigenvalue definition, the commutativity of diagonal matrices, and the orthogonality of eigenvectors
for real symmetric matrices. Then, for in-domain data, we can write C>x = N (0,Γ).

Next, recall the Gaussian concentration inequality for L-Lipschitz functions f : Rk → R, applied to
a standard Normal vector Y = (Y1, . . . , Yk), which is P (f(Y )− E[f(Y )] ≥ t) ≤ e−t2/(2L) for all
t > 0. In our case, our certificate vector is distributed as

√
ΓY , where Y is a standard Normal vector.

This means that the function f(Y ) = ‖
√

ΓY ‖2 has a Lipschitz constant of maxj Γj with j ∈ 1..k.
Applying the Gaussian concentration inequality to this function leads to the first tail bound.

A similar line of reasoning follows for out-domain data, where C>x′ = N (Cµ′, CΣ′C>). The
function f applied to a standard Normal vector Y is in this case f(Y ) = ‖CC ′

√
Λ′Y + Cµ′‖2.

The Lipschitz constant of this function is maxj Λ′j‖CjC ′j‖2. Applying the Gaussian concentration
inequality to this function leads to the second result.

The previous theorem highlights two facts. On the one hand, by estimating the average in-domain
certificate response E[‖C>x‖2] using a validation sample, the first tail bound characterizes the decay
of epistemic uncertainty. On the other hand, the second tail bound characterizes the set of out-
domain distributions that we will be able to discriminate against. In particular, these are out-domain
distributions where ‖CV ′‖ is small, or associated to a small eigenvalue in Λ′. That is, certificates
will be able to distinguish in-domain and out-domain samples as long as these are drawn from two
distributions with a sufficiently different null-space.

Combined uncertainty While the idea of a combined measure of uncertainty is appealing, aleatoric
and epistemic unknowns measure different quantities in different units; different applications will
highlight the importance of one over the other [19, 44]. We leave for future work the study of
combination of different types of uncertainty.

4 Experiments

We apply SQR (2) to estimate aleatoric uncertainty in Section 4.1, and OCs (3) to estimate epistemic
uncertainty in Section 4.2. For applications of SQR to causal discovery, see Appendix A. Our code is
available at https://github.com/facebookresearch/SingleModelUncertainty.

4.1 Aleatoric Uncertainty: Prediction Intervals

We evaluate SQR (2) to construct (1− α) Prediction Intervals (PIs) on eight UCI datasets [4]. These
are intervals containing the true value about some target variable, given the values for some input
variable, with at least (1− α)% probability. The quality of prediction intervals is measured by two
competing objectives:

• Prediction Interval Coverage Probability (PICP), that is, the number of true observations
falling inside the estimated prediction interval;

• Mean Prediction Interval Width (MPIW), that is, the average width of the prediction intervals.

We are interested in calibrated prediction intervals (PICP = 1 − α) that are narrow (in terms of
MPIW). For sensitive applications, having well calibrated predictive intervals is a priority.

We compare SQR to five popular alternatives. ConditionalGaussian [49] fits a conditional Gaussian
distribution and uses its variance to compute prediction intervals. Dropout [25] uses dropout [38]
at testing time to obtain multiple predictions, using their empirical quantiles as prediction intervals.
QualityDriven [60] is a state-of-the art deep model to estimate prediction intervals, that minimizes
a smooth surrogate of the PICP/MPIW metrics. GradientBoosting and QuantileForest [53] are
ensembles of decision trees performing quantile regression.

We use the same neural network architecture for the first three methods, and cross-validate the
learning rate and weight decay parameters for the Adam optimizer [46]. For the tree-based of the
methods, we cross-validate the number of trees and the minimum number of examples to make a
split. We repeat all experiments across 20 random seeds. See Appendix C and code for details.

Table 1 summarizes our experiment. This table shows test average and standard deviation PICP of
those models achieving a validation PICP in [0.925, 0.975]. These are the models with reasonably
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Table 1: Evaluation of 95% prediction intervals. We show the test average and standard deviation
PICP of models achieving a validation PICP in [0.925, 0.975]. In parenthesis, we show the test
average and standard deviation MPIW associated to those models. We show “none”, when the method
could not find a model with the desired PICP bounds.

ConditionalGaussian Dropout GradientBoostingQR

concrete 0.94± 0.03 (0.32± 0.09) none 0.93± 0.00 (0.71± 0.00)
power 0.94± 0.01 (0.18± 0.00) 0.94± 0.00 (0.37± 0.00) none
wine 0.94± 0.02 (0.49± 0.03) none none
yacht 0.93± 0.06 (0.03± 0.01) 0.97± 0.03 (0.10± 0.01) 0.95± 0.02 (0.79± 0.01)
naval 0.96± 0.01 (0.15± 0.25) 0.96± 0.01 (0.23± 0.00) none
energy 0.94± 0.03 (0.12± 0.18) 0.91± 0.04 (0.17± 0.01) none
boston 0.94± 0.03 (0.55± 0.20) none 0.89± 0.00 (0.75± 0.00)
kin8nm 0.93± 0.01 (0.20± 0.01) none none

QualityDriven QuantileForest SQR (ours)
concrete none 0.96± 0.01 (0.37± 0.02) 0.94± 0.03 (0.31± 0.06)
power 0.93± 0.02 (0.34± 0.19) 0.94± 0.01 (0.18± 0.00) 0.93± 0.01 (0.18± 0.01)
wine none none 0.93± 0.03 (0.45± 0.04)
yacht 0.92± 0.05 (0.04± 0.01) 0.97± 0.04 (0.28± 0.11) 0.93± 0.06 (0.06± 0.04)
naval 0.94± 0.02 (0.21± 0.11) 0.92± 0.01 (0.22± 0.00) 0.95± 0.02 (0.12± 0.09)
energy 0.91± 0.04 (0.10± 0.05) 0.95± 0.02 (0.15± 0.01) 0.94± 0.03 (0.08± 0.03)
boston none 0.95± 0.03 (0.37± 0.02) 0.92± 0.06 (0.36± 0.09)
kin8nm 0.96± 0.00 (0.84± 0.00) none 0.93± 0.01 (0.23± 0.02)

well-calibrated prediction intervals; in particular, PICPs closer to 0.95 are best. Among those models,
in parenthesis, we show their test average and standard deviation MPIW; here, smallest MPIWs
are best. We show “none” for methods that could not find a single model with the desired PICP
bounds in a given dataset. Overall, our method SQR is able to find the narrowest well-calibrated
prediction intervals. The only other method able to find well-calibrated prediction intervals for all
dataset is the simple but strong baseline ConditionalGaussian. However, our SQR model estimates a
non-parametric conditional distribution for the target variable, which can be helpful in subsequent
tasks. We obtained similar results for 90% and 99% prediction intervals.

4.2 Epistemic Uncertainty: Out-of-Distribution Detection

We evaluate the ability of Orthonormal Certificates, OCs (3), to estimate epistemic uncertainty in the
task of out-of-distribution example detection. We consider four classification datasets with ten classes:
MNIST, CIFAR-10, Fashion-MNIST, and SVHN. We split each of these datasets at random into
five “in-domain” classes and five “out-of-domain” classes. Then, we train PreActResNet18 [34, 51]
and VGG [71] models on the training split of the in-domain classes. Finally, we use a measure of
epistemic uncertainty on top of the last layer features to distinguish between the testing split of the
in-domain classes and the testing split of the out-of-domain classes. These two splits are roughly the
same size in all datasets, so we use the ROC AUC to measure the performance of different epistemic
uncertainty estimates at the task of distinguishing in- versus out-of- test instances.

We note that our experimental setup is much more challenging than the usual considered in one-class
classification (where one is interested in a single in-domain class) or out-of-distribution literature
(where the in- and out-of- domain classes often belong to different datasets).

We compare orthonormal certificates (3) to a variety of well known uncertainty estimates. These
include Bayesian linear regression (covariance), distance to nearest training points (distance), largest
softmax score [35, largest], absolute difference between the two largest softmax scores (functional),
softmax entropy (entropy), geometrical margin [80, geometrical], ODIN [50], random network distil-
lation [9, distillation], principal component analysis (PCA), Deep Support Vector Data Description
[65, SVDD], BALD [40], a random baseline (random), and an oracle trained to separate the in- and
out-of- domain examples. From all these methods, BALD is a Dropout-based ensemble method, that
requires training the entire neural network from scratch [26].
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Table 2: ROC AUC means and standard deviations of out-of-distribution detection experiments. All
methods except BALD are single-model and work on top of the last layer of a previously trained
network. Each BALD requires ensembling predictions and training the neural network from scratch.

cifar fashion mnist svhn

covariance 0.64± 0.00 0.71± 0.13 0.81± 0.00 0.56± 0.00
distance 0.60± 0.11 0.73± 0.10 0.74± 0.10 0.64± 0.13
distillation 0.53± 0.01 0.62± 0.03 0.71± 0.05 0.56± 0.03
entropy 0.80± 0.01 0.86± 0.01 0.91± 0.01 0.93± 0.01
functional 0.79± 0.00 0.87± 0.02 0.92± 0.01 0.92± 0.00
geometrical 0.70± 0.11 0.66± 0.07 0.75± 0.10 0.77± 0.13
largest 0.78± 0.02 0.85± 0.02 0.89± 0.01 0.93± 0.01
ODIN 0.74± 0.09 0.84± 0.00 0.89± 0.00 0.88± 0.08
PCA 0.60± 0.09 0.57± 0.07 0.64± 0.06 0.55± 0.03
random 0.50± 0.00 0.51± 0.00 0.51± 0.00 0.50± 0.00
SVDD 0.52± 0.01 0.54± 0.03 0.59± 0.03 0.51± 0.01
BALD† 0.80± 0.04 0.95± 0.02 0.95± 0.02 0.90± 0.01

OCs (ours) 0.83± 0.01 0.92± 0.00 0.95± 0.00 0.91± 0.00
unregularized OCs 0.78± 0.00 0.87± 0.00 0.91± 0.00 0.88± 0.00

oracle 0.94± 0.00 1.00± 0.00 1.00± 0.00 0.99± 0.00

Table 2 shows the ROC AUC mean and standard deviations (across hyper-parameter configurations)
for all methods and datasets. In these experiments, the variance across hyper-parameter configurations
is specially important, since we lack of out-of-distribution examples during training and validation.
Simple methods such as functional, largest, and entropy show non-trivial performances at the task of
detecting out-of-distribution examples. This is inline with the results of [35]. OCs achieve the overall
best average accuracy (90%, followed by the entropy method at 87%), with little or null variance
across hyper-parameters (the results are stable for any regularization strength λ > 1). OCs are also
the best method to reject samples across datasets, able to use an MNIST network to reject 96% of
Fashion-MNIST examples (followed by ODIN at 85%).

5 Related Work

Aleatoric uncertainty Capturing aleatoric uncertainty is learning about the conditional distribution
of a target variable given values of a input variable. One classical strategy to achieve this goal is to
assume that such conditional distribution is Gaussian at all input locations. Then, one can dedicate
one output of the neural network to estimate the conditional variance of the target via maximum
likelihood estimation [57, 44, 49]. While simple, this strategy is restricted to model Gaussian aleatoric
uncertainties, which are symmetric and unimodal. These methods can be understood as the neural
network analogues of the aleatoric uncertainty estimates provided by Gaussian processes [63].

A second strategy, implemented by [60], is to use quality metrics for predictive intervals (such as
PICP/MPIW) as a learning objective. This strategy leads to well-calibrated prediction intervals. Other
Bayesian methods [33] predict other uncertainty scalar statistics (such as conditional entropy) to
model aleatoric uncertainty. However, these estimates summarize conditional distributions into scalar
values, and are thus unable to distinguish between unimodal and multimodal uncertainty profiles.

In order to capture complex (multimodal, asymmetric) aleatoric uncertainties, a third strategy is to use
implicit generative models [55]. These are predictors that accept a noise vector as an additional input,
to provide multiple predictions at any given location. These are trained to minimize the divergence
between the conditional distribution of their multiple predictions and the one of the available data,
based on samples. The multiple predictions can later be used as an empirical distribution of the
aleatoric uncertainty. Some of these models are conditional generative adversarial networks [54] and
DiscoNets [7]. However, these models are difficult to train, and suffer from problems such as “mode
collapse” [29], which would lead to wrong prediction intervals.

A fourth popular type of non-linear quantile regression techniques are based on decision trees.
However, these estimate a separate model per quantile level [77, 86], or require an a-priori finite
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discretization of the quantile levels [81, 64, 10, 85]. The one method able to estimate all non-linear
quantiles jointly in this category is Quantile Random Forests [53], outperformed by SQR.

Also related to SQR, there are few examples on using the pinball loss to train neural networks
for quantile regression. These considered the estimation of individual quantile levels [83, 78], or
unconditional quantile estimates with no applications to uncertainty estimation [16, 59].

Epistemic uncertainty Capturing epistemic uncertainty is learning about what regions of the input
space are unexplored by the training data. As we review in this section, most estimates of epistemic
uncertainty are based on measuring the discrepancy between different predictors trained on the same
data. These include the seminal works on bootstrapping [21], and bagging [8] from statistics. Recent
neural network methods to estimate epistemic uncertainty follow this principle [49].

Although the previous references follow a frequentist approach, the strategy of ensembling models is
a natural fit for Bayesian methods, since these could measure the discrepancy between the (possibly
infinitely) many amount of hypotheses contained in a posterior distribution. Since exact Bayesian
inference is intractable for deep neural networks, recent years have witnessed a big effort in developing
approximate alternatives. First, some works [6, 37] place an independent Gaussian prior for each
weight in a neural network, and then learn the means and variances of these Gaussians using
backpropgation. After training, the weight variances can be used to sample diverse networks, used to
obtain diverse predictions and the corresponding estimate of epistemic uncertainty. A second line
of work [25, 24, 44] employs dropout [38] during the training and evaluation of a neural network as
an alternative way to obtain an ensemble of predictions. Since dropout has been replaced to a large
extent by batch normalization [42, 34], Teye et al. [79] showed how to use batch normalization to
obtain ensembles of predictions from a single neural network.

A second strategy to epistemic uncertainty is to use data as a starting point to construct “negative
examples”. These negative examples resemble realistic input configurations that would lay outside
the data distribution. Then, a predictor to distinguish between original training points and negative
examples may be used to measure epistemic uncertainty. Examples of these strategy include noise-
contrastive estimation [32], noise-contrastive priors [33], and GANs [30].

In machine learning literature, the estimation of epistemic uncertainty is often motivated in terms of
detecting out-of-distribution examples [69]. However, the often ignored literature on anomaly/outlier
detection and one-class classification can also be seen as an effort to estimate epistemic uncertainty
[61]. Even though one-class classification methods are implemented mostly in terms of kernel
methods [66, 67], there are recent extensions to leverage deep neural networks [65].

Most related to our orthonormal certificates, the method deep Support Vector Data Description [65,
SVDD] also trains a function to map all in-domain examples to a constant value. However, their
evaluation is restricted to the task of one-class classification, and our experiments showcase that
their performance is drastically reduced when the in-domain data is more diverse (contains more
classes). Also, our orthonormal certificates do not require learning a deep model end-to-end, but
can be applied to the last layer representation of any pre-trained network. Finally, we found that our
proposed diversity regularizer (4) was crucial to obtain a diverse, well-performing set of certificates.

6 Conclusion

Motivated by the importance of quantifying confidence in the predictions of deep models, we proposed
simple, yet effective tools to measure aleatoric and epistemic uncertainty in deep learning models. To
capture aleatoric uncertainty, we proposed Simultaneous Quantile Regression (SQR), implemented in
terms of minimizing a randomized version of the pinball loss function. SQR estimators model the
entire conditional distribution of a target variable, and provide well-calibrated prediction intervals.
To model epistemic uncertainty, we propose the use of Orthonormal Certificates (OCs), a collection
of diverse non-trivial functions that map the training samples to zero.

Further work could be done in a number of directions. On the one hand, OCs could be used in active
learning scenarios or for detecting adversarial samples. On the other hand, we would like to apply
SQR to probabilistic forecasting [28], and extreme value theory [18].

We hope that our uncertainty estimates are easy to implement, and provide a solid baseline to increase
the robustness and trust of deep models in sensitive domains.
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A SQR in causal inference applications

A.1 Causal discovery

We consider the problem of bivariate causal discovery: given a sample from the joint distribution
P (X,Y ), determine whether X causes Y (X → Y ), or Y causes X (X ← Y ). The problem of
causal discovery is one where the shape of the conditional distribution of the effect given the cause
plays a major role [56]. Indeed, many causal discovery methods can be understood as preferring
the “simplest” factorization of the joint distribution (amongst P (X,Y ) = P (Y |X)P (X) indicating
X → Y and P (X,Y ) = P (X|Y )P (Y ) indicating X ← Y ) as the causal explanation [56]. Here,
simplest is measured in terms of some measure such as the Kolmogorov complexity [43].

Recently, Tagasovska et al. [76] showed that the pinball loss can be used as a proxy to estimate the
Kolmogorov complexity of a probability distribution. Thus, we may interpret the regression model
with lower overall pinball loss (amongst the one mapping X to Y , and the one mapping Y to X) as
the causal model.

The high accuracy rates in Table 3 show that our Simultaneous Quantile Regression (SQR, Equation 1)
achieves competitive performance at the task of detecting the causal relationship between two
variables across all datasets. m represents the number of quantile levels pooled for getting the final
causal score. Our evaluation is performed across multiple datasets, including the well-known real-
world benchmark from Tübingen [56]. The other datasets are generated according to [76, Section 4],
including datasets generated from Additive Noise (AN-), Multiplicative Noise (MN-) and Location-
Scale (LS-) models. We compare SQR against a variety of common algorithms in the bivariate
cause-effect literature, including LINGAM [70], GR-AN [36], ANM [41], PNL [84], IGCI [17], GPI
[73], and EMD [13]. The same table shows the importance of aggregating the pinball loss across
multiple quantile levels (m = 1, 3, 5) when determining the causal direction between two variables
using our proposed SQR. Although using SQR for causal discovery is inspired by Tagasovska et al.
[76], their method QCCD is based on non-parametric copulas which are difficult to scale to large
number of samples or dimensions. Moreover, SQR is learned end-to-end and is more scalable.

A.2 Heterogeneous treatment effects

Here we apply simultaneous quantile regression to characterize the conditional quantile distribution
F−1(E|T,X) of an effect variable E given some treatment variable T and individual covariates X ,
also known as Quantile Treatment Effect (QTE) estimation [1].

Figure 3 showcases such application for the Student-Teacher Achievement Ratio dataset [2], where
we estimate the effect of “class size” (treatment) over the “exam scores” (effect) of students, while
considering additional individual features from both the students and the teachers (individual covari-
ates). As independently confirmed by other studies [62], we can also notice the heterogeneity in the

Table 3: Results of causal discovery experiments for all methods (rows) and datasets (columns).

AN AN-S LS LS-S MN-U Tübingen

LINGAM 0.00 0.04 0.07 0.03 0.00 0.42
GR-AN 0.05 0.15 0.11 0.20 0.50 0.50
biCAM 1.00 1.00 1.00 0.53 0.86 0.58
ANM 1.00 1.00 0.62 0.09 0.03 0.59
GPI 0.95 0.11 0.91 0.54 0.90 0.63
IGCI-g 0.98 0.98 0.99 0.94 0.74 0.64
EMD 0.36 0.33 0.60 0.42 0.83 0.68
IGCI-u 0.41 0.27 0.63 0.37 0.07 0.72
PNL 0.96 0.63 0.91 0.44 0.66 0.73
QCCD (m=3) 1.00 0.81 1.00 0.98 0.99 0.77

SQR (m=1) 0.99 0.51 0.98 0.78 0.62 0.75
SQR (m=3) 0.99 0.73 1.00 0.85 1.00 0.75
SQR (m=5) 0.99 0.76 1.00 0.82 1.00 0.77
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Figure 3: Results on Heterogeneous quantile treatment effect of “class size” over “exam scores”.

treatment effect, namely that the variable “class size” has a larger causal effect for students associated
to a larger “exam scores” variable. This shows that uncertainty quantification has a role in policy
design.

B Quantile classification

Conditional Quantile regression can be recasted to classification method when the target variable is
ordinal. In the case of Y ∈ {1, 2...k}, one still has the CDF is fully specified by p(FY (y)) = P (Y ≤
y|X = x), where y ∈ k : P (Y = k) > 0. We next exemplify the application of pinball loss in the
case of binary classification for the age of Abalone (UCI dataset).

The Abalone dataset consists of 4177 observations, with 8 features, and we clean the data from
missing records. The goal is predicting the age of abalone (number of Rings) from some physical
measurements. The Rings variable was split into two classes: (0 Young) Age = 0 |Rings ≤ 10 and
(1 Old) Age = 1 |Rings > 10. We use the median (in this case also corresponding to Rings = 10).
To evaluate the results we compare in terms of classification accuracy and ROC AUC against same
network architecture and parameters (2 layers with 100 units each, lr = wd = 1e− 3) trained with
Binary Cross Entropy loss. We repeated the experiment 30 times and the results are as follows:

• Accuracy: Pinball 0.78± 0.02, BCE 0.79± 0.02

• ROC AUC: Pinball 0.84± 0.03, BCE 0.87± 0.02

The results from Pinball loss being within the margin of those from logistic loss, confirm that our
method can also be used for classification purposes. Furthermore, SQR provides confidence intervals
about the obtained prediction score.

C Hyperparameters for experiments

C.1 Prediction Intervals experiment

For all network-based baselines the results were cross-validated over the following grid:

• learning rate ∈ {1e−2, 1e−3, 1e−4}
• weight decay ∈ {0, 1e−3, 1e−2, 1e−1, 1}
• dropout rate ∈ {0.1, 0.25, 0.5, 0.75},
• number of epochs 5000

• 20 random seeds

For the rest of the methods for the same 20 random seed, the following parameters per baseline were
used:
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• GradientBoostingQR: number of learners ∈ {100, 1000} , max depth ∈ {3, 9, 10}, learning
rate ∈ {1e−2, 1e−3, 1e−4}, min samples per leaf {3, 9, 15}, min samples per split {3, 9, 15}

• QuantileForest: number of learners ∈ {100, 1000} , min samples per split {3, 9, 15}, max
depth ∈ {3, 5}

C.2 Out-of-distribution experiment

The following parameters per baseline were used:

• covariance: λ ∈ {1e−5, 1e−3, 1e−1, 1}
• distance: distpercentile ∈ {0, 1, 10, 50}
• certificates: ck ∈ {100, 1000} ,cepochs ∈ {10, 100}, cλ ∈ {0, 1, 10}
• distillation ck ∈ {100, 1000} , cepochs ∈ {10, 100}
• entropy temperature ∈ {1, 2, 10}
• functional logits ∈ {0, 1}, temperature ∈ {1, 2, 10}
• geometrical logits ∈ {0, 1}, temperature ∈ {1, 2, 10}
• largest logits ∈ {0, 1}, temperature ∈ {1, 2, 10}
• odin ε ∈ {0.014, 0.0014, 0.00014}, temperature ∈ {100, 1000, 10000}
• svdd ck ∈ {100, 1000} , cepochs ∈ {10, 100}
• pca ck ∈ {1, 10, 100}
• bald ndrop ∈ {100}
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