
Supplementary material for
Kernel quadrature with DPPs

Ayoub Belhadji, Rémi Bardenet, Pierre Chainais
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Villeneuve d’Ascq, France
{ayoub.belhadji, remi.bardenet, pierre.chainais}@univ-lille.fr

A Implementation details

In this section, we give details on the repulsion kernels in each example of the main paper, and explain
how we sampled from the corresponding DPPs. In short, we relied on matrix models for univariate
cases, and vanilla DPP sampling [10] for multivariate settings.

A.1 The one-dimensional periodic Sobolev space

Consider the kernel ks : [0, 1]× [0, 1]→ R+ defined by

ks(x, y) = 1 +
∑
m∈N∗

1

m2s
cos(2πm(x− y)). (1)

The Mercer decomposition of ks associated to the uniform measure dω on [0, 1] writes

ks(x, y) =
∑
k∈Z

1

max(1, |k|)2s
e2πikxe−2πiky. (2)

The corresponding repulsion kernel is

K(x, y) = eπiN(x−y)
N/2∑

m=−N/2

e2πimxe−2πimy =

N∑
m=0

e2πimxe−2πimy, (3)

if N is even and

K(x, y) = eπi(N−1)(x−y)
(N+1)/2∑

m=−(N−1)/2

e2πimxe−2πimy =

N∑
m=0

e2πimxe−2πimy, (4)

if not. The projection DPP with kernel K and reference measure dω can be sampled through a
matrix model. Indeed this DPP is also the distribution of the arguments (normalized by 2π) of the
eigenvalues of a random unitary matrix drawn from the Haar measure on UN+1 [25]. Sampling
such matrices can be done, e.g., using the QR decomposition of a matrix with i.i.d. unit complex
Gaussians as coefficients [16].

A.2 The one-dimensional Gaussian kernel

Let kγ : R× R→ R+ and the reference measure dω be defined by

kγ(x, y) = e
− (x−y)2

2γ2 , dω(x) =
1√
2πσ

e−
x2

2σ2 . (5)

For notational convenience, we further let

a =
1

4σ2
, b =

1

2γ2
, c =

√
a2 + 2ab, (6)
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and
A = a+ b+ c, B = b/A. (7)

Now, the Mercer decomposition of kγ reads [20]

kγ(x, y) =
∑
m∈N

σmem(x)em(y), (8)

where

σm =

√
2a

A
Bm, em = e−(c−a)x

2

Hm(
√

2cx), (9)

andHm is them-th Hermite polynomial (i.e., orthonormal polynomials for the pdf of a unit Gaussian).
Now, denote

ẽm(x) := Hm(
√

2cx), (10)

and the measure
dω̃ =

1√
2πσ

e−2cx
2

. (11)

The rescaled polynomials (ẽm)m∈N are orthonormal with respect to the measure dω̃. Moreover, for
x ∈ R,

em(x)em′(x)dω(x) = e−(c−a)x
2

Hm(
√

2cx)e−(c−a)x
2

Hm′(
√

2cx)
1√
2πσ

e−2ax
2

(12)

= Hm(
√

2cx)Hm′(
√

2cx)e−2cx
2

(13)
= ẽm(x)ẽm′(x)dω̃(x). (14)

Thus, for x = (xi)i∈[N ] ∈ RN , we have

DetE(x)⊗i∈[N ] dω(xi) = Det Ẽ(x)⊗i∈[N ] dω̃(xi). (15)

In other words, the projection DPP associated to the orthonormal family (en)n∈[N ] and the reference
measure dω is equivalent to the projection DPP associated to the orthonormal family (ẽn)n∈[N ] and
the reference measure dω̃. The latter DPP is known to be the distribution of the eigenvalues of a
symmetrized matrix with i.i.d. Gaussian entries [14], which is easily implemented.

A.3 The case of a tensor product of RKHSs

We consider the case where F writes as a tensor product of RKHSs, with the associated kernel

k(x,y) =
∏
`∈[L]

k`(x`, y`), (16)

with k` : X` ×X` → R.

A.3.1 The multivariate integral operator

The integral operator becomes

Σf(x) =

∫
X
f(x)k(x,y)dω(y) =

∏
`∈[L]

∫
X`
f`(x`)k`(x`, y`)dω`(y`). (17)

In the main paper, we considered for instance the Korobov space Kds([0, 1]), defined as the tensor
product of unidimensional periodic Sobolev spaces. Note that an element f of Kds([0, 1]) is such that

∂u1+···+ud

∂xu1
1 . . . ∂xudd

f ∈ L2([0, 1]d), ∀u1, . . . ud ∈ {0, . . . , s}.

This implies that Kds([0, 1]) is included in the multidimensional Sobolev space, which corresponds to
the same requirement, but only for multi-indices such that ‖ui‖1 ≤ s. Another example, featured
in this supplementary material, is the multidimensional Gaussian space associated to the Gaussian
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kernel on X` = R and the multidimensional Gaussian measure. In this case, the kernel kγ,d can be
written as the tensor product of the Gaussian kernels on R:

∀x,y ∈ Rd, kγ,d(x,y) =
∏
i∈[d]

kγ(xi, yi). (18)

In general, the eigenpairs of the integral operator are the tensor products of the eigenpairs of
the integral operators Σ` corresponding to the spaces F` and measures dω`. In other words, for
u ∈ (Nr {0})d,

Σ⊗i∈[d] e`,ui =
∏
i∈[d]

σ`,ui ⊗i∈[d] e`,ui . (19)

A.3.2 Fixing an order on multi-indices

The definition of the projection DPP and its kernel K now require that we fix an order on multi-
indices. We choose an order ≺ that keeps eigenvalues decreasing, as in the univariate case where
σ1 ≥ σ2 ≥ . . . . Whenever the univariate eigenvalues take the form σi = 1

(1+i)η with η > 0, such as
in the Korobov case, it holds∏

i∈[d]

σui ≤
∏
i∈[d]

σvi ⇔

∏
i∈[d]

1

1 + ui

η

≤

∏
i∈[d]

1

1 + vi

η

(20)

⇔
∑
i∈[d]

log(1 + vi) ≤
∑
i∈[d]

log(1 + ui). (21)

Now, if the eigenvalues takes the form σi = η−i, with η > 1, as in the Gaussian case,∏
i∈[d]

σui ≤
∏
i∈[d]

σvi ⇔
∏
i∈[d]

1

ηui
≤
∏
i∈[d]

1

ηvi
(22)

⇔

∑
i∈[d]

vi

 log η ≤

∑
i∈[d]

ui

 log η (23)

⇔
∑
i∈[d]

vi ≤
∑
i∈[d]

ui. (24)

In the multivariate Korobov and the Gaussian cases, we thus define in this work u ≺ v as (21) or
(24), respectively.

Now, for N ∈ N, let uN = (u1,N , . . . ,ud,N ) ∈ Nd be the N -th multi-index according to ≺. The
repulsion kernel is defined as

K(x, y) =
∑
n∈[N ]

∏
i∈[d]

eui,N (xi)eui,N (yi), x, y ∈ Rd. (25)

We sampled from the corresponding DPP using the generic sampling algorithm in [10], using the
uniform and Gaussian distributions as proposal in the successive rejection sampling steps for the
Korobov and Gaussian cases, respectively.

B Supplementary simulations

In this section, we give more plots of the convergence of the quadrature error. Before that, we experi-
mentally assess whether the upper bounds given in [1] are sharp. The author proved upper bounds for
σN+1 in cases where the univariate eigenvalues σ`,N decrease polynomially or geometrically in N .
In particular, for the Korobov spaces of dimension d and regularity s, we have

σN+1 = O
(

(logN)2s(d−1)N−2s
)
. (26)

For the Gaussian RKHS in dimension d, it holds

σN+1 = O
(
βde−δd!

1/dN1/d
)
, (27)
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Figure 1: (Left): comparison of σN+1 in the Korobov case according to the spectral order and
(logN)2s(d−1)N−2s for d ∈ {2, 3, 4} and s = 1, (Right): comparison of σN+1 in the Gaussian case
according to the spectral order and βde−δd!

1/dN1/d

for d ∈ {2, 3, 4} and γ = 1.

where β ∈]0, 1[ and δ > 0 are constants depending on the scale parameters of the kernel and the
measure dω. In our experiments, we compare the errors of various quadratures to the two rates
(26) and (27). We mean these rates to be proxies for plotting σuN , where uN refers to the order
introduced in Section A.3. Figure 1 shows that in the Korobov case, the rate (26) is indeed close
to the corresponding eigenvalue for large values of N . The value of (logN)2s(d−1)N−2s could be
larger than 1 for d ≥ 4 and small values of N . As for the Gaussian case, Figure 1 shows that the rate
(27) is also close to the corresponding eigenvalue for all values of N .

B.1 The multi Fourier ensemble and Korobov RKHS

We consider the case of Korobov spaces with d ∈ {2, 3} and s ∈ {1, 2} and compare the quadrature
error of the same algorithms as in 5.1. The results are compiled in Figure 2. The numerical simulations
confirm the dependencies of the theoretical bounds of the different algorithms to the dimension d
and the regularity s. In particular, UGBQ have better performance for high values of s and low
values of N while its asymptotic behaviour is still the same O(N−2s/d). Moreover, the empirical
rate of SGBQ is similar to its theoretical rate O((logN)2(s+1)(d−1)N−2s) [9, 21]. Finally, the rate
O((logN)2s(d−1)N−2s) is confirmed also for the algorithms DPPKQ, LVSQ (λ = 0) and HaltonBQ.
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Figure 2: The squared error for the Korobov space (d ∈ {2, 3}, s ∈ {1, 2}): (Top) the results for the
dimension d = 2, (Left) the results for the regularity s = 1.
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Figure 3: The squared error for the Gaussian space (d ∈ {2, 3}, γ = 1).

B.2 The multi Gaussian ensemble

We consider the case of Gaussian spaces with d ∈ {2, 3}. The kernel kγ,d and the reference measure
are the tensor product of respectively the same kernel and the same measure used in Section 5.2.
We compare DPPKQ and Bayesian quadrature based on the tensor product of Gauss-Hermite nodes
noted GHBQ. Note that a variant of this algorithm was proposed in [12]: the quadrature nodes are
the tensor product of the Gauss-Hermite nodes however the weights were calculated differently. The
authors proved under an assumption on the stability of the weights (that was verified empirically) that
the rate of convergence is O(drdβ′de−δ

′dN1/d

), where r is a constant that quantify the stability of
the weights, and β′, δ′ are constants that depend simultaneously on the the stability of the weights
and length scales of the kernel and the measure. The results are compiled in Figure 3.

The numerical simulations shows that the empirical rate of DPPKQ is O(e−δdN
1/d

) that is slightly
better than its theoretical rate O(e−δd!

1/dN1/d

). Moreover, we observe that the empirical rate of
DPPKQ is better than the empirical rate of HGBQ.
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C Mercer’s theorem, leverage scores, and principal angles

For the sake of completeness, this section gathers some known results, which will be used to prove
our own. We will need a general version of Mercer’s theorem, as usual for kernel methods, see
Section C.1. On a more technical ground, we will also need formulas for leverage score changes
under rank 1 updates, see Section C.2. Finally, Section C.3 covers principal angles between subspaces
of a Hilbert space, which bridge the gap between pairs of Hilbert subspaces and determinants, and
facilitate taking expectations in Theorem 1.

C.1 Mercer decomposition in non-compact subspaces

In this section we recall Mercer’s theorem and its extensions to non-compact spaces. Let X be a
measurable space and dω a measure on X . Assume k is a positive definite kernel on X . Whenever it
is well-defined, we consider the operator

Σf(x) =

∫
X

k(x, y)f(y)dω(y). (28)

Theorem 2. Assume that X is a compact space and dω is a finite Borel measure on X . Then,
there exists an orthonormal basis (en)n∈N∗ of L2(dω) consisting of eigenfunctions of Σ, and the
corresponding eigenvalues are non-negative. The eigenfunctions corresponding to non-vanishing
eigenvalues can be taken to be continuous, and the kernel k writes

k(x, y) =
∑
n∈N∗

σnen(x)en(y), (29)

where the convergence is absolute and uniform.

Theorem 2 was first proven when X = [0, 1] and dω is the Lebesgue measure in [15]. A modern
proof can be found in [13], while the proof in the general case can be found in [4]. Note, however,
that the compactness assumption in Theorem 2 excludes kernels such as the Gaussian or the Laplace
kernels. Hence, extensions to non-compact spaces are usually required in ML. In [24], the author
extended Theorem 2 to X = ∪i∈NXi, with the Xis compact and dω(Xi) <∞. One can also extend
Mercer’s theorem under a compact embedding assumption [23]: the RKHS F associated to k is said
to be compactly embedded in L2(dω) if the application

IF : F −→ L2(dω)

f 7−→ f

is compact. A sufficient condition for this assumption is the integrability of the diagonal (Lemma 2.3,
[23]): ∫

X
k(x, x)dω(x) <∞. (30)

Note that this condition is not necessary (Example 2.9, [23]). Now, under the compact embedding
assumption, the pointwise convergence of the Mercer decomposition to the kernel k is equivalent to
the injectivity of the embedding IF (Theorem 3.1, [23]).

C.2 Leverage score changes under rank 1 updates

In this section we prove a lemma inspired from Lemma 5 in [3]. This lemma concerns the changes of
leverage scores under rank 1 updates.

We start by recalling the definition of leverage scores, which play an important role in randomized
linear algebra [6]. Let N,M ∈ N∗, M ≥ N . LetA ∈ RN×M be a matrix of full rank. For i ∈ [M ],
denote ai the i-th column of the matrixA. Now, the i-th leverage score of the matrixA is defined by

τi(A) = aᵀ
i (AAᵀ)−1ai, (31)

while the cross-leverage score between the i-th column and the j-th column is defined by
τi,j(A) = aᵀ

i (AAᵀ)−1aj . (32)
It holds [6]

∀i ∈ [M ], τi(A) ∈ [0, 1], (33)
and we have the following result.
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Lemma 3. Let N,M ∈ N∗, M ≥ N . Let A ∈ RN×M of full rank and ρ ∈ R∗+ and i ∈ [M ]. Let
W ∈ RM×M a diagonal matrix such thatWi,i =

√
1 + ρ andWj,j = 1 for j 6= i. Then

τi(AW ) =
(1 + ρ)τi(A)

1 + ρτi(A)
≥ τi(A), (34)

and

∀j ∈ [M ]− {i}, τj(AW ) = τj(A)− ρτi,j(A)2

1 + ρτi(A)
≤ τj(A). (35)

The proof of this lemma is similar to Lemma 5 in [3]. We recall the proof for completeness.

Proof. (Adapted from [3]) The Sherman-Morrison formula applied toAWW ᵀAᵀ and the vector√
ρai yields

(AWW ᵀAᵀ)−1 = (AAᵀ + ρaia
ᵀ
i )−1 (36)

= (AAᵀ)−1 − (AAᵀ)−1ρaia
ᵀ
i (AAᵀ)−1

1 + ρaᵀ
i (AAᵀ)−1ai

. (37)

By definition of τi(AW )

τi(AW ) =
√

1 + ρaᵀ
i (AWW ᵀAᵀ)−1ai

√
1 + ρ (38)

= (1 + ρ)aᵀ
i

(
(AAᵀ)−1 − (AAᵀ)−1ρaia

ᵀ
i (AAᵀ)−1

1 + ρaᵀ
i (AAᵀ)−1ai

)
ai

= (1 + ρ)

(
τi(A)− ρτi(A)2

1 + ρτi(A)

)
= (1 + ρ)

τi(A)

1 + ρτi(A)
.

Now let j ∈ [M ]− {i}. By definition of τj(AW )

τj(AW ) = aᵀ
j (AWW ᵀAᵀ)−1aj (39)

= aᵀ
j

(
(AAᵀ)−1 − (AAᵀ)−1ρaia

ᵀ
i (AAᵀ)−1

1 + ρaᵀ
i (AAᵀ)−1ai

)
aj

= τj(A)− ρτi,j(A)2

1 + ρτi(A)

≤ τj(A).

C.3 Principal angles between subspaces in Hilbert spaces

We recall in this section the definition of principal angles between subspaces in Hilbert spaces and
connect them to the determinant of the Gramian matrix of their orthonormal bases.
Proposition 5. LetH be a Hilbert space. Let P1 and P2 be two finite-dimensional subspaces ofH
with N = dimP1 = dimP2. Denote ΠP1

and ΠP2
the orthogonal projections ofH onto these two

subspaces. There exist two orthonormal bases for P1 and P2 denoted (v1i )i∈[N ] and (v2i )i∈[N ], and
a set of angles θi(P1,P2) ∈ [0, π2 ] such that

cos θN (P1,P2) ≤ · · · ≤ cos θ1(P1,P2), (40)

and for i ∈ [1, ..., N ]
〈v1i ,v2i 〉H = cos θi(P1,P2), (41)

and
ΠP1v

2
i = cos θi(P1,P2)v1i , (42)

and
ΠP2

v1i = cos θi(P1,P2)v2i . (43)
In particular

cos θN (P1,P2) = inf
v∈P1,‖v‖H=1

‖ΠP2v‖H. (44)
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We refer to [8] for the proof in the finite-dimensional case and [5] for the general case. The following
result shows that the principal angles are somewhat independent of the choice of orthonormal bases.
It can be found in [2, 17] for the finite dimensional case. We give here the proof for the general case,
for the sake of completeness.
Corollary 2. Let (w1

i )i∈[N ] be any orthonormal basis of P1 and (w2
i )i∈[N ] be any orthonormal

basis of P2, and let W = (〈w1
i ,w

2
j 〉H)1≤i,j≤N and G = WW ᵀ. Then the eigenvalues of G are

the cos2 θi(P1,P2). In particular, Det2W = DetG =
∏
i∈[N ]

cos2 θi(P1,P2).

Proof. Let (vii)i∈[N ], i ∈ {1, 2}, be the bases of Proposition 5. Let U1 ∈ ON (R) be such that

∀i ∈ [N ], w1
i =

∑
j∈[N ]

u1i,jv
1
j . (45)

Similarly, there exists a matrix U2 ∈ ON (R) such that

∀i ∈ [N ], w2
i =

∑
j∈[N ]

u2i,jv
2
j . (46)

This implies that
W = U1V U2 ᵀ, (47)

where V = (〈v1i ,v2j 〉H)1≤i,j≤N . Then

G = WW ᵀ = U1V V ᵀU1 ᵀ. (48)

Thus the eigenvalues ofG are the eigenvalues of V V ᵀ. By Proposition 5, the diagonal elements of
V are

vi,i = 〈v1i ,v2i 〉H = cos θi(P1,P2). (49)

We finish the proof by showing that the anti-diagonal elements satisfy

vi,j = 〈v1i ,v2j 〉H = 0. (50)

By (42),
∀i ∈ [N ],

∑
j∈[N ]

〈v2i ,v1j 〉2H = ‖ΠP1
v2i ‖2H = cos2 θi(P1,P2). (51)

Then ∑
i∈[N ]

∑
j∈[N ]

〈v2i ,v1j 〉2H =
∑
i∈[N ]

cos2 θi(P1,P2) =
∑
i∈[N ]

〈v2i ,v1i 〉2H. (52)

Thus ∑
i,j∈[N ]
i 6=j

〈v2i ,v1i 〉2H = 0. (53)

Finally, V is a diagonal matrix and the eigenvalues ofG are the cos2 θi(P1,P2).

D Proofs of our results

Section D.1 contains the proof of Proposition 2. In the main paper, we use it under the form of
Corollary 1 to ensure thatK(x) is almost surely invertible when x = {x1, . . . , xN} is a projection
DPP with reference measure dω and kernel (10). This allows computing the quadrature weights.

The rest of Section D deals with Theorem 1, our upper bound on the approximation error of DPP-
based kernel quadrature. The proof is rather long, but can be decomposed in four steps, which we
now introduce for ease of reading.

First, we prove Lemma 1, which separates the search for an upper bound into examining the
contribution of the three terms in (17); this is Section D.2. The first two terms of (17) only depend
on the function g in (1), and we leave them be. The third term is more geometric, and relates to the
approximation error of the space spanned by (eFn )n∈[N ] by the (random) subspace T (x).
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Second, in Section D.3, we bound this geometric term for a fixed DPP realization x. We pay
attention to obtain a bound that will later yield a tractable expectation under that DPP. This is done in
Proposition 4, which in turn requires two intermediate results, Lemma 4 and Proposition 6.

Third, we take the expectation of the bound in Proposition 4 under the proposed DPP. This is done in
Proposition 3, which is proven thanks to Proposition 2, Lemmas 2, 5 & 6. This is Section D.4.

Fourth, Theorem 1 is obtained in Section D.5, using the results of the previous steps, and an argument
to reduce the proof to RKHSs with flat initial spectrum.

D.1 Proof of Proposition 2

Proof. Recall the Mercer decomposition of k:

k(x, y) =
∑
m∈N∗

σmem(x)em(y), (54)

where the convergence is point-wise on X . Define for M ∈ N∗, M ≥ N the M -th truncated kernel

kM (x, y) =
∑

m∈[M ]

σmem(x)em(y). (55)

By (54)
∀x, y ∈ X , lim

M→∞
kM (x, y) = k(x, y). (56)

Let x = (x1, . . . , xN ) ∈ XN such that DetE(x) 6= 0, and define

KM (x) = (kM (xi, xj))i,j∈[N ]. (57)

By the continuity of the functionM ∈ RN×N 7→ DetM and by (56)

lim
M→∞

DetKM (x) = DetK(x). (58)

Thus to prove that DetK(x) > 0, it is enough to prove that the DetKM (x) is larger than a positive
real number for M large enough. We write

KM (x) = FM (x)ᵀΣMFM (x), (59)

with FM (x) = (ei(xj))(i,j)∈[M ]×[N ] and ΣM is a diagonal matrix containing the firstM eigenvalues
(σm). The Cauchy-Binet identity yields

DetKM (x) =
∑

T⊂[M ],|T |=N

∏
i∈T

σi Det2(ei(xj))(i,j)∈T×[N ] (60)

≥
∏
i∈[N ]

σi Det2E(x) > 0. (61)

Therefore,
DetK(x) = lim

M→∞
DetKM (x) ≥

∏
i∈[N ]

σi Det2E(x) > 0. (62)

so thatK(x) is a.s. invertible.

D.2 Proof of Lemma 1

Proof. First, we prove that
‖Σ−1/2µg‖2F = ‖g‖2dω ≤ 1. (63)

Recall that
µg =

∫
X
g(y)k(., y)dω(y), (64)

and that we assumed in Section 1 that F is dense in L2(dω), so that (em)m∈N is an orthonormal
basis of L2(dω) and the eigenvalues σn are strictly positive. Now let Σ−1/2 : F → L2(dω) and
Σ1/2 : L2(dω)→ F be defined by

Σ−1/2eFm = em, ∀m ∈ N∗, (65)
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Σ1/2em = eFm, ∀m ∈ N∗. (66)

Observe that Σ−1/2µg = Σ−1/2Σg = Σ1/2g ∈ F . Now, for m ∈ N∗,

〈eFm,Σ−1/2µg〉F = 〈eFm,Σ1/2g〉F (67)

= 〈eFm,Σ1/2
∑
n∈N∗
〈g, en〉dωen〉F (68)

=
∑
n∈ N∗

〈g, en〉dω〈eFm,Σ1/2en〉F (69)

=
∑
n∈ N∗

〈g, en〉dω〈eFm, eFn 〉F (70)

= 〈g, em〉dω.

As a consequence,
‖Σ−1/2µg‖2F = ‖g‖2dω ≤ 1. (71)

Now we turn to proving (17) from the main text. Define first the operators ΣN ,Σ
1/2
N ,Σ⊥N ,Σ

⊥1/2
N :

L2(dω)→ F , Σ1/2
N : L2(dω)→ F and Σ⊥N : L2(dω)→ F by

ΣNem =

{
σmem ifm ∈ [N ]
0 else , (72)

Σ
1/2
N em =

{ √
σmem ifm ∈ [N ]

0 else , (73)

Σ⊥Nem =

{
0 ifm ∈ [N ]
σmem ifm ≥ N + 1

, (74)

Σ
⊥1/2
N em =

{
0 ifm ∈ [N ]√
σmem ifm ≥ N + 1

, (75)

Note that Σ1/2 = Σ
1/2
N + Σ

⊥1/2
N and

sup
‖µ‖F≤1

‖Σ⊥1/2N µ‖2F = σN+1. (76)

Using (71), there exists µ̃g ∈ F such that ‖µ̃g‖F ≤ 1 and µg = Σ1/2µ̃g. Now, the approximation
error writes

‖ΠT (x)⊥µg‖2F = ‖ΠT (x)⊥Σ
1/2µ̃g‖2F (77)

= ‖ΠT (x)⊥(Σ
1/2
N + Σ

⊥1/2
N )µ̃g‖2F

= ‖ΠT (x)⊥Σ
1/2
N µ̃g‖2F + ‖ΠT (x)⊥Σ

⊥1/2
N µ̃g‖2F (78)

+ 2〈ΠT (x)⊥Σ
1/2
N µ̃g,ΠT (x)⊥Σ

⊥1/2
N µ̃g〉F

≤ 2
(
‖ΠT (x)⊥Σ

1/2
N µ̃g‖2F + ‖ΠT (x)⊥Σ

⊥1/2
N µ̃g‖2F

)
.

The operator ΠT (x)⊥ is an orthogonal projection and ‖µ̃g‖F ≤ 1 so that by (76)

‖ΠT (x)⊥Σ
⊥1/2
N µ̃g‖2F ≤ ‖Σ

⊥1/2
N µ̃g‖2F ≤ σN+1. (79)

Now, recall that the (eFn )n∈[N ] is orthonormal. Moreover for n ∈ [N ], eFn is an eigenfunction of
Σ

1/2
N and the corresponding eigenvalue is

√
σn. Thus

ΠT (x)⊥Σ
1/2
N µ̃g = ΠT (x)⊥

∑
n∈[N ]

√
σn〈µ̃g, eFn 〉FeFn =

∑
n∈[N ]

〈µ̃g, eFn 〉F
√
σnΠT (x)⊥e

F
n . (80)
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Then
‖ΠT (x)⊥Σ

1/2
N µ̃g‖2F = ‖

∑
n∈[N ]

〈µ̃g, eFn 〉F
√
σnΠT (x)⊥e

F
n ‖2F (81)

=
∑
n∈[N ]

∑
m∈[N ]

〈µ̃g, eFn 〉F 〈µ̃g, eFm〉F
√
σn
√
σm〈ΠT (x)⊥e

F
n ,ΠT (x)⊥e

F
m〉F

≤
∑
n∈[N ]

∑
m∈[N ]

〈µ̃g, eFn 〉F 〈µ̃g, eFm〉F
√
σn
√
σm‖ΠT (x)⊥e

F
n ‖F‖ΠT (x)⊥e

F
m‖F

≤

 ∑
n∈[N ]

∑
m∈[N ]

|〈µ̃g, eFn 〉F | · |〈µ̃g, eFm〉F |

 max
n∈[N ]

σn‖ΠT (x)⊥e
F
n ‖2F

≤

 ∑
n∈[N ]

|〈µ̃g, eFn 〉F |

2

max
n∈[N ]

σn‖ΠT (x)⊥e
F
n ‖2F . (82)

Remarking that ‖g‖dω,1 =
∑

n∈[N ]

|〈µ̃g, eFn 〉F | concludes the proof of (17) and therefore Lemma 1.

D.3 Proof of Proposition 4

Proposition 4 gives an upper bound to the term max
n∈[N ]

σn‖ΠT (x)⊥e
F
n ‖2F that appears in Lemma 1.

We first prove a technical result, Lemma 4, and then combine it with Proposition 6 to finish the proof.
We conclude with the proof of Proposition 6.

D.3.1 A preliminary lemma

Let x = (x1, . . . , xN ) ∈ XN . Recall that K(x) = (k(xi, xj))1≤i,j≤N and denote K̃(x) =

(k̃(xi, xj))1≤i,j≤N , see section 4.2.2. In the following, we define

∆Fn (x) = eFn (x)ᵀK(x)−1eFn (x) (83)

∆F̃n (x) = eF̃n (x)ᵀK̃(x)−1eF̃n (x) (84)

Lemma 4 below shows that each term of the form ∆Fn (x) measures the squared norm of the projection
of eFn on T (x). The same holds for ∆F̃n (x) and the projection of eF̃n onto T̃ (x).

Indeed, ‖ΠT (x)⊥e
F
n ‖2F = 1 − ‖ΠT (x)e

F
n ‖2F since ‖eFn ‖2F = 1. Thus it is sufficient to prove that

‖ΠT (x)e
F
n ‖2F = ∆Fn (x). This boils down to showing thatK(x)−1 is the matrix of the inner product

〈·, ·〉F restricted to T (x).

Lemma 4. For n ∈ N∗, let eFn (x), eF̃n (x) ∈ RN the vectors of the evaluations of eFn and eF̃n on the
elements of x respectively. Then

‖ΠT (x)⊥e
F
n ‖2F = 1−∆Fn (x), (85)

‖ΠT̃N (x)⊥e
F̃
n ‖2F̃ = 1−∆F̃n (x). (86)

We give the proof of (85); the proof of (86) follows the same lines.

Proof. Let us write
ΠT (x)e

F
n =

∑
i∈[N ]

cik(xi, .), (87)

where the ci are the elements of the vector c = K(x)−1eFn (x). Then

ΠT (x)e
F
n =

∑
i∈[N ]

ci
∑
m∈N∗

σmem(xi)em(.) (88)

=
∑
m∈N∗

√
σm

∑
i∈[N ]

ciem(xi)

 eFm(.).

11



Since (eFm)m∈N∗ is orthonormal,

‖ΠT (x)e
F
n ‖2F =

∑
m∈N∗

σm

∑
i∈[N ]

ciem(xi)

2

(89)

=
∑
m∈N∗

σm
∑
i∈[N ]

∑
j∈[N ]

cicjem(xi)em(xj)

=
∑
m∈N∗

cᵀeFm(x)eFm(x)ᵀc

= cᵀ
∑
m∈N∗

eFm(x)eFm(x)ᵀc.

Using Mercer’s theorem, see (56),

K(x) =
∑
m∈N∗

eFm(x)eFm(x)ᵀ. (90)

Combining (89) and (90) along with the definition of the vector c = K(x)−1eFn (x) yields

‖ΠT (x)e
F
n ‖2F = cᵀK(x)c (91)

= eFn (x)ᵀK(x)−1K(x)K(x)−1eFn (x)

= eFn (x)ᵀK(x)−1eFn (x)

= ∆Fn (x).

D.3.2 End of the proof of Proposition 4

Proof. By Lemma 4, the inequality (22) in Proposition 4 is equivalent to

∀n ∈ [N ], σn
(
1−∆Fn (x)

)
≤ σ1

(
1−∆F̃n (x)

)
. (92)

As an intermediate remark, note that in the special case n = 1, by construction

K(x) ≺ K̃(x), (93)

where ≺ is the Loewner order, the partial order defined by the convex cone of positive semi-definite
matrices. Thus

K̃(x)−1 ≺K(x)−1. (94)

Noting that σ̃1 = σ1 and that

eF1 =
√
σ1e1 =

√
σ̃1e1 = eF̃1 . (95)

yields (92) for n = 1:

1− eF1 (x)ᵀK(x)−1eF1 (x) ≤ 1− eF̃1 (x)ᵀK̃(x)−1eF̃1 (x). (96)

For n 6= 1, the proof is much more subtle. Indeed, a naive application of the inequality (94) would
lead to the following inequality

1− eF̃n (x)ᵀK(x)−1eF̃n (x) ≤ 1− eF̃n (x)ᵀK̃(x)−1eF̃n (x). (97)

Since ∀n ∈ N, eF̃n =
√
σ1/σne

F
n , we get

1− σ1eFn (x)ᵀK(x)−1eFn (x) ≤ 1− σneF̃n (x)ᵀK̃(x)−1eF̃n (x), (98)

and hence the unsatisfactory inequality

1− σ1∆Fn (x) ≤ 1− σn∆F̃n (x) (99)
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We can prove a better inequality by applying a sequence of rank-one updates to the kernel k to build
N intermediate kernels k(`) that lead to N inequalities sharp enough to prove (92) for n 6= 1. Then
inequality (92) will result as a corollary of Proposition 6 below. To this aim, we define N RKHS F̃`,
1 ≤ ` ≤ N , that interpolate between F and F̃ . For ` ∈ [N ], define the kernel k̃(`) by

k̃(`)(x, y) =
∑
m∈[`]

σ1em(x)em(y) +
∑

m≥`+1

σmem(x)em(y), (100)

and let F̃` the RKHS corresponding to the kernel k̃(`). For x ∈ XN , define K̃(`)(x) =

(k̃(`)(xi, xj))1≤i,j≤N . Similar to previous notations, we define as well

∆F̃`n (x) = eF̃`n (x)ᵀK̃(`)(x)−1eF̃`n (x). (101)

Now we have the following useful proposition.

Proposition 6. For n ∈ [N ] r {1}, we have

σn

(
1−∆F̃n−1

n (x)
)
≤ σ1

(
1−∆F̃nn (x)

)
, (102)

and
∀ ` ∈ [N ] r {1, n}, 1−∆F̃`−1

n (x) ≤ 1−∆F̃`n (x). (103)

For ease of reading, we first show that inequality (92) and therefore Proposition 4 is easily deduced
from this Proposition 6 and then give its proof.

Let n ∈ [N ] such that n 6= 1. We first remark that F = F̃1 and use (n− 2) times inequality (103) of
Proposition 6:

σn
(
1−∆Fn (x)

)
= σn

(
1−∆F̃1

n (x)
)

(104)

≤ σn
(

1−∆F̃n−1
n (x)

)
Then we use (102) that is connected to the rank-one update from the kernel k(n−1) to k(n) so that

σn

(
1−∆F̃n−1

n (x)
)
≤ σ1

(
1−∆F̃nn (x)

)
(105)

Then we apply (103) to the r.h.s. again N − n− 1 times to finally get:

σn
(
1−∆Fn (x)

)
≤ σ1

(
1−∆F̃Nn (x)

)
(106)

≤ σ1
(

1−∆F̃n (x)
)
,

since k̃(N) = k̃ and F̃N = F̃ . This concludes the proof of the desired inequality (92) and therefore
of Proposition 4.

D.3.3 Proof of Proposition 6

Proof. (Proposition 6) Let n ∈ [N ]r {1}, and M ∈ N such that M ≥ N . LetA` ∈ RN×M defined
by

∀(i,m) ∈ [N ]× [M ], (A`)i,m = eF̃`m (xi).
1 (107)

For ` ∈ [N ] define
K̃

(`)
M (x) = Aᵀ

`A`. (108)

LetW` ∈ RM×M the diagonal matrix defined by

W` = diag(1, ..., 1︸ ︷︷ ︸
`−1

,

√
σ1
σ`
, 1..., 1) (109)

1The matrix A` depends on x.
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Then one has the simple relation
A`+1 = A`W`, (110)

which prepares the use of Lemma 3 in Section C.2. By definition of the n-th leverage score of the
matrixA, see (31) in Section C.2,

eF̃`n (x)ᵀK̃
(`)
M (x)−1eF̃`n (x) = eF̃`n (x)ᵀ (Aᵀ

`A`)
−1
eF̃`n (x) = τn (A`) . (111)

Define similarly ∆F̃`n,M (x) = eF̃`n (x)ᵀK̃
(`)
M (x)−1eF̃`n (x). Thanks to (34) of Lemma 3 and (110) and

for ` = n

τn

(
An

)
= τn (An−1Wn) =

(1 + ρn)τn

(
An−1

)
1 + ρnτn

(
An−1

) , (112)

where ρn =
σ1
σn
− 1. Thus

1− τn
(
An

)
= 1−

(1 + ρn)τn

(
An−1

)
1 + ρnτn

(
An−1

) =
1− τn

(
An−1

)
1 + ρnτn

(
An−1

) . (113)

Then

σ1

(
1− τn

(
An

))
= σ1

1− τn
(
An−1

)
1 + ρnτn

(
An−1

) (114)

= σn(1 + ρn)
1− τn

(
An−1

)
1 + ρnτn

(
An−1

)
=

1 + ρn

1 + ρnτn

(
An−1

)σn (1− τn
(
An−1

))
≥ σn

(
1− τn

(
An−1

))
,

since ρn ≥ 0 and τn
(
An−1

)
∈ [0, 1] thanks to (33). This proves that for M ∈ N∗ such that M ≥ N ,

σn

(
1−∆

F̃n−1

n,M (x)
)
≤ σ1

(
1−∆F̃nn,M (x)

)
. (115)

Now,

lim
M→∞

K̃
(n+1)
M (x) = K̃(n+1)(x), (116)

lim
M→∞

K̃
(n)
M (x) = K̃(n)(x). (117)

Moreover the applicationX 7→X−1 is continuous in GLN (R). This proves the inequality (102) of
Proposition 6. To prove the inequality (103), we start by using (35):

∀` ∈ [N ] r {1, n}, τn
(
A(`)

)
= τn (A`−1W`) ≤ τn

(
A`−1

)
. (118)

which implies that

∀` ∈ [N ] r {1, n}, 1− τn
(
A`−1

)
≤ 1− τn

(
A`

)
. (119)

Then for M ≥ N ,

∀ ` ∈ [N ] r {1, n}, 1−∆
F̃`−1

n,M (x) ≤ 1−∆F̃`n,M (x). (120)

As above, we conclude the proof by considering the limit M →∞

∀ ` ∈ [N ] r {1, n}, lim
M→∞

K̃
(`)
M (x) = K̃(`)(x). (121)

This proves inequality (103) and concludes the proof of Proposition 6.
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D.4 Proof of Proposition 3

In this section, x = (x1, . . . , xN ) ∈ XN is the realization of the DPP of Theorem 1. Let EF (x) =
(eFi (xj))1≤i,j≤N and E(x) = (ei(xj))1≤i,j≤N , and K(x) = (k(xi, xj))1≤i,j≤N . Moreover, let
EFN = Span(eFm)m∈[N ] and T (x) = Span (k(xi, .))i∈[N ].

We first prove two lemmas that are necessary to prove Proposition 3.

D.4.1 Two preliminary lemmas

Lemma 5. Let x = (x1, . . . , xN ) ∈ XN such that Det2E(x) 6= 0. Then,∏
`∈[N ]

1

cos2 θ`
(
EFN , T (x)

) =
DetK(x)

Det2EF (x)
. (122)

Proof. The condition Det2E(x) 6= 0 yields by Proposition 2 that K(x) is non singular. Thus
dim T (x) = N . Let (ti)i∈[N ] an orthonormal basis of T (x) with respect to 〈., .〉F . Using Corollary 2,
and the fact that (eFn )n∈[N ] is an orthonormal basis of EFN according to 〈., .〉F ,∏

`∈[N ]

cos2 θ`
(
EFN , T (x)

)
= Det2(〈eFn , ti〉F )(n,i)∈[N ]×[N ]. (123)

Now, write for i ∈ [N ],
ti =

∑
j∈[N ]

ci,jk(xj , .). (124)

Thus

〈eFn , ti〉F =
∑
j∈[N ]

ci,j〈eFn , k(xj , .)〉F (125)

=
∑
j∈[N ]

ci,je
F
n (xj). (126)

Then
(〈eFn , ti〉F )(n,i)∈[N ]×[N ] = EF (x)C(x)ᵀ, (127)

where
C(x) = (ci,j)1≤i,j≤N . (128)

Thus
Det2(〈eFn , ti〉F )(n,i)∈[N ]×[N ] = Det2C(x) Det2EF (x). (129)

Now, let ci the columns of the matrix C(x). (ti)i∈[N ] is an orthonormal basis of T (x) with respect
to 〈., .〉F , then by (124)

δi,i′ = 〈ti, ti′〉F = cᵀiK(x)ci′ . (130)
Therefore

C(x)ᵀK(x)C(x) = IN . (131)
Thus

Det2C(x) =
1

DetK(x)
. (132)

Combining (123), (129) and (132) concludes the proof of Lemma 5:∏
`∈[N ]

1

cos2 θ`
(
EFN , T (x)

) =
DetK(x)

Det2EF (x)
. (133)

Lemma 6.
1

N !

∫
XN

DetK(x1, . . . , xN )⊗j∈[N ] dω(xj) =
∑
T⊂N∗
|T |=N

∏
t∈T

σt. (134)
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Proof. Let x = (x1, . . . , xN ) ∈ XN . From (56)

DetK(x) = lim
M→∞

DetKM (x). (135)

Moreover,
DetKM (x) =

∑
T⊂[M ],|T |=N

∏
i∈T

σi Det2(ei(xj))(i,j)∈T×[N ]. (136)

Now, for T ⊂ [M ] such that |T | = N , (et)t∈T is an orthonormal family of L2(dω), then by [11]
Lemma 21: ∫

XN
Det2(et(xj))⊗j∈[N ] dω(xj) = N !. (137)

Thus
1

N !

∫
XN

DetKM (x)⊗j∈[N ] dω(xj) =
1

N !

∑
T⊂[M ],|T |=N

∏
t∈T

σt

∫
XN

Det2(et(xj))⊗j∈[N ] dω(xj)

(138)

=
∑

T⊂[M ],|T |=N

∏
t∈T

σt.

Now,
∑
n∈N∗

σn < ∞ implies that
∑

T⊂N∗,|T |=N

∏
t∈T

σt < ∞. In fact, for ` ∈ [N ] let p` the `-th

symmetric polynomial. By Maclaurin’s inequality [22], and for any vector ν ∈ RM+(
p`(ν)(
M
`

) ) 1
`

≤ p1(ν)

M
. (139)

Thus

p`(ν) ≤
(
M
`

)
M `

p1(ν)` (140)

≤ M !

`!(M − `)!M `
p1(ν)`

≤ M(M − 1) . . . (M − `+ 1)

`!M `
p1(ν)`

≤ 1

`!
p1(ν)`.

This inequality is independent of the dimension M thus it can be extended for ν ∈ RN∗
+ with∑

n∈N∗
νn <∞. Therefore

∑
T⊂N∗,|T |=N

∏
t∈T

σt ≤
1

N !
(
∑
n∈N∗

σn)N <∞. (141)

Furthermore,

∀M ∈ N∗, ∀x ∈ XN , 0 ≤ DetKM (x) ≤ DetKM+1,N (x). (142)

Then by monotone convergence theorem, x 7→ 1

N !
DetK(x) is mesurable and∫

XN

1

N !
DetK(x)⊗j∈[N ] dω(xj) = lim

M→∞

∫
XN

1

N !
DetKM (x)⊗j∈[N ] dω(xj) (143)

= lim
M→∞

∑
T⊂[M ],|T |=N

∏
t∈T

σt

=
∑

T⊂N∗,|T |=N

∏
t∈T

σt.
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D.4.2 End of the proof of Proposition 3

Proof. Remember that
P (DetE(x) 6= 0) = 1. (144)

Then by Lemma 5 and the fact that Det2EF (x) =
∏

n∈[N ]

σn Det2E(x)

∏
`∈[N ]

1

cos2 θ`
(
EFN , T (x)

) =
DetK(x)

Det2EF (x)
=

1∏
n∈[N ]

σn

DetK(x)

Det2E(x)
. (145)

Then, taking the expectation with respect to x resulting from a DPP of kernel K(x, y),

EDPP

∏
`∈[N ]

1

cos2 θ`
(
EFN , T (x)

) =
1

N !

∫
XN

Det2E(x)
∏
`∈[N ]

1

cos2 θ`
(
EFN , T (x)

) ⊗Ni=1 dω(xi)

(146)

=
1

N !

∫
XN

Det2E(x)
1∏

n∈[N ]

σn

DetK(x)

Det2E(x)
⊗Ni=1 dω(xi)

=
1∏

n∈[N ]

σn

1

N !

∫
XN

DetK(x)⊗Ni=1 dω(xi).

Now, by Lemma 6
1

N !

∫
XN

DetK(x)⊗Ni=1 dω(xi) =
∑
T⊂N∗
|T |=N

∏
t∈T

σt. (147)

Therefore,

EDPP

∏
`∈[N ]

1

cos2 θ`
(
EFN , T (x)

) =
∑
T⊂N∗
|T |=N

∏
t∈T

σt∏
n∈[N ]

σn
. (148)

D.5 Proof of Theorem 1

Proof. Thanks to Proposition 4 and Lemma 2 (for F̃ and k̃)

max
n∈[N ]

σn‖ΠT (x)⊥e
F
n ‖2F ≤ σ1 · max

n∈[N ]
‖ΠT̃ (x)⊥e

F̃
n ‖2F̃ (149)

≤ σ1 ·

 ∏
n∈[N ]

1

cos2 θn(T̃ (x), E F̃N )
− 1

 . (150)

Then Proposition 3 applied to F̃ with kernel k̃ yields

EDPP

∏
n∈[N ]

1

cos2 θn

(
E F̃N , T̃N (x)

) =
∑
T⊂N∗
|T |=N

∏
t∈T

σ̃t∏
n∈[N ]

σ̃n
. (151)

Every subset T ⊂ N∗ such that |T | = N can be written as T = V ∪ W with V ⊂ [N ] and
W ⊂ N∗ r [N ], and this decomposition is unique. Then∏

t∈T
σ̃t∏

n∈[N ]

σ̃n
=

∏
v∈V

σ̃v
∏
w∈W

σ̃w∏
n∈[N ]

σ̃n
=

∏
w∈W

σ̃w∏
n∈[N ]rV

σ̃n
. (152)

17



Therefore

∑
T⊂N∗
|T |=N

∏
t∈T

σ̃t∏
n∈[N ]

σ̃n
=

∑
T⊂N∗
|T |=N
T=V ∪W

∏
w∈W

σ̃w∏
n∈[N ]rV

σ̃n
(153)

=
∑
V⊂[N ]

∑
W⊂N∗r[N ]
|W |=N−|V |

∏
w∈W

σ̃w∏
n∈[N ]rV

σ̃n

=
∑

0≤`≤N

[ ∑
V⊂[N ]
|V |=`

∏
n∈[N ]rV

1

σ̃n

][ ∑
W⊂N∗r[N ]
|W |=N−`

∏
w∈W

σ̃w

]

=
∑

0≤`≤N

[ ∑
V⊂[N ]
|V |=N−`

∏
n∈V

1

σ̃n

][ ∑
W⊂N∗r[N ]
|W |=N−`

∏
w∈W

σ̃w

]

=
∑

0≤`≤N

pN−`

((
1

σ̃m

)
m∈[N ]

)
pN−` ((σ̃m)m≥N+1)

=
∑

0≤`≤N

p`

((
1

σ̃m

)
m∈[N ]

)
p` ((σ̃m)m≥N+1) ,

where for ` ∈ [N ], p` is the `-th symmetric polynomial with the convention that p0 = 1.

Finally, thanks to (140) above

∑
T⊂N∗
|T |=N

∏
t∈T

σ̃t∏
n∈[N ]

σ̃n
≤ 1 +

∑
`∈[N ]

1

`!2

 ∑
m∈[N ]

1

σ̃m

∑
m≥N+1

σ̃m

`

(154)

≤ 1 +
∑
`∈[N ]

1

`!2

N

σ1

∑
m≥N+1

σm

`

.

As a consequence, by writing rN =
∑

m≥N+1

σm,

EDPP

[
max
n∈[N ]

σn‖ΠT (x)⊥e
F
n ‖2F

]
≤ σ1 ·

N∑
`=1

1

`!2

(
NrN
σ1

)`
(155)

which can be plugged in Lemma 1 to conclude the proof.

E The intuitions behind the algorithm

The algorithm presented in this article is based on several intuitions. In this section, we summarize
these intuitions.

E.1 The geometric intuition

Recall that the quadrature problem in a RKHS boils down to a problem of interpolation of the
mean element µg by a mixture of k(xi, .), where g ∈ L2(dω) such that ‖g‖dω ≤ 1. A promising
algorithm would thus be to select the nodes {xi, i ∈ [N ]} so as to minimize the projection of µg onto
T (x) = Span(k(xi, ·); i ∈ [N ]). Upper bounding the approximation error ‖µg −ΠT (x)µg‖F is not
easy in general. One the one side, we propose to replace µg by its projection ΠEFNµg onto the first
eigenfunctions of Σ. Then it is easy to prove that

‖µg −ΠEFNµg‖F ≤
√
σN+1. (156)
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θN (T̃ (x), E F̃N )

E F̃N = Span(eF̃j )j∈[N ]

T̃ (x) = Span k̃(xi, .)i∈[N ]

Figure 4: Illustration of the largest principal angle between the subspaces T̃ (x) and E F̃N in the case
of the RKHS of Section 5.1 (the periodic Sobolev space of order 1).

On the other side, if we find a quadrature rule such that ‖ΠEFNµg − ΠT (x)µg‖F is small, then
we can guarantee an overall approximation error that is not too much worse than the PCA error
(156). After introducing an auxiliary RKHS F̃ with kernel k̃, we express this second term using the
principal angles between the subspaces T̃ (x) and E F̃N (see section 4.2.2). This yields a bound on the
interpolation error

‖µg −ΠT (x)µg‖2F ≤ 2

(
σN+1 + σ1‖g‖2dω,1 tan2 θN

(
E F̃N , T̃ (x)

))
. (157)

The first term in the right hand side of (157) is 2σN+1, which corresponds to the approximation
error observed in numerical simulations. The second term depends on the largest principal angle
θN between the subspaces T̃ (x) and E F̃N , see Figure 4. This term can in turn be bounded by the
symmetrized quantity ∏

`∈[N ]

1

cos2 θ`

(
E F̃N , T̃ (x)

) − 1 =
Det K̃(x)

Det2EF̃ (x)
− 1, (158)

which has a tractable expectation under the projection DPP that we consider in this paper. As an
illustration of (157), Figure 5 compares the quality of approximation of a mean element µg using
kernel interpolation based on two configurations of nodes: the first configuration (top) is well spread
and the second configuration (bottom) is not. Observe that the largest principal angle θN for the first
configuration is around π/4, so that tan2 θN ≈ 1; while it is around π/2 for the second configuration
so that tan2 θN � 1. Now observe that the first design of nodes gives the best reconstruction. This
observation is consistent with (157).

E.2 The inclusion probability of DPPs and the Christoffel functions

The optimal distribution qλ, see section 2.2, can be linked to the so-called Christoffel functions [19].
These functions are rooted in the literature on orthogonal polynomials [18]. To make it simpler, we
introduce them in dimension d = 1. They are defined by

C`,dω : z 7→ min
P∈R`[X]
P (z)=1

∫
X
P (x)2dω(x), ` ∈ N. (159)

Christoffel functions have a more explicit form [18] that can be used for pointwise evaluation

C`,dω(z) =
1∑

m≤`
Pm(z)2

, ` ∈ N, (160)

where (Pm)m∈N are the orthonormal polynomials with respect to dω. To establish a connection with
qλ, the authors of [19] defined regularized Christoffel functions for some kernel k:

Cλ,dω,k : z 7→ min
f∈F
f(z)=1

∫
X
f(x)2dω(x) + λ‖f‖2F , λ ∈ R∗+. (161)
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Figure 5: The dependency of the quality of reconstruction and the largest principal angle

θN = θN

(
T̃ (x), E F̃N

)
for N = 5. A comparison of a design of nodes well-spread (above)

and a design of nodes with clustering (below).
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Figure 6: The inclusion probability of the projection DPP in the Gaussian case (d = 1): (a) the

evaluations of the functions x 7→ K(x, x)

N
dω(x) for N ∈ {1, 2, 5, 10} where dω is the measure of a

normalized Gaussian variable, (b) the empirical inclusion probability based on 50000 realisations of
the projection DPP compared to the evaluation of the Christoffel function (N = 5), the dots in red
corresponds to the zeros of the scaled Hermite polynomial of order 5.

The authors derived an asymptotic equivalent of the function Cλ,w,k in the regime λ → 0 under
some assumptions on the kernel. Furthermore, they proved that Cλ,w,k is tied to qλ by the following
relationship (Lemma 5, [19]):

qλ(x) ∝ 〈k(x, .), (Σ + λIH)−1k(x, .)〉F =
1

Cλ,w,k(x)
. (162)

On the other hand, assume that the (ψn) are the family of orthonormal polynomials with respect to
dω. Let x ∈ X and x a random subset of XN drawn from the Projection DPP (K,dω), then

PDPP(x ∈ x) =
1

N
K(x, x)dω(x) =

1

N

∑
n∈[N ]

ψn(x)ψn(x)dω(x) =
1

NCN,dω(x)
dω(x). (163)

In other words, the inclusion probability of the corresponding projection DPP is related to the inverse
of the Christoffel function as defined in (160). Figure 6 illustrates the evaluations of the inclusion
probability of the projection DPP in the case of RKHS defined by the Gaussian kernel along with the
Gaussian measure in the real line. Recall that in this case the eigenfunctions are given by

ẽm(.) = Hm(
√

2c.). (164)

The theoretical analysis of the "bumps" of the functions x 7→ 1/N K(x, x)dω(x) was carried out in [7].
More precisely, the authors studied the approximations of those bumps by Gaussians centred on the
Hermite polynomials roots, see Figure 6 (b). We observe a similar behaviour for the multidimensional
Gaussian case as illustrated in Figure 7: the inclusion probability of the projection DPP have has
local maxima around the tensor products of the Hermite polynomials roots. In other words, the
quadratures based on nodes sampled according to a projection DPP are probabilistic relaxations of
classical quadratures based on roots of orthogonal polynomials that can be defined even if N is not
the square of an integer (the cases N ∈ {17, 21} in Figure 7).
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Figure 7: The inclusion probability of the projection DPP in the multidimensional Gaussian case

(d = 2): the evaluations of the functions x 7→ K(x, x)

N
⊗di=1 dω(xi) for N ∈ {16, 17, 21, 25}, the

dots in black corresponds to the tensor product of the zeros of the scaled Hermite polynomials.
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