Appendix: Proofs

Proof of Theorem([l] To state the proof of the theorem, we need to define more notations. For a
generic set A C [0, 1], with slight abuse of notations, let N,,(A) = >, 1(x; € A) be the number of
samples with input features in A, and

ineA Yi
Nn(A)

be the average response of those samples. For any feature X and z € (0, 1), let Az (A, (k,z)) be
the impurity decrease when splitting A into A N {Xy < z} and AN {z < X}, and AI(A, k) =
SUPp<z<1 Az (A, (k,z)).

The proof of the theorem proceeds in three parts. First, we prove a lemma which gives a tail bound for
Az(A, k). Second, we use the lemma and union bound to derive the upper bound for the expectation
of Go(T). Finally, we use a separate argument based on Gaussian comparison inequalities to obtain
the lower bound.

pn(A) =

Lemma 1. For any axis-aligned hyper-rectangle A C [0,1]P, k ¢ S and § > 0, we have

SNp(A)

Py (Az(A k) > 5| N,y (A)) < AN, (A)e 10502,

Proof of Lemmall} We suppose without loss of generality that xy, . ..
[0, 1], we let

XN, (A) € A. Forany z €

At = AN{0< X <2}, A" =ANn{z< X, <1},
and introduce the shorthands
left Nn (Aleft) right Nn (Aright) left __

=N P TR A A g (A7),
Then
1 1
Az(A, (k — ln(A))? = i — i (A2 1 (2 <
1
C N Z — iy (AT 1 (24 > 2)
n
x; €A
= v AR = G 3 L <) = ()
" x;€EA x; €A
. 1 .
_ rlght( Z Y l‘ e > Z) (Iunght)Q)
ight g v
Ny (A)prieht =,

:pleft(uleft)Q +pﬁght(ur|ght) _ ,U/n(A)Q
_ <pleft(/lleft)2 +pright('uright) )(pleft +pr1ghl) (plefl'uleft _’_prlghturlght)

pleftpnght( uleft o Mright )2
< 2pleft rlghl[(ﬂleft o /1')2 + (uright o M)2]
< 2plefl(,ulefl o M)2 + 2prighl('urighl o H)2’

where

u=E[Y|X € A] =E[¢(X)|X € A].
Now suppose without loss of generality that x1; < zor < - -+ < Zni (otherwise we can reorder the
samples by X}). Since k ¢ S, X}, is independent of X g and therefore independent of Y. Thus the
distribution of (y1, ..., y,) does not change after the reordering, i.e.,
id.d
yi ~ (X)X €A)+e
Note that

1<m<N,(A) Nn

2
m 1 &
sup pleft(ﬂleft _ H)2 < sup 0 (m Zyi _ ,U) .
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Note that Y is sub-Gaussian with parameter M + 1. Therefore, for each 1 < m < N, (4), by
Hoeffding bound,

SNp(A)

2
m 1 m 2 2 _
T 25‘Nn<A> < 26~ MV ONLAP m < 90~ Gitn?
N, (4) <m P )

Therefore
SNp(A)

Nn(A)) < 2N, (A)e (17,

P (sup pleft(‘ulefl o :U')Q > 5
By symmetry, the same bound holds for p"eht(;;1ie" — ;)2 Therefore

<P (Suppleft(uleft _ :U)Q > 5/2|Nn(A)> +P <Suppright(‘uright _ U)Q > 5/2|Nn(A)>

L(A)
)

_Np(A)
<4N, (A)e *2@1+1)?

and the lemma is proved. O

Proof of the upper bound in Theorem[T]

Without loss of generality, assume that when we split on feature k, the cut is always performed along
the direction of k at some data point (and that data point falls into the right sub-tree). Suppose that
€; has unit variance for all i. Let C = 2max{256, 16(M + 1)?}. We also assume, without loss of
generality, that m,, > 8d,,. Otherwise, since Go(T') is, by definition, upper bounded by the sample
variance of ¢, we have

Ex. sup  Go(T) < Var(Y) < M? +1<16(M + I)anIOﬂ.
TET (M ,dn) mn

To simplify notation, we define x,,11 = (0,...,0) and X,,42 = (1,...,1). Forany V C [p], L, R €
[n+2]VI, let
A(Mﬁ,R) = {X = (Xl,...,Xp) XL, v < XVi < SL'Ri’Vi,l <1< |V|,0 < X <1,k ¢ V}

be the random axis-aligned hyper-rectangle obtained by splitting on features in V', where the left and
right endpoints of the ith feature V; are determined by x ., v, and x, v;. Note that in this definition,
we treat x; as random variables rather than fixed, and A(V, £, R) can be the empty set with non-zero
probability. Let

AV) = {A(V.LR)LR € [n+ 2T}
be all axis-aligned hyper-rectangles obtained by splitting on features in V. For any d < d,,, let
Ag = U‘V|=dA(V)
be the collection of all possible subsets of [0, 1]? obtained by splitting on d features.

2
Fix 6 > %. We will first show that

PX,E (HA € Ad, k é S : AI(A, k) > Nmzi) and N,L(A) > m")
" (15)
om
< dt1 - = :
<5(np)™" exp ( max{256, 16(M + 1)2})

Note that for any two events Cy and Cy, the inequality P(Cy N Cq) < P(C1|Cy) always holds.
Therefore, for any hyper-rectangle A, we have

mpo
(A
mp0 ‘

(4)

Px.e (AI(A, k) > and N, (A) > mn)

Z

(16)

<Py (AI<A, B >

2

Ny(A) = mn)

13



To simplify notation, we will drop the conditional event N,,(A) > m,, in the remainder of the proof
of the upper bound, unless stated otherwise.

Fix V C [p],£,R € [n+2]!V], and k ¢ S. Conditional on samples in £ and R, we would like to
apply Lemmato A(V, L, R) and k. The only problem is that there are now samples on the boundary
of A(V, L, R), namely those in £ and R. Let x; = {X;}icc and xg = {x; };er. Conditional on x .,
xg and N, (A(V, £, R)), and on the random variable X € A(V, £, R), X is uniformly distributed
in A(V, L, R). For a set A, we let A° be the interior of A and let A be the boundary of A. Since
m, > 8d,,

N (A°(V,£,R)) _ i — 2y,

3
> —.
Nn(AV,L,R)) = mm 4

By Lemmal[I] we have

m,0
o > i
Py. (A:(A V.LR).K) 2 s A £

5mn Ny (A°(V, £, R))
12(M + 1)2N,,(A(V, Eﬁ)))

. x70, N (A(V, L, R)))

<AN,(A°(V, £, R)) exp ( (17)

omy,
sdnep | —yenr e

for large n. Since the right hand side does not depend on x.,x%, N, (A(V, L, R)), we can take
expectation with respect to them, and obtain

my0

o domy,
PX,& (AI(A (V»C»R)»k) > 3Nn(A(V, E,R))) < 4nexp <_16(]\4—|—1)2> (18)

On the other hand, we have the inequality

EieL,R(yi — n(A(V, L, R)))?
N.(A(V,L,R))

Az(A(V,L,R), k) < Az(A°(V,L,R), k) +

(19)
o ZieL,R 2(y22 + Mn(A(Vv EvR))Z)
We have
P ( ZiEE,R 2yl2 > mn(s )
YA NL(AV,L,R)) = 3N (A(V, L, R))

<P<Zie£,7€ 4(f3(xi) + €2) S M0 )

- No(A(V.L,R))  — 3Na(A(V.L,R))

SIP(ZM’R W) 6) (20)

My, 3

My

cp(Trecm LG, )

om
S eXp(_ 256")’

2dn (2
S]P) Zi:l(ei 1) Z J )
T, 16N,,(A°(V, L, R)

for large n, where the fourth inequality holds because § > 96M?2d,, /m,, and the last inequality
follows from the well-known tail bound

(i) v
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for x? random variable and 6y < 1. To upper bound /i,,(A(V, £, R)), note that

P Yicrm 2 (A(V, L, R))? o M0
No(A(V,L,R)) T 3N (A(V,L,R))

_P<|un< VL, R)| > ‘ZZ})

1 N, (A(V,L,R)) S
<P||l——— i > "M 2n
=5\ |NL(A(V. L, R)) ; “| =V 6d,
1 omy, 9
< J— _
_26Xp< 2mn( 6d, M)>

SQGXP (_5’2’;”) ’

where the last inequality follows from m,, > 8d,, and 6 > 96M?d,, /m,,. Combining Equations (18),

(19D, 1), we have

Px. (AI(A(VE R), k) > mnd Omn ) (22)

= 3N, (A(V, E,R))) < dnexp (_maX{IG(M T1)2,256)

forany V C [p],|V]| =d,L,R € [n+2]/V],and k ¢ S. Note that the set A4 has cardinality

4l = (B et + 2y < ()

for large n. Therefore by union bound,

P(34cA P Az(A k) > s | < BnplA - q
( € Aa,k ¢ 5 Ax( ,k>_Nn(A)> < 5np| dlexp( max{256,16(M+1)2}>
om
< d+1 _ n .
< 5(np) exp < max{256,16(M + 1)2})
(23)

Suppose that Az (A, k) > forall A € Ug<q, Aqand k ¢ S, then for any T' € T,,(my,, dy,),

( )

N,(t) my,o < my|1(t)] <5

GolT) < D DAGEEE

tv(t)¢S

where the last inequality follows since |I(¢)| + 1 is the total number of leaf nodes in 7', and each leaf
node contains at least m,, samples. Therefore

d
- mnpd
Px. sup Go(T)>4d ] < P(EIAEAd,kéS:AI(A,k)Z i )
<T€Tn(mn,dn) ’ ; Ny (4)
- om (24)
< d+1 n
= S(np)™ " exp ( max{256, 16(M + 1)2})
<1 omy,

0 dn+1
(np) eXp( max{256, 16(M + 1)2}
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for any § > %. Recall that C = 2max{256,16(M + 1)?}. Note that Cd"Eg(np) > 96%2d"
for large n. Integrating over &, we have

Ex e sup Go(T)

TeT,(my,dy)

dp 1 3d,, 1
< 3dnlog(np) Ex. sp Go(T)1(5 > og(np))
2mn TET, (mn,dn) 2mn (25)
dp 1 >
< 3dnlog(np) | / Pyo| sup  Go(T)>d)ds
2m, 3dn;::§("1’) ’ TETn (M ,dn)
< Cd, log(np).
s
This completes the proof of the upper bound.
Proof of the lower bound in Theorem/Il
For the lower bound, let
d, = max{d : 2" m,, < n}, (26)

and consider a balanced, binary decision tree 7" constructed in the following way:

1. At each node on the first d,, — 1 levels of the tree, we split on feature X7, at the mid-point
of X;’s side of the rectangle corresponding to the node.

2. At each node on the d,,th level, we look at the remaining p — 1 features, and split on the
feature that maximizes the decrease in impurity.

In the following proof, we will lower bound G (7T') by the sum of impurity reduction on the d,,th
level alone. Fort =1,...,2% 1 let

t—1 t
R, = {an—l <X < 541 }

be the hyper-rectangle corresponding to the tth node on the d,,th level. Applying Chernoff’s inequality,

we have (R)
Nn Rt 1 1 n
P(’ n 1| 3-2dn1) < 2exp ( - 27-2dn1>‘
Let ()
N, (R; 1 1
By = {‘ s < 3 94,1 for allt}

. 2 n 4 n
be the event that each node on the d,,th level contains at least 3941’ but no more than 3941
samples. Then

9dn—1

P(B) < Y P(‘N"fLR” -

t=1

1 n
> < 9dn _
= 3~2dn—1) =2 eXp( 27-2dn—1>’ @7

and conditional on By,

8 2 n 4 n 32
gmn < 39d.—1 < Nu(Ry) < 39d.—1 < ?mn (28)
We define
1
R.(k) = R; N {o < Xy < 2}
and



and use R}, RY as shorthand when k is fixed. Foreacht = 0, 1,...,2¢ — 1, by Equation

Nu(Rp) No(B7)

Az(Ry, k) > Az(Ry, (k,1/2)) = (b (RY) — pn(RY))?

Let
M = pin(RE) — pin(RY)

Conditional on N,,(R!) and N,,(R}), n = (n2,...,n,) are jointly Gaussian with zero mean. To
lower bound the impurity decrease at the ¢th node on the d,,th level, we use a Gaussian comparison
argument to obtain a lower bound for supy, ||, which requires us to calculate the covariance matrix
of n. For any 2 < kq, ks < p, let us further define

1 1
R (k1,ky) = Ry N {0 < X, < 2} N {0 < X, < 2};

1
R (ky k) = Ry N {o < Xp, < 2} m{ < X, < 1};

1 1
R (k1 ks) = Ry N {2 <Xy, < 1} n {o <Xy, < 2};

1 1
R;T(kl,k‘g) =R N {2 < X, < 1} n {2 < Xy, < 1}.

As before, we write R}, RI", Ri' and R]" as shorthand when ki, ko are fixed. Conditional on
N, (Ry), the samples falling into the hyper-rectangle R, are uniformly distributed in R;. Therefore
we know from Chernoff’s inequality that

| 115 1Y <oy (- 2al)

for any k; and ko, and that the same results hold for Ri", R'! and R as well. Let
N (R (1, k2)) 1‘ 1 }
— 1 .

<1 forall 1 <t <2% 1 2<k <ky<p

By = max
we{lllr,rlrr}

N, (Ry) 4
Then N
P(Bj) < 2% p? exp ( - "4(5 t)), (29)
and
N,
P(By 1 By) > 1— 2% exp ( - ’;fft)) >1 -2t p? exp (— "fg) >S5 a0

for n large enough (under the condition that m,, > 36 log p + 18log n). Conditional on the event Bo,

3 3 3
Nu(Ri) 2 Nu(R)') + Nu(Bi") = - Nu(Re) + = Nu(Ry) > gV (Be),

16 16
forany 1 <t < 2% ~1and 2 < k < p, and the same holds for N, (RY). Therefore,
1 1 3
Var(ny,) = + > 31)
) = N ) T N AN (R
1 1 1 1

Cov 15 Mky) = + - N " S ’ 32
(ks Mz ) No(RE) " No(R{")  Nu(R") N, (R = AN, (Ry) G2

Consider 7o, . . ., 7, with

- . 3
E?]k = O,Var(nk-) = m
and )
Cov(ik, » ky) = AN, (R))
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Then conditional on B; N By, by Sudakov-Fernique lemma, we have

5 logp 3logp
E Bi1NBy|>E > >
g By 0 Ba] > Buein > ([0 G > 55,

and the lower bound

min{ N, (R.), N,,(R)} > SNn(Rt) > my,

for any k, t. where the last inequality follows from Equation (28). Therefore, conditional on By N Bs
the minimum leaf size is lower bounded by m,,. Finally

sup Go(T)
TETn(my)

EX7E
TETn(mn)

> ]Ex,el sup GO(T)ILBlﬂBz‘|

No(Ry)
> Ex lzt: - E. [m,?XAI(Rtak)]lBlﬂBQ:H
Nn(Ry) 3 (33)
> Ex Xt: nT(g)Q(EE ml?‘xnlz]lBlﬂBz)
9 3logp
> — P(BiNB
= 64 32m,, (Bin B,)
o 1 logp
- 80 my,
when n is large enough, and the lower bound is proved. This concludes the whole proof.
O

Proof of Proposition[I} For simplicity, here we only present the proof for a single tree T'. The case
of multiple trees is straightforward. Recall that ¢ and ¢ are the left and right children of the node
t. Based on (@), MDI at the node ¢ is

Ny (t) 1
D) z() = D]

S i - (0P 1 € Ro)
ieD(T) 34)

- [yi - /,Ln(tleft)]Q]l(Xi S Rt]cl’l) - [yz — Un (tﬁght)]Q]l(Xi S Rtrighl).
Because 1(x; € Ry) = 1(x; € Ryien) + 1(%; € Ryen), the above term becomes

@ > (Wi = 1) = (Wi — pa()?) L(x; € Ryen)
i€D(T)

+ (i = b (8))? = (Y5 — 1 (E7E))?) L(x; € Rysen)
1

=pm]| D () = () (24i — pin () = pa ()1 (x; € Ryen)
ieD(T)
() — o (6)(291 — int) — i (FN s € Rss). (39)

Since Ycpem gil(x; € 1) = N, ((50), (11), we know Y,cpm (yi — i (()1(x; €
Rye) = 0. Similar equations hold for the right child €™, too. Then (33) reduces to

S () = () (W — (D)L (x; € Ry) (36)

T
‘D( )| ieD(T)

+ (1 (") = (1) (g — pn(8))1(xi € Ryn)  (37)
Because of the definitions of s, (£*"), ju,, (7€), and j,, (t), we know

Nn(tleﬁ),un (tleft) + Nn (tright)un (tright) — Nn (t)ﬂn (t) (38)
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That implies Y, per) (tn () = pin (£))1(x; € Rpenr) + (pin (£7™) — i (8))L(%; € Ryien) = 0.
Using this equation, (37) can be written as

1

D) D (1 () = o ()yill (xi € Ryen) + (s (5 = o (£) il (xi € Rpsan).  (39)

ieD(T)
In summary, we have shown that:

N, (t) B 1
o 270 = o)

S () = 1 ()L (% € Res) + (1 (872 = 1, ()L (s € Rysa).

1eD(T)
(40)
Since the MDI of the feature & is the sum of ‘Nl;}g)‘ Az(t) across all inner nodes such that v(t) = k,
we have
Nn(t) _
Z WAI(t)]l(U(t) =k)
teI(T)

1 el 1]
= ) D) D () = o ()yill (% € Ryen) + (pn (7€) — g1 (£)) i1 (Xi € Rysom)
tel(T):w(t)=k ieD(T)
1

= |D(T)| Z [ Z (Mn(t]eﬂ) — Hn (t))]l(xz € Rt‘e“) + (Mn(tright) — Hn (t))]l(xi S Rtrighl)} Yi
i€D(T)  tel(T):v(t)=k

1
:W Z frr(xi)yi.

i€D(T)

That completes the proof.
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Figure 4: The beeswarm plots for different simulation settings.
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Figure 5: MDI against inverse min leaf size. This is coherent with our theoretical analysis as MDI is
proportional to the inverse of minimum leaf size.
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