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Abstract

Signal degradation is ubiquitous, and computational restoration of degraded signal
has been investigated for many years. Recently, it is reported that the capability of
signal restoration is fundamentally limited by the so-called perception-distortion
tradeoff, i.e. the distortion and the perceptual difference between the restored
signal and the ideal “original” signal cannot be made both minimal simultaneously.
Distortion corresponds to signal fidelity and perceptual difference corresponds to
perceptual naturalness, both of which are important metrics in practice. Besides,
there is another dimension worthy of consideration–the semantic quality of the
restored signal, i.e. the utility of the signal for recognition purpose. In this paper,
we extend the previous perception-distortion tradeoff to the case of classification-
distortion-perception (CDP) tradeoff, where we introduced the classification error
rate of the restored signal in addition to distortion and perceptual difference. In
particular, we consider the classification error rate achieved on the restored signal
using a predefined classifier as a representative metric for semantic quality. We
rigorously prove the existence of the CDP tradeoff, i.e. the distortion, perceptual
difference, and classification error rate cannot be made all minimal simultaneously.
We also provide both simulation and experimental results to showcase the CDP
tradeoff. Our findings can be useful especially for computer vision research where
some low-level vision tasks (signal restoration) serve for high-level vision tasks
(visual understanding). Our code and models have been published.

1 Introduction

Signal degradation refers to the corruption of the signal due to many different reasons such as
interference and the blend of interested signal and uninterested signal or noise, which is observed
ubiquitously in practical information systems. The cause of signal degradation may be physical
factors, such as the imperfectness of data acquisition devices and the noise in data transmission
medium; or may be artificial factors, such as the lossy data compression and the transmission of
multiple sources over the same medium at the same time. In addition, in cases where we want to
enhance signal, we may assume the signal to have been somehow “degraded.” For example, if we
want to enhance the resolution of an image, we assume the image is a degraded version of an ideal
“original” image that has high resolution [6].

To tackle signal degradation or to fulfill signal enhancement, computational restoration of degraded
signal has been investigated for many years. There are various signal restoration tasks corresponding
to different degradation reasons. Taken image as example, image denoising [23], image deblurring
[17], single image super-resolution [6], image contrast enhancement [7], image compression artifact
removal [5], image inpainting [22], . . . , all belong to image restoration tasks.

Different restoration tasks have various objectives. Some tasks may be keen to recover the “original”
signal as faithfully as possible, like image denoising is to recover the noise-free image, compression
artifact removal is to recover the uncompressed image. Some other tasks may concern more about
the perceptual quality of the restored signal, like image super-resolution is to produce image details
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to make the enhanced image look like having “high-resolution,” image inpainting is to generate a
complete image that looks “natural.” Yet some other tasks may serve for recognition or understanding
purpose: for one example, an image containing a car license plate may have blur, and image deblurring
can achieve a less blurred image so as to recognize the license plate [13]; for another example, an
image taken at night is difficult to identify, and image contrast enhancement can produce a more
naturally looking image that is better understood [10]. Recent years have witnessed more and more
efforts about the last category [16, 19].

Given the different objectives, it is apparent that a signal restoration method designed for one specific
task shall be evaluated with the specific metric that corresponds to the task’s objective. Indeed, the
aforementioned objectives correspond to three groups of evaluation metrics:

1. Signal fidelity metrics that evaluate how similar is the restored signal to the “original” signal.
These include all the full-reference quality metrics, such as the well-known mean-squared-
error (MSE) and its counterpart peak signal-to-noise ratio (PSNR), the structural similarity
(SSIM) [21], and the difference in features extracted from original signal and restored signal
[8], to name a few.

2. Perceptual naturalness metrics that evaluate how “natural” is the restored signal with
respect to human perception. These are usually known as no-reference quality metrics
[14, 15]. Recently, the popularity of generative adversarial network (GAN) has motivated a
mathematical formulation of perceptual naturalness [3].

3. Semantic quality metrics that evaluate how “useful” is the restored signal in the sense that it
better serves for the following semantic-related analyses. For example, whether a restored
sample can be correctly classified is a measure of the semantic quality. There are only a few
studies about semantic quality assessment methods [12].

It is worth noting that signal fidelity metrics have dominated in the research of signal restoration.
However, is one method optimized for signal fidelity also optimal for perceptual naturalness or
semantic quality? This question has been overlooked for a long while until recently. Blau and
Michaeli considered signal fidelity and perceptual naturalness, and concluded that optimizing for the
two metrics can be contradictory [3]. Indeed, they provided a rigorous proof of the existence of the
perception-distortion tradeoff: with distortion representing signal fidelity and perceptual difference
representing perceptual naturalness, one signal restoration method cannot achieve both low distortion
and low perceptual difference up to a bound. This conclusion reveals the fundamental limit of
the capability of signal restoration, and quickly inspires the investigation of perceptual naturalness
metrics in different tasks [2, 20].

Following the work of the perception-distortion tradeoff, in this paper, we aim to consider the three
groups of metrics jointly, i.e. we want to study the relation between signal fidelity, perceptual
naturalness, and semantic quality, in the context of signal restoration. In particular, we consider
classification error rate as a representative of semantic quality metrics, because classification is
the most fundamental semantic-related analysis. We adopt the classification error rate achieved on
the restored signal using a predefined classifier as the third dimension in addition to distortion and
perceptual difference. We provide a rigorous proof of the existence of the classification-distortion-
perception (CDP) tradeoff, i.e. the distortion, perceptual difference, and classification error rate
cannot be made all minimal simultaneously. We also provide both simulation and experimental
results to showcase the CDP tradeoff. Our code and models are published at https://github.com/
AlanZhang1995/CDP-Tradeoff.

To the best of our knowledge, this paper is the first to reveal the fundamental tradeoff between the
three kinds of quality metrics: signal fidelity, perceptual naturalness, and semantic quality, in the
context of signal restoration. Our results imply that, if a signal restoration method is meant to serve
for recognition or understanding purpose, then the method is better optimized for semantic quality
instead of signal fidelity or perceptual naturalness. This is in contrast to most of the existing practices.
It then calls for more investigation of semantic quality metrics.

2 Problem Formulation

Consider the process: X → Y → X̂ , where X denotes the ideal “original” signal, Y denotes the
degraded signal, and X̂ denotes the restored signal. We consider X , Y , and X̂ each as a discrete
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random variable. The cases of continuous random variables can be deduced in a similar manner, and
are omitted hereafter. The probability mass function of X is denoted by pX(x). The degradation
model is denoted by PY |X , which is characterized by a conditional mass function p(y|x). The
restoration method is then denoted by PX̂|Y and characterized by p(x̂|y).

2.1 Distortion, Perceptual Difference, and Classification Error Rate

There are different categories of quality metrics to evaluate the signal restoration methods. For the
first category, signal fidelity, we usually adopt distortion that is defined precisely as the expectation
of a given bivariate function, i.e.

Distortion := E[∆(X, X̂)] (1)

where E is to take expectation over the joint distribution pX,X̂ , ∆(·, ·) : X × X̂ → R+ is a given
function to measure the difference between the original and the restored samples. This definition is
corresponding to the common practice of using various forms of full-reference loss functions, e.g.
MSE, in the signal restoration tasks. The definition measures the dissimilarity, i.e. the lower the
better, while some popular quality metrics such as PSNR and SSIM measure similarity.

For the second category, perceptual naturalness, it has been proved in [3] that the perceptual quality
evaluated by human when performing a real-or-fake test is indeed equivalent to the total-variation
(TV) distance between the distribution of the original signal and that of the restored signal. Following
[3], we define perceptual difference as

Perceptual Difference := d(pX , pX̂) (2)

where d(·, ·) is a function to measure the difference between two probability mass functions, such as
the TV distance and the Kullback-Leibler (KL) distance. Perception is also the lower the better.

For the third category, semantic quality, we will focus on the classification error rate achieved on the
restored signal using a predefined classifier in this paper. We will discuss the case of classifying the
signal into two categories, and note that extension to multiple categories is straightforward.

We assume each sample of the original signal belongs to one of two classes: ω1 or ω2. The a priori
probabilities and the conditional mass functions are assumed to be known as P1, P2 = 1− P1 and
pX1(x), pX2(x), respectively. In other words, X follows a two-component mixture model: pX(x) =
P1pX1(x) + P2pX2(x). Accordingly, Y follows the model: pY (y) = P1pY 1(y) + P2pY 2(y), and
X̂ follows the model: pX̂(x̂) = P1pX̂1(x̂) + P2pX̂2(x̂), where

pY i(y) =
∑
x∈X

p(y|x)pXi(x), i = 1, 2 (3)

pX̂i(x̂) =
∑
y∈Y

p(x̂|y)pY i(y) =
∑
y

∑
x

p(x̂|y)p(y|x)pXi(x), i = 1, 2 (4)

A binary classifier can be denoted by

c(t) = c(t|R) =

{
ω1, if t ∈ R
ω2, otherwise

(5)

If we apply this classifier on the restored signal X̂ , we shall achieve an error rate

Classification Error Rate := ε(X̂|c) = ε(X̂|R) = P2

∑
x̂∈R

pX̂2(x̂) + P1

∑
x̂/∈R

pX̂1(x̂) (6)

2.2 The CDP Function

We are now ready to define the CDP function, which is the focus of our study.
Definition 1. The classification-distortion-perception (CDP) function is

C(D,P ) = min
PX̂|Y

ε(X̂|c0), subject to E[∆(X, X̂)] ≤ D, d(pX , pX̂) ≤ P (7)

where c0 = c(·|R0) is a predefined binary classifier.
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(a) original signal 𝑋 (b) restored signal ෡𝑋 (c) MSE/KL Distance/Error Rate function

Figure 1: A toy example to showcase the CDP function. See text for details.

The CDP function characterizes how well a signal restoration method (PX̂|Y ) can perform, if it is
constrained to have a low distortion (less than D) and a low perceptual difference (less than P ). Note
that if D =∞, P =∞, then the restoration method is optimized purely for lowering error rate, and
thus the CDP function reaches its minimum. By defining the CDP function, we are interested to know
whether a constrained optimization can perform as well as an unconstrained one. This is because
the optimization for distortion has been studied extensively, and if the optimization for distortion or
perception also leads to the optimization for classification, then we are done. However, this is not the
case, as we will prove.

Another issue is about the predefined classifier in the definition of the CDP function. One may be
curious to know whether it is possible to adjust the classifier itself to achieve a lower error rate: this is
surely possible. However, there are a practical difficulty to train the optimal classifier for the restored
signal, since the distribution of the restored signal is dependent on the restoration method that is to be
decided. Next, we may ask whether it is practical to adjust the restoration method and the classifier
simultaneously. However, this is not necessary, because we can prove that the optimal classifier for
X̂ cannot outperform the optimal classifier for Y (see the supplementary for the proof ). That says,
we do not need to perform signal restoration if we can train the optimal classifier for the degraded
signal. But this is another practical difficulty: the distribution of the signal to be restored is often
unknown (called blind restoration), so it is not easy to train the optimal classifier for it. In summary,
if dealing with blind restoration, i.e. the distribution of the degraded signal is unknown, then it is
difficult to achieve the optimal classifier for either degraded or restored signal, so using a predefined
classifier is a more practical choice. If dealing with non-blind restoration, i.e. the distribution of
the degraded signal is known, then we can achieve the optimal classifier for the degraded signal,
and it is not necessary to perform signal restoration prior to classification as it will not improve the
classification performance. In this paper, we consider the case of blind restoration, and we leave the
case of non-blind restoration as our future work.

2.3 Toy Example

To showcase the characteristic of the CDP function, we conduct simulations with a toy example.
As shown in Figure 1, the original signal follows a two-component Gaussian mixture model: P1 =
0.7, P2 = 0.3, pX1(x) = N (−1, 1), pX2(x) = N (1, 1). The signal is corrupted by additive white
Gaussian noise: Y = X +N , where N ∼ N (0, 1). The denoising method is linear: X̂ = aY where
a is an adjustable parameter. For example, the restored signal with a = 0.8 is depicted in Figure 1 (b).
We use the binary classifier that is the optimal for the original signal to evaluate error rate. In addition,
we use MSE to evaluate distortion, and use the KL distance to evaluate perception. Under these
settings, we can derive closed-form functions of MSE and error rate with respect to the parameter a
(see the supplementary for details). For the KL distance, we do not have closed-form expression so
we perform numerical calculation. We then use numerical methods to calculate the CDP function and
depict the function in Figure 2.

First, the CDP function is monotonically non-increasing, i.e. the minimal attainable error rate
decreases as the maximal allowable distortion and perception increase. It implies that if one wants to
have a restoration method for better classification performance, it must come at the cost of higher
distortion, lower perceptual quality, or both. Second, the CDP function is convex, indicating that
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(a) (b)

Figure 2: (a) The CDP function for the toy example where we can find the minimal attainable error
rate (C) decreases as the maximal allowable MSE (D) and KL divergence (P) increase. (b) Profiles
of the CDP function at different P values and D values respectively, from which we can find the
function is convex.

if D (P ) is smaller, the error rate increases faster. Thus, minimizing D (P ) can be quite harmful
for the classification performance. Third, from Figure 2 (b), we observe that when D is small, C is
invariant with P , and when D is large, C is invariant with D. In this example, the feasible domain of
PX̂|Y is fully determined by the feasible set of a, which is indeed the intersection of the feasible set
of a defined by D and that defined by P . If D is small, the feasible set defined by D is also small
and determines the intersection. If D is large, the feasible set is also large and has no effect on the
intersection. Similarly, from Figure 2 (b), we observe that when P is small, C is invariant with D,
and when P is large, C is invariant with P . It can be interpreted similarly. Last but not the least, note
that the areas where D and P are both small are not present in the CDP function, which results from
the perception-distortion tradeoff [3].

In more general situations, it is impossible to solve Eq. (7) analytically. But some properties of the
CDP function are still valid, as shown in the following section.

3 The CDP Tradeoff

Theorem 1. Considering the CDP function (7), if d(·, q) is convex in q, then C(D,P ) is

1. monotonically non-increasing,

2. convex in D and P .

Proof. For the first point, simply note that when increasing D or P , the feasible domain of PX̂|Y

is enlarged; as C(D,P ) is the minimal value of ε(X̂|c0) over the feasible domain, and the feasible
domain is enlarged, the minimal value will not increase.

For the second point, it is equivalent to prove:

λC(D1, P1) + (1− λ)C(D2, P2) ≥ C(λD1 + (1− λ)D2, λP1 + (1− λ)P2) (8)

for any λ ∈ [0, 1]. First, let µ(x̂|y) (resp. ν(x̂|y)) denote the optimal restoration method under
constraint (D1, P1) (resp. (D2, P2)), and X̂µ (resp. X̂ν) be the restored signal, i.e.

ε(X̂µ|c0) = min
PX̂|Y

ε(X̂|c0), subject to E[∆(X, X̂)] ≤ D1, d(pX , pX̂) ≤ P1 (9)
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ε(X̂ν |c0) = min
PX̂|Y

ε(X̂|c0), subject to E[∆(X, X̂)] ≤ D2, d(pX , pX̂) ≤ P2 (10)

Then the left hand side of (8) becomes

λε(X̂µ|c0) + (1− λ)ε(X̂ν |c0) = ε(X̂λ|c0) (11)

where X̂λ denotes the restored signal corresponding to pλ(x̂|y) = λµ(x̂|y) + (1− λ)ν(x̂|y) (see the
supplementary for the proof of this equation). Let Dλ = E[∆(X, X̂λ)], Pλ = d(pX , pX̂λ), then by
definition

ε(X̂λ|c0) ≥ min
PX̂|Y

{
ε(X̂|c0) : E[∆(X, X̂)] ≤ Dλ, d(pX , pX̂) ≤ Pλ

}
= C(Dλ, Pλ) (12)

Next, as d(·, ·) in (7) is convex in its second argument, we have

Pλ = d(pX , λpX̂µ + (1− λ)pX̂ν )

≤ λd(pX , pX̂µ) + (1− λ)d(pX , pX̂ν )

≤ λP1 + (1− λ)P2

(13)

the last inequality is due to (9) and (10). Similarly, we have

Dλ = E[∆(X, X̂λ)] = EY E[∆(X, X̂λ)|Y ]

= EY [λE[∆(X, X̂µ)|Y ] + (1− λ)E[∆(X, X̂ν)|Y ]]

= λE[∆(X, X̂µ)] + (1− λ)E[∆(X, X̂ν)]

≤ λD1 + (1− λ)D2

(14)

the last inequality is again due to (9) and (10). Finally, note that C(D,P ) is non-increasing with
respect to D and P ,

C(Dλ, Pλ) ≥ C(λD1 + (1− λ)D2, λP1 + (1− λ)P2) (15)

Combining (11), (12), and (15), we have (8).

Discussion. Note that the property of the CDP function is quite similar to that of the perception-
distortion function [3], and the proof is similar, too. The theorem has assumed the convexity of the
function d(·, ·), which is satisfied by a large number of commonly used functions, including any
f-divergence (e.g. KL, TV, Hellinger) and the Rényi divergence [4, 18]. The theorem does not require
any assumption on the function ∆(·, ·), implying that the CDP tradeoff exists for any distortion metric,
including MSE/PSNR, SSIM, and the so-called feature losses which are calculated between deep
features [8], and so on. The convexity of C(D,P ) implies the tradeoff is stronger at the low distortion
or low perception regimes. In these regimes, any small improvement in distortion/perception achieved
by a restoration algorithm, must be accompanied by a large loss of classification accuracy. Similarly,
any small improvement in classification accuracy achieved by an algorithm whose error rate is already
small, must be accompanied by a large increase of distortion and/or perceptual difference.

4 Experiments

Table 1: Experimental configurations. CNN-2 and
CNN-2’ have the same network structure but differ
in input image size (28×28 and 32×32).

Dataset Task Classifier

Exp-1 MNIST Denoising Logistic
Exp-2 MNIST Denoising CNN-1
Exp-3 MNIST Denoising CNN-2
Exp-4 MNIST SR CNN-1
Exp-5 CIFAR-10 SR CNN-2’

In this section, we want to demonstrate the CDP
tradeoff by real-world datasets and realistic set-
tings. We use the MNIST handwritten digit
recognition dataset [11] and the CIFAR-10 im-
age recognition dataset [9]. The restoration
tasks we considered are denoising and super-
resolution (SR), and we use trained networks to
perform the tasks. Since our intention is not to
study the restoration method itself, we design
simple denoising and SR networks inspired by
the successful DnCNN [23] and SRCNN [6],
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(a) (b) (c)

Figure 3: Profiles of the CDP functions. From top to bottom: Exp-1, Exp-2, and Exp-4. Better
classification performance always comes at the cost of higher distortion and worse perceptual quality.

respectively. Experimental configurations are summarized in Table 1. More details can be found in
the supplementary.

In order to showcase the CDP tradeoff, we train a restoration (denoising or SR) network with
a combination of three loss functions that correspond to distortion, perceptual difference, and
classification error rate. In short, the entire loss function is

`restoration = α`MSE + β`adv + γ`CE (16)

where α, β, γ are weights. The first term is MSE loss to represent distortion, which is widely used in
image restoration research. The second term is an adversarial loss, minimizing which is to ensure
perceptual quality as suggested in [3]. Here we adopt the Wasserstein GAN [1] and the adversarial
loss `adv is proportional to the Wasserstein distance dW (pX , pX̂). Note that in the Wasserstein
GAN, the discriminator loss is indeed an estimate of the Wasserstein distance, which can be used to
assess the perceptual quality of the restored images quantitatively. The third term is cross entropy,
corresponding to classification error rate. To demonstrate that the CDP tradeoff is generic, we use
multiple classifiers in experiments: the first is a simple logistic regression, and the others are CNN-
based classifiers. For each classifier, we pretrain it on the clean (i.e. noise-free and original-resolution)
training data, and use it to evaluate cross entropy when training the denoising or SR network.

For Exp-1, Exp-2, and Exp-3, noisy images are generated by adding Gaussian noise N (0, 1) onto
the MNIST images. Then, the noisy training data as well as their clean version are used to train the
denoiser, with different combinations of (α, β, γ). After training we use the denoiser to process the
noisy MNIST test data, and calculate D (MSE), P (Wasserstein distance using the discriminator), and
C (using the pretrained classifier). For Exp-4, MNIST images are down-sampled by a factor of 6 and
then interpolated to original resolution. Interpolated images and their clean version are used to train
the SR network. For Exp-5, CIFAR-10 images are down-sampled by a factor of 3.
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Figure 4: Visual results of Exp-2 with different combinations of loss weights. As γ increases, the
perceptual quality becomes worse but the restored images are easier to recognize, see for example the
numbers ‘5’ and ‘2’ highlighted by red boxes.

Fig. 3 presents the results of Exp-1/2/4, where we plot each pair of (C, D, P) separately. For example
in (a), we plot the relation of P and D and using color to denote C. We also draw curves to connect
the points with approximately the same C. As can be observed, when C is sufficiently large, there is a
tradeoff between P and D, which has been characterized in [3]. Once C is smaller, the P-D curve
elevates, indicating that better classification performance comes at the cost of higher distortion and/or
worse perceptual quality. Similarly in (b) and (c), we can observe the relations of C-P and C-D and
all of them are convex as the theorem forecasts. Moreover, comparing Exp-1 and Exp-2 that use
different classifiers, although the error rates differ much in number, the trends of the CDP tradeoff
are similar. Please check the supplementary for more results.

Fig. 4 presents some results of Exp-2 for visual inspection. As observed, the visual quality of
denoised images in general increases along with the weight β. Given the same β, when increasing
γ, the visual quality decreases, showing a tradeoff. As expected, increasing γ will enhance the
semantic quality of the denoised images, which is actually evaluated by the pretrained classifier.
Please note the numbers ‘5’ and ‘2’ highlighted by red boxes, these numbers may be difficult to
recognize if γ is small, but seem recognizable when γ is large. There seems a positive correlation
between classification error rate (which is evaluated by the classifier) and human recognition (which
is evaluated by ourselves). Note that the human recognition is different from the visual quality:
human recognition means whether the class can be correctly recognized by human, visual quality
(perceptual naturalness as defined in this paper) means whether the image looks like a natural image.
More visual examples are provided in the supplementary.

5 Conclusion

We have addressed the classification-distortion-perception tradeoff by both proving a theorem about
the characteristic of the CDP function and showcasing the CDP functions under simulation and
experimental settings. Regardless of the restoration algorithm, the classification error rate on the
restored signal evaluated by a predefined classifier cannot be made minimal along with the distortion
and perceptual difference. The CDP function is convex, indicating that when the error rate is already
low, any improvement of classification performance comes at the cost of higher distortion and worse
perceptual quality.

Our findings can be useful especially for computer vision research where some low-level vision tasks
(signal restoration) serve for high-level vision tasks (visual understanding). It is worth noting that we
have used a predefined classifier to evaluate the classification error rate, but in practice, we may have
a different metric that directly measures the semantic quality of restored signal. More studies are
expected at this aspect in the future.
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