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Abstract

In the classical contextual bandits problem, in each round t, a learner observes1

some context c, chooses some action a to perform, and receives some reward2

ra,t(c). We consider the variant of this problem where in addition to receiving the3

reward ra,t(c), the learner also learns the values of ra,t(c′) for all other contexts4

c′; i.e., the rewards that would have been achieved by performing that action under5

different contexts. This variant arises in several strategic settings, such as learning6

how to bid in non-truthful repeated auctions, which has gained a lot of attention7

lately as many platforms have switched to running first-price auctions. We call this8

problem the contextual bandits problem with cross-learning. The best algorithms9

for the classical contextual bandits problem achieve Õ(
√
CKT ) regret against all10

stationary policies, where C is the number of contexts, K the number of actions,11

and T the number of rounds. We demonstrate algorithms for the contextual bandits12

problem with cross-learning that remove the dependence on C and achieve regret13

Õ(
√
KT ). We simulate our algorithms on real auction data from an ad exchange14

running first-price auctions (showing that they outperform traditional contextual15

bandit algorithms).16

1 Introduction17

In the contextual bandits problem, a learner repeatedly observes some context, takes some action18

depending on that context, and receives some reward depending on that context. The learner’s goal is19

to maximize their total reward over some number of rounds. The contextual bandits problem is a20

fundamental problem in online learning: it is a simplified (yet analyzable) variant of reinforcement21

learning and it captures a large class of repeated decision problems. In addition, the algorithms22

developed for the contextual bandits problem have been successfully applied in domains like ad23

placement, news recommendation, and clinical trials [14, 19, 26].24

Ideally, one would like an algorithm for the contextual bandits problem which performs approximately25

as well as the best stationary strategy (i.e., the best fixed mapping from contexts to actions). This can26

be accomplished by running a separate instance of some low-regret algorithm for the non-contextual27

bandits problem (e.g. EXP3) for every context. This algorithm achieves regret Õ(
√
CKT ) where C28

is the number of contexts, K the number of actions, and T the number of rounds. This bound can29

be shown to be tight [7]. Since the number of contexts can be very large, these algorithms can be30

impractical to use, and much modern current research on the contextual bandits problem instead aims31

to achieve low regret with respect to some smaller set of policies [4, 18, 5].32

However, some settings possess additional structure between the rewards and contexts which allow33

one to achieve less than Õ(
√
CKT ) regret while still competing with the best stationary strategy.34

In this paper, we look at a specific type of structure we call cross-learning between contexts that is35

particularly common in strategic settings. In variants of the contextual bandits problem with this36

structure, playing an action a in some context c at round t not only reveals the reward ra,t(c) of37
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playing this action in this context (which the learner receives), but also reveals to the learner the38

rewards ra,t(c′) for every other context c′. Some settings where this structure appears include:39

• Bidding in nontruthful auctions: Consider a bidder trying to learn how to bid in a40

repeated non-truthful auction (such as a first-price auction). Every round, the bidder receives41

a (private) value for the current item, and based on this must submit a bid for the item. The42

auctioneer then collects the bids from all participants, and decides whether to allocate the43

item to our bidder, and if so, how much to charge the bidder.44

This can be seen as a contextual bandits problem for the bidder where the context c is the45

bidder’s value for the item, the action a is their bid, and their reward is their net utility from46

the auction: 0 if they do not win, and their value for the item minus their payment p if they47

do win. Note that this problem also allows for cross-learning between contexts – the net48

utility ra,t(c′) that would have been received if they had value c′ instead of value c is just49

(c′ − p) · 1(win item), which is computable from the outcome of the auction.50

The problem of bidding in nontruthful auctions has gained a lot of attention recently as many51

online advertising platforms have recently switched from running second-price to first-price52

auctions. Many online publishers have adopted header bidding, in which publishers offer53

impressions to multiple ad exchanges simultaneously using a first-price auction, rather than54

offering impressions sequentially to different exchanges in a waterfall fashion. Additionally,55

some major ad exchanges have adopted first-price auctions to sell all their inventory.1 In56

a first-price auction, the highest bidder is the winner and pays their bid (as opposed to57

second-price auctions where the winner pays the second highest-bid). First-price auctions58

are nontruthful mechanisms as bidders have incentives to shade bids so that they enjoy a59

positive utility when they win [25].60

• Multi-armed bandits with exogenous costs: Consider a multi-armed bandit problem61

where at the beginning of each round t, a cost si,t of playing arm i at this round is publicly62

announced. That is, choosing arm i this round results in a net reward of ri,t − si,t. This63

captures settings where, for example, a buyer must choose every round to buy one of K64

substitutable goods – he is aware of the price of each good (which might change from round65

to round) but must learn over time the utility each type of good brings him.66

This is a contextual bandits problem where the context in round t is the K costs si,t at this67

time. Cross-learning between contexts is present in this setting: given the net utility of68

playing action i with a given up-front cost si, one can infer the net utility of playing i with69

any other up-front cost s′i.70

• Dynamic pricing with variable cost: Consider a dynamic pricing problem where a firm71

offers a service (or sells a product) to a stream of customers who arrive sequentially over72

time. Consumer have private and independent willingness-to-pay and the cost of serving a73

customer is exogenously given and customer dependent. After observing the cost, the firm74

decides on what price to offer to the consumer who decides whether to accept the service75

at the offered price. The optimal price for each consumer is contingent in the cost; for76

example, when demand is relatively inelastic consumers that are more costly to serve should77

be quoted higher prices. This extends dynamic pricing problems to cases where the firm has78

exogenous costs (see, e.g., [9] for an overview of dynamic pricing problems).79

This is a special case of the multi-armed bandits with exogenous costs problem, and hence80

an instance of contextual-bandits with cross-learning.81

• Sleeping bandits: Consider the following variant of “sleeping bandits”, where there are82

K arms and in each round some subset St of these arms are awake. The learner can play83

any arm and observe its reward, but only receives this reward if they play an awake arm.84

This problem was originally proposed in [16], where one of the motivating applications is85

ecommerce settings where not all sellers or items (and hence “arms”) might be available86

every round.87

This is a contextual bandits problem where the context is the set St of awake arms. Again,88

cross-learning between contexts is present in this setting: given the observation of the reward89

of arm i, one can infer the received reward for any context S′t by just checking whether90

i ∈ S′t.91

1See https://www.blog.google/products/admanager/simplifying-programmatic-first-
price-auctions-google-ad-manager/
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• Repeated Bayesian games with private types: Consider a player participating in a92

repeated Bayesian game with private, independent types. Each round the player receives93

some type for the current game, performs some action, and receives some utility (which94

depends on their type, their action, and the other players’ actions). Again, this can be viewed95

as a contextual bandit problem where types are contexts, actions are actions, and utilities are96

rewards, and once again this problem allows for cross-learning between contexts (as long as97

the player can compute their utility based on their type and all players’ actions).98

Note that in many of these settings, the number of possible contexts C can be huge: exponential99

in K or uncountably infinite. This makes the naive O(
√
CKT )-regret algorithm undesirable in100

these settings. We show that in contextual bandits problems with cross-learning, it is possible to101

design algorithms which completely remove the dependence on the number of contexts C in their102

regret bound. We consider both settings where the contexts are generated stochastically (from some103

distributionD that may or may not be known to the learner) and settings where the contexts are chosen104

adversarially. Similarly, we also consider settings where the rewards are generated stochastically and105

settings where they are chosen adversarially. Our results include:106

• Stochastic rewards, stochastic or adversarial contexts: We design an algorithm called107

algorithm UCB1.CL with regret of Õ(
√
KT ).108

• Adversarial rewards, stochastic contexts with known distribution: We design an algo-109

rithm called EXP3.CL with regret of Õ(
√
KT ).110

• Adversarial rewards, stochastic contexts with unknown distribution: We design an111

algorithm called EXP3.CL-U with regret Õ(K1/3T 2/3).112

• Lower bound for adversarial rewards, adversarial contexts: We show that when both113

rewards and contexts are controlled by an adversary, any algorithm must obtain regret at114

least Ω̃(
√
CKT ).115

All of these algorithms are easy to implement, in the sense that they can be obtained via simple116

modifications from existing multi-armed bandit algorithms like EXP3 and UCB1, and efficient,117

in the sense that all algorithms run in time at most O(C + K) per round (and for many of the118

settings mentioned above, this can be further improved to O(K) time per round). Our main technical119

contribution is our analysis of UCB1.CL, which requires arguing that UCB1 can effectively use120

the information from cross-learning despite it being drawn from a distribution that differs from the121

desired exploration distribution. We accomplish this by constructing a linear program whose value122

upper bounds (one of the terms in) the regret of UCB1.CL, and bounding the value of this linear123

program.124

We then introduce a partial variant of cross-learning, where if you play action i in context c, you125

learn the reward of action i in context c′ for all c′ in some set Ni(c). We extend our algorithms126

UCB1.CL and EXP3.CL to this partial variant of cross-learning (algorithms UCB1.P-CL and EXP3.P-127

CL respectively) and bound their regrets in terms of invariants of the underlying directed feedback128

graphs. Specifically, when rewards are stochastic, UCB1.P-CL obtains regret O(
√
κKT ), where κ is129

the average size of the minimum clique cover of the feedback graphs. When contexts are stochastic,130

EXP3.P-CL obtains regret O(
√
λKT ), where λ is the average size of the maximum acyclic subgraph131

of the feedback graphs.132

We then apply our results to some of the applications listed above. In each case, our algorithms obtain133

optimal regret bounds with asymptotically less regret than a naive application of contextual bandits134

algorithms. In particular:135

• For the problem of learning to bid in a first-price auction, standard contextual bandit136

algorithms get regret O(T 3/4). Our algorithms achieve regret O(T 2/3). This is optimal137

even when there is only a single context (value).138

• For the problem of multi-armed bandits with exogenous costs, standard contextual bandit139

algorithms get regret O(T (K+1)/(K+2)K1/(K+2)). Our algorithms get regret Õ(
√
KT ),140

which is tight.141

• For our variant of sleeping bandits, standard contextual bandit algorithms get regret142

Õ(
√

2KKT ). Our algorithms get regret Õ(
√
KT ), which is tight. By applying our al-143

3



gorithms for partial cross-learning, we can achieve regret Õ(
√
KT ) in the original sleeping144

bandits setting studied in [16], which recovers their results and is similarly tight.145

Finally, we test the performance of these algorithms on real auction data from a first-price ad exchange.146

In order for cross-learning to be effective in first-price auctions, the bidder should be able to determine147

the counterfactual utility for different values. That is, after observing the outcome of the auction, the148

bidder should predict how would their utility change if their value was different. This is possible149

when the bidder’s values are independent of other players’ bid. In practice, however, one would150

expect certain degree of correlation between these quantities and, thus, the independence assumption151

might not hold. Even though our algorithms do not explicitly account for correlation, numerical152

results show that our algorithms are somewhat robust to errors in the cross-learning hypothesis and153

outperform traditional bandit algorithms. We remark that, from the theoretical perspective, when the154

correlation between values and bids is arbitrary, cross-learning is impossible and the decision maker155

cannot do better than running a different learning algorithm for each context. A promising research156

direction is to incorporate correlation by introducing a statistical or behavioral model to capture the157

dependency between bids and values.158

1.1 Related Work159

For a general overview of research on the multi-armed bandit problem, we recommend the reader to160

the survey by Bubeck and Cesa-Bianchi [7]. Our algorithms build off of pre-existing algorithms in161

the bandits literature, such as EXP3 [4] and UCB1 [23, 17]. Contextual bandits were first introduced162

under that name in [18], although similar ideas were present in previous works (e.g. the EXP4163

algorithm was proposed in [4]).164

One line of research related to ours studies bandit problems under other structural assumptions165

on the problem instances which allow for improved regret bounds. Slivkins [24] studies a setting166

where contexts and actions belong to a joint metric space, and context/action pairs that are close to167

each other give similar rewards, thus allowing for some amount of “cross-learning”. Several works168

[20, 1] study a partial-feedback variant of the (non-contextual) multi-armed bandit problem where169

performing some action provides some information on the rewards of performing other actions (thus170

interpolating between the bandits and experts settings). Our setting can be thought of as a contextual171

version of this variant, and our results in the partial cross-learning setting share similarities with172

these results. However, since the learner cannot choose the context each round, these two settings173

are qualitatively different. As far as we are aware, the specific problem of contextual bandits with174

cross-learning between contexts has not appeared in the literature before.175

Recently there has been a surge of interest in applying methods from online learning and bandits176

to auction design. While the majority of the work in this area has been from the perspective of177

the auctioneer [22, 21, 8, 10, 12] – learning how to design an auction over time based on bidder178

behavior – some recent work studies this problem from the perspective of a buyer learning how to bid179

[27, 11, 6]. In particular, [27] studies the problem of learning to bid in a first-price auction over time,180

but where the bidder’s value remains constant (so there is no context). More generally, ideas from181

online learning (in particular, the concept of no-regret learning) have been applied to the study of182

general Bayesian games, where one can characterize the set of equilibria attainable when all players183

are running low-regret learning algorithms [13].184

2 Model and Preliminaries185

2.1 Multi-armed bandits186

In the classic multi-armed bandit problem, a learner chooses one of K arms per round over the course187

of T rounds. On round t, the learner receives some reward ri,t ∈ [0, 1] for pulling arm i (where the188

rewards ri,t may be chosen adversarially). The learner’s goal is to maximize their total reward.189

Let It denote the arm pulled by the decision maker at round t. The regret of an algorithm A for190

the learner is the random variable Reg(A) = maxi
∑T
t=1 ri,t −

∑T
t=1 rIt,t. We say an algorithm191

A for the multi-armed bandit problem is δ-low-regret if E[Reg(A)] ≤ δ (where the expectation is192

taken over the randomness of A). We say an algorithm A is low-regret if it is δ-low-regret for some193
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δ = o(T ). There exist simple multi-armed bandit algorithms which are Õ(
√
KT )-low-regret (e.g.194

EXP3 when rewards are adversarial, and UCB1 when rewards are stochastic).195

2.2 Contextual bandits196

In our model, we consider a contextual bandits problem. In the contextual bandits problem, in197

each round t the learner is additionally provided with a context ct, and the learner now receives198

reward ri,t(c) if he pulls arm i on round t while having context c. The contexts ct are either chosen199

adversarially at the beginning of the game or drawn independently each round from some distribution200

D. Similarly, the rewards ri,t(c) are either chosen adversarially or each independently drawn from201

some distribution Fi(c). We assume as is standard that ri,t(c) is always bounded in [0, 1].202

In the contextual bandits setting, we now define the regret of an algorithm A in terms of regret against203

the best stationary policy π; that is, maxπ:[C]→[K]

∑T
t=1 rπ(ct),t(ct) −

∑T
t=1 rIt,t(ct), where It is204

the arm pulled by M on round t. The definition of best stationary policy π depends slightly on how205

contexts and rewards are chosen:206

• When rewards are stochastic (ri,t(c) drawn independently from Fi(c) with mean µi(c)), we207

define π(c) = arg maxi µi(c).208

• When rewards are adversarial but contexts are stochastic, we define π(c) to be the stationary209

policy which maximizes Ect∼D[
∑
t rπ(ct),t(ct)].210

• When both rewards and contexts are adversarial, we define π(c) to be the stationary policy211

which maximizes
∑
t rπ(ct),t(ct).212

These choices are unified in the following way: in all of the above cases, π is the best stationary policy213

in expectation for someone who knows all the decisions of the adversary and details of the system214

ahead of time, but not the randomness in the instantiations of contexts/rewards from distributions. This215

matches commonly studied notions of regret in the contextual bandits literature; see Appendix A.1216

for further discussion. As before, we say an algorithm is δ-low regret if E[Reg(A)] ≤ δ, and say an217

algorithm is low-regret if it is δ-low-regret for some δ = o(T ). The stationary policy in the third218

definition is sometimes referred as the best policy in hindsight as it considers the best actions that219

could have been taken after observing all realizations of rewards and contexts. In many applications,220

however, this benchmark is too strong. Even when contexts are stochastically drawn from a known221

distribution no algorithm can be shown to achieve sub-linear regret when the number of contexts is222

large enough (see Theorem 21 in Appendix A.1). Therefore, we adopt the first two benchmarks when223

contexts are stochastic.224

There is a simple way to construct a low-regret algorithm A′ for the contextual bandits problem from225

a low-regret algorithm A for the classic bandits problem: simply maintain a separate instance of A226

for every different context c. In the contextual bandits literature, this is sometimes referred to as227

the S-EXP3 algorithm when A is EXP3 [7]. This algorithm is Õ(
√
CKT )-low-regret. We define228

the S-UCB1 algorithm similarly, which is also Õ(
√
CKT )-low-regret when rewards are generated229

stochastically.230

We consider a variant of the contextual bandits problem we call contextual bandits with cross-learning.231

In this variant, whenever the learner pulls arm i in round t while having context c and receives reward232

ri,t(c), they also learn the value of ri,t(c′) for all other contexts c′. We define the notions of regret233

and low-regret similarly for this problem.234

3 Cross-learning between contexts235

In this section, we present two algorithms for the contextual bandits problem with cross-learning:236

UCB1.CL, for stochastic rewards and adversarial contexts (Section 3.1), and EXP3.CL, for adversarial237

rewards and stochastic contexts (Section 3.2). Then, in Section 3.3, we show that it is impossible to238

achieve regret better than Õ(
√
CKT ) when both rewards and contexts are controlled by an adversary239

(in particular, when both rewards and contexts are adversarial, cross-learning may not be beneficial at240

all).241
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3.1 Stochastic rewards242

In this section we will present an O(
√
KT logK) algorithm for the contextual bandits problem with243

cross learning in the stochastic reward setting: i.e., every reward ri,t(c) is drawn independently from244

an unknown distribution Fi(c) supported on [0, 1]. Importantly, this algorithm works even when the245

contexts are chosen adversarially, unlike our algorithms for the adversarial reward setting. We call246

this algorithm UCB1.CL (Algorithm 1).247

Algorithm 1 O(
√
KT logK) regret algorithm (UCB1.CL) for the contextual bandits problem with

cross-learning where rewards are stochastic and contexts are adversarial.

1: Define the function ω(s) =
√

(2 log T )/s.
2: Pull each arm i ∈ [K] once (pulling arm i in round i).
3: Maintain a counter τi,t, equal to the number of times arm i has been pulled up to round t (so
τi,K = 1 for all i).

4: For all i ∈ [K] and c ∈ [C], initialize variable σi,K(c) to ri,i(c). Write ri,t(c) as shorthand for
σi,t(c)/τi,t.

5: for t = K + 1 to T do
6: Receive context ct.
7: Let It be the arm which maximizes rIt,t−1(ct) + ω(τIt,t−1).
8: Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all c.
9: for each c in [C] do

10: Set σIt,t(c) = σIt,t−1(c) + rIt,t(c).
11: end for
12: Set τIt,t = τIt,t−1 + 1.
13: end for

The UCB1.CL algorithm is a straightforward generalization of S-UCB1; both algorithms maintain a248

mean and upper confidence bound for each action in each context, and always choose the action with249

the highest upper confidence bound (the difference being, as with EXP3.CL-U, that UCB1.CL uses250

cross-learning to update the appropriate means and confidence bounds for all contexts each round).251

The analysis of UCB1.CL, however, requires new ideas to deal with the fact that the observations of252

rewards may be drawn from a very different distribution than the desired exploration distribution.253

Very roughly, the analysis is structured as follows. Since rewards are stochastic, in every context c,254

there is a “best arm” i∗(c) that the optimal policy always plays. Every other arm i is some amount255

∆i(c) worse in expectation than the best arm. After observing this arm mi(c) = O(log(T )/∆i(c)
2)256

times, one can be confident that this arm is not the best arm. We can decompose the regret into the257

regret incurred “before” and “after” the algorithm is confident that an arm is not optimal in a specific258

context. The regret “after” can be bounded using standard techniques from the bandit literature. Our259

main contribution is the bound of the regret “before.”260

Fix an arm i and letXi(c) be the number of times the algorithm pulls arm i in context c before pulling261

arm i a total of mi(c) times across all contexts. Because once arm i is pulled mi(c) times we are262

confident about the optimality of pulling that arm in context c, we only need to control the number263

pulls before mi(c). Therefore, the regret “before” of arm i is roughly
∑
cXi(c)∆i(c).264

We control the regret “before” by setting up a linear program in the variables Xi(c) with objective265 ∑
c,iXi(c)∆i(c). Because Xi(c) counts all pulls of arm i before mi(c) we have that Xi(c) ≤ mi(c).266

This inequality, while valid, does not lead to a tight bound. To obtain a tighter inequality we first sort267

the contexts in terms of the samples needed to learn whether an arm is optimal, i.e., in increasing268

order of mi(c). Because a different context is realized in every round, we can consider the inequality269 ∑
c′:mi(c′)≤mi(c)

Xi(c
′) ≤ mi(c), which counts the subset of first mi(c) pulls of arm i. Bounding270

the value of this objective (by effectively taking the dual), we can show that the total regret is at most271

O(
√
T ).272

Theorem 1 (Regret of UCB1.CL). UCB1.CL (Algorithm 1) has expected regret O(
√
KT logK)273

for the contextual bandits problem with cross-learning in the setting with stochastic rewards and274

adversarial contexts.275
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Proof. We begin by defining the following notation. Let µi(c) be the mean of distribution Fi(c). Let276

i∗(c) = arg maxj µj(c), and let µ∗(c) = µi∗(c)(c). Let ∆i(c) = µ∗(c)− µi(c) be the gap between277

the expected reward of playing arm i in context c and of playing the optimal arm i∗(c) in context c.278

As defined in Algorithm 1, let τi,t be the number of times arm i has been pulled up to round t, and279

define τi,t(c) to be the number of times arm i has been pulled in context c up to round t. Note that280

the regret Reg(A) of our algorithm is then equal to281

Reg(A) =

K∑
i=1

C∑
c=1

∆i(c)τi,c(T )

=

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c).

Define ∆min =
√
K log T/T . Note that the sum of all terms in the above expression with ∆i(c) ≤282

∆min is at most ∆minT . We can therefore write283

Reg(A) ≤ ∆minT +

K∑
i=1

∑
c

T∑
t=1

∆i(c)1(It = i, ct = c,∆i(c) ≥ ∆min). (1)

For convenience of notation, from now on, without loss of generality, we assume that all ∆i(c) ≥284

∆min, and suppress the condition ∆i(c) ≥ ∆min in the indicator variables.285

Now, define mi(c) = 8 log T
∆i(c)2

. This quantity represents the number of times one must pull arm i to286

observe that i is not the best arm in context c (we will show this later). We thus divide the sum in (1)287

into two parts. Define:288

RegPre =

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c, τi,t ≤ mi(c)), (2)

and289

RegPost =

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c, τi,t > mi(c)). (3)

These two quantities represent the regret incurred before and after (respectively) the algorithm290

“realizes” an arm is not optimal in a specific context. With these quantities, we can rewrite (1) as291

Reg(A) ≤ ∆minT + RegPre + RegPost. (4)

In the following two lemmas, we will now proceed to bound the expected values of RegPre and292

RegPost. In particular, the following lemma that bounds E[RegPre] is our main technical contribution293

in this proof.294

Lemma 2. Let RegPre be the quantity defined in (2). Then,

E [RegPre] ≤
16K log T

∆min
.

Proof. Fix an action i, and order the contexts (that satisfy ∆i(c) ≥ ∆min) c(1), c(2), . . . , c(n)295

so that ∆i(c(1)) ≥ ∆i(c(2)) ≥ · · · ≥ ∆i(c(n)). By the definition of mi(c), this implies that296

mi(c(1)) ≤ mi(c(2)) ≤ · · · ≤ mi(c(n)). Finally, define297

Xi(c) =

T∑
t=1

1(ct = c, It = i, τi,t ≤ mi(c)).
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The quantity Xi(c) can be thought of as the number of times action i is played during context c298

before the mi(c)th time action i has been played. Note that299

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c, τi,t ≤ mi(c)) =

n∑
j=1

∆i(c(j))Xi(c(j)).

On the other hand, by the definition of Xi(c) and the ordering of mi(c(j)), we know that the Xi(c)’s300

satisfy the following system of linear inequalities:301

Xi(c(1)) ≤ mi(c(1))

Xi(c(1)) +Xi(c(2)) ≤ mi(c(2))

...
Xi(c(1)) +Xi(c(2)) + · · ·+Xi(c(n)) ≤ mi(c(n)) . (5)

To see why the above inequalities hold, for simplicity, focus on the second inequality (the same302

argument can be applied for other inequalities). First note that by the fact that mi(c(1)) ≤ mi(c(2)),303

we have304

Xi(c(1))+Xi(c(2)) ≤
T∑
t=1

1(ct = c(1), It = i, τi,t ≤ mi(c(2)))+

T∑
t=1

1(ct = c(2), It = i, τi,t ≤ mi(c(2)))

Further, note that whenever 1(It = i, ct = c(1), τi,t ≤ m) = 1, then 1(It = i, ct = c(2), τi,t ≤305

m) = 0 and vice versa. This implies that306

Xi(c(1)) +Xi(c(2)) ≤
T∑
t=1

1((ct = c(1) or ct = c(2)), It = i, τi,t ≤ mi(c(2))) ≤ mi(c(2)).

Now, we wish to bound
∑
j ∆i(c(j))Xi(c(j)). To do this, multiply the jth inequality in Eq. (5)307

through by ∆i(c(j))−∆i(c(j+1)) (for the last inequality, just multiply it through by ∆i(c(n))), and308

sum all of these inequalities to obtain309

n∑
j=1

∆i(c(j))Xi(c(j)) ≤ ∆i(c(n))mi(c(n)) +

n−1∑
j=1

(∆i(c(j))−∆i(c(j+1)))mi(c(j))

= 8 log T

 1

∆i(cn)
+

n−1∑
j=1

∆i(c(j))−∆i(c(j+1))

∆i(c(j))2


≤ 8 log T

(
1

∆min
+

∫ 1

∆min

dx

x2

)
≤ 16 log T

∆min
,

where the second equation follows because mi(c) = 8 log T
∆i(c)2

, and the third equation holds because310

∆i(cj) ≥ ∆min for any j ∈ [n]. Summing this over all K choices of i, we obtain our desired311

bound.312

We next proceed to bound the expected value of RegPOST . This follows from the standard analysis313

of UCB1.314

Lemma 3. Let RegPost be the quantity defined in (2). Then,

E [RegPost] ≤
Kπ2

3
.

Proof. See appendix.315
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Substituting the results of Lemmas 2 and 3 into (11), we obtain316

E[Reg(A)] ≤ ∆minT +
16K log T

∆min
+
Kπ2

3
. (6)

Substituting in ∆min =
√
K log T/T , it is straightforward to verify that E[Reg(A)] ≤317

O(
√
KT log T ), as desired.318

Note that as a consequence of the proof of Theorem 1, we have the following gap-dependent bound319

on the regret of UCB1.CL.320

Corollary 4 (Gap-dependent Bound for UCB1.CL). Let ∆min = mini,c µ
∗(c) − µi(c) (where321

µ∗(c) = maxi µi(c)). Then UCB1.CL (Algorithm 1) has expected regret of O
(
K log T
∆min

)
for the322

contextual bandits problem with cross-learning in the setting with stochastic rewards and adversarial323

contexts.324

3.2 Adversarial rewards and stochastic contexts325

We now present a O(
√
KT logK) regret algorithm for the contextual bandits problem with cross326

learning when the rewards are adversarially chosen but contexts are stochastically drawn from some327

distribution D. We call this algorithm EXP3.CL (Algorithm 2). For now we assume the learner knows328

the distribution over contexts D.329

Algorithm 2 O(
√
KT logK) regret algorithm for the contextual bandits problem with simulated

contexts.

1: Choose α = β =
√

logK
KT .

2: Initialize K · C weights, one for each pair of action i and context c, letting wi,t(c) be the value
of the ith weight for context c at round t. Initially, set all wi,0 = 1.

3: for t = 1 to T do
4: Draw context ct from D.
5: For all i ∈ [K] and c ∈ [C], let pi,t(c) = (1−Kα)

wi,t−1(c)∑K
j=1 wj,t−1(c)

+ α.

6: Sample an arm It from the distribution pt(ct).
7: Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all c.
8: for each c in [C] do
9: Set wIt,t(c) = wIt,t−1(c) · exp

(
β · rIt,t(c)∑C

c′=1
Pr[c′]·pIt,t(c′)

)
.

10: end for
11: end for

Both EXP3.CL and S-EXP3 maintain a weight for each action in each context, and update the weights330

via multiplicative updates by an exponential of an unbiased estimator of the reward. We modify331

S-EXP3 by changing the unbiased estimator in the update rule to take advantage of the information332

from cross-learning. To minimize regret, we wish to choose an unbiased estimator with minimal333

variance (as the expected variance of this estimator shows up in the final regret bound). The new334

estimator in question is335

r̂i,t(c) =
ri,t(c)∑C

c′=1 PrD[c′] · pi,t(c′)
· 1It=i.

There are two ways of thinking about this estimator. The first is to note that the denominator of this336

estimator is exactly the probability of pulling arm i on round t before you learn the realization of337

ct (and hence this estimator is unbiased). The second way is to note that for every context c′, it is338

possible to construct an estimator of the form339

r̂i,t(c) =
ri,t(c)

PrD[c′] · pi,t(c′)
1It=i,ct=c′ .
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The estimator used in EXP3.CL is the linear combination of these estimators which minimizes340

variance (i.e. the estimator obtained from importance sampling over this class of estimators). We can341

show that the total expected variance of this estimator is on the order of O(
√
KT ), independent of C,342

implying the following regret bound.343

Theorem 5. EXP3.CL (Algorithm 2) has regret O(
√
TK logK) for the contextual bandits problem344

with cross learning when rewards are adversarial and contexts are stochastic.345

Calculating this estimator r̂i,t(c) requires the learner to know the distribution D. What can we do if346

the learner does not know the distribution D? Unlike distributions of rewards (where the learner must347

actively choose which reward distribution to receive a sample from), the learner receives exactly one348

sample from D every round regardless of their action. This suggests the following approach: learn an349

approximation D̂ to D by observing the context for some number of rounds, and run EXP3.CL using350

D̂ to compute estimators. Unfortunately, a straightforward analysis of this approach gives regret that351

scales as T 2/3 due to the approximation error in D̂.352

In Appendix A.2, we design a learning algorithm EXP3.CL-U which achieves regret Õ(K1/3T 2/3)353

even when the distribution D is unknown by using a much simpler (but higher variance) estimator354

that does not require D to compute. It is an interesting open problem whether it is possible to obtain355

Õ(
√
KT ) regret when D is unknown.356

3.3 Adversarial rewards, adversarial contexts357

A natural question is whether we can achieve low-regret when both the rewards and contexts are358

chosen adversarially (but where we still can cross-learn between different contexts). A positive359

answer to this question would subsume the results of the previous sections. Unfortunately, we will360

show in this section that any learning algorithm for the contextual bandits problem with cross-learning361

must necessarily incur Ω(
√
CKT ) regret (which is achieved by S-EXP3).362

We will need the following regret lower-bound for the (non-contextual) multi-armed bandits problem.363

Lemma 6. There exists a distribution over instances of the multi-armed bandit problem where any364

algorithm must incur an expected regret of at least Ω(
√
KT ).365

Proof. See [4].366

With this lemma, we can construct the following lower-bound for the contextual bandits problem367

with cross-learning by connecting C independent copies of these hard instances in sequence with one368

another so that cross-learning between instances is not possible.369

Theorem 7. There exists a distribution over instances of the contextual bandit problem with cross-370

learning where any algorithm must incur a regret of at least Ω(
√
CKT ).371

Proof. Divide the T rounds into C epochs of T/C rounds each. Label the C contexts c1, c2, . . . , cC ,372

and adversarially assign contexts so that the context during the jth epoch is always cj .373

Next, assign rewards so that ri,t(c) = 0 if t is in the jth epoch and c 6= cj . On the other hand, for t in374

the jth epoch, set rewards ri,t(cj) according to a hard instance for the multi-armed bandit problem375

sampled from the distribution from Lemma 6. Call this instance Pj , and let ij be the optimal action376

to play in Pj .377

By construction, the best stationary strategy plays ij whenever the context is cj . In addition, note that378

cross-learning offers zero additional information here, since all cross-learned rewards will always be379

0. Since the hard instances Pj are all independent of each other, any algorithm for the contextual380

bandits problem with cross-learning which achieves o(
√
CKT ) expected regret on this instance must381

achieve o(
√
KT/C) expected regret on one of the individual instances Pj . This contradicts Lemma382

6.383
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4 Partial cross-learning384

So far, we have assumed that our cross-learning between contexts is complete: if we play action i385

in context c, we learn the value of the reward ri,t(c′) for all contexts c′. In many settings, however,386

we do not have complete cross-learning, and may only learn the reward ri,t(c′) for some subset of387

contexts c′ (e.g. contexts similar to c).388

In this section we consider the following model of partial cross-learning. For every action i ∈ [K],389

we specify a directed graph Gi over the set of contexts [C]. An edge c → c′ in Gi indicates that390

if you play action i in context c, you learn the reward of action i in context c′. We assume that all391

self-loops c → c are present in all graphs Gi (i.e. if you play action i in context c you learn the392

reward of action i in context c).393

4.1 Graph invariants394

Throughout the remainder of this section we will assume that all graphs G are directed and contain395

all self-loops. Given a vertex v in G, let P (v) equal the set of in-neighbors, i.e., vertices w such396

that there exists an edge w → v, and let N(v) equal the set of vertices of out-neighbors, i.e., w such397

that there exists an edge v → w (note that since all our graphs contain self-loops, v ∈ N(v) and398

v ∈ P (v)). Before proceeding we define some useful graph-theoretic quantities that will be used to399

analyze the performace of our algorithms in the partial cross-learning setting.400

Definition 8. A subclique of a graph G is a subset of vertices S such that for any two vertices401

u, v ∈ S, there exists an edge u→ v. A clique cover of a graph G is a partition of its set of vertices402

into subcliques S1, S2, . . . , Sr (we say r is the size of the clique cover). The clique covering number403

κ(G) is the minimum size of a clique cover of G.404

Definition 9. An independent set in a graph G is a subset of vertices S such that for any two distinct405

vertices u, v ∈ S, the edge u → v does not exist in G. The independence number ι(G) is the406

maximum size of an independent set of G.407

Definition 10. An acyclic subgraph of a graphG is a set of vertices that can be ordered v1, v2, . . . , vr408

such that for any i > j, there is no edge vi → vj . The maximum acyclic subgraph number λ(G) is409

the size of the largest acyclic subgraph of G.410

Definition 11. The value ν2(G) of a graph G (with vertex set V ) is given by411

ν2(G) = sup
f :V→R+∑
f(v)=1

∑
v∈V

f(v)√∑
w∈P (v) f(w)

2

.

Lemma 12. For all directed graphs G with self-loops,412

λ(G) = sup
f :V→R+

∑
v∈V

f(v)∑
w∈P (v) f(w)

.

Proof. Denote the right-hand-side of the above expression by ν(G). We begin by showing that413

ν(G) ≥ λ(G).414

Let (v1, v2, . . . , vλ(G)) be an acyclic subgraph of G of maximum size. Fix a large M > 1, and415

consider the following function f : V → R
+: f(v) = M i if v = vi, and f(v) = 1 otherwise. We416

claim that as M →∞, the quantity417

∑
v

f(v)∑
w∈P (v) f(w)

approaches a value larger than λ(G). To do this, we will simply show that for each vi in our acyclic418

subgraph, the quantity419

f(vi)∑
w∈P (vi)

f(w)
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approaches a value larger than 1.420

To see this, note that by the definition of an acyclic subgraph, for all j > i, there is no edge vj → vi.421

Therefore, for every w ∈ P (vi) (with the exception of P (vi) itself), f(w) ≤ M i−1 because every422

w in P (vi) is of the form vj for some j < i, and therefore
∑
w∈P (vi)

f(w) ≤ |V |M i−1 + M i. It423

follows that424

f(vi)∑
w∈P (vi)

f(w)
≥ M i

|V |M i−1 +M i
.

The right hand side of this expression converges to 1 as M approaches infinity.425

The proof that ν(G) ≤ λ(G) follows from Lemma 10 in [2].426

Lemma 13. For all graphs G,427

ι(G) ≤ ν2(G) ≤ λ(G) ≤ κ(G).

When G is the union of r disjoint cliques, equality holds for all inequalities and all invariants equal r.428

Proof. We prove the inequalities in order.429

ι(G) ≤ ν2(G): Let S be an independent set in G of size ι(G). Define the distribution f via430

f(v) = 1−ε
ι(G) (for some small ε) for v ∈ S and f(v) = ε

|V |−ι(G) for v 6∈ S. As ε→ 0, we have that431

∑
v∈V

f(v)√∑
w∈P (v) f(w)

−→
∑
v∈S

1/ι(G)√
1/ι(G)

=
√
ι(G).

It follows that432

ν2(G) = sup

∑
v∈V

f(v)√∑
w∈P (v) f(w)

2

≥ ι(G).

ν2(G) ≤ λ(G): By Cauchy-Schwartz, for any distribution f over V , we have that433

∑
v∈V

f(v)√∑
w∈P (v) f(w)

2

≤
∑
v∈V

f(v)∑
w∈P (v) f(w)

.

Taking suprema of both sides, it follows that434

ν2(G) = sup
f

∑
v∈V

f(v)√∑
w∈P (v) f(w)

2

≤ sup
f

∑
v∈V

f(v)∑
w∈P (v) f(w)

= λ(G),

where the last equality follows from Lemma 12.435

λ(G) ≤ κ(G): Let (S1, S2, . . . , Sκ(G)) be a minimum size clique covering of G. Note that no two436

elements v, v′ in the same Si can belong to the same acyclic subgraph (since by the definition of a437

clique, there exist edges v → v′ and v′ → v). It follows that the size of the largest acyclic subgraph438

is at most κ(G), and thus λ(G) ≤ κ(G).439
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Unions of cliques We now show that when G is a disjoint union of r cliques, ι(G) = ν2(G) =440

λ(G) = κ(G) = r. To do so it suffices (from the above inequalities) to show that ι(G) = r and441

κ(G) = r. The independence number ι(G) = r since choosing one element from each clique creates442

an independent set, and any set of r+ 1 or more vertices must have two vertices from the same clique.443

The clique covering number κ(G) = r since we can cover the graph with the r given cliques, and444

any covering with fewer than r sets must combine elements in disjoint cliques (thus violating the fact445

that each set is a clique).446

4.2 Stochastic rewards447

In this section we present a low-regret algorithm for the contextual bandits problem with partial448

crosslearning when rewards are generated stochastically (from some unknown distribution). As with449

the results in Section 3.1, our low-regret guarantee applies in this case regardless of whether the450

contexts are generated stochastically or adversarially.451

Algorithm 3 O(
√
κKT logK) regret algorithm (UCB1.P-CL) for the contextual bandits problem

with partial cross-learning where rewards are stochastic.

1: Define the function ω(s) =
√

(2 log T )/s.
2: Pull each arm i ∈ [K] once (pulling arm i in turn i).
3: Maintain a counter τi,t, equal to the number of times arm i has been pulled up to round t (so
τi,K = 1 for all i).

4: For all i ∈ [K] and c ∈ [C], initialize variable σi,K(c) to ri,i(c). Write ri,t(c) as shorthand for
σi,t(c)/τi,t.

5: for t = K + 1 to T do
6: Receive context ct.
7: Let It be the arm which maximizes rIt,t−1(ct) + ω(τIt,t−1).
8: Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all c ∈ NIt(ct).
9: for each c in NIt(ct) do

10: Set σIt,t(c) = σIt,t−1(c) + rIt,t(c).
11: end for
12: Set τIt,t = τIt,t−1 + 1.
13: end for

Like UCB1.CL, our algorithm UCB1.P-CL for the partial cross-learning setting is a straightforward452

modification of UCB where we simply update all the means that we can every round (that is, we453

update the means of every outgoing edge in the graph Gi). To analyze the regret of this algorithm, let454

κ = 1
K

∑
i∈[K] κ(Gi) be the average clique cover size of all graphs Gi. We then claim that algorithm455

UCB1.P-CL incurs at most O(
√
κKT logK) regret.456

Theorem 14. UCB1.P-CL (Algorithm 3) has regret O(
√
κKT logK) for the contextual bandits457

problem with partial cross-learning when rewards are stochastic.458

Proof. We proceed similarly to the proof of Theorem 1 (and borrow all notation defined in this proof).459

As before, we have that460

Reg(A) ≤ ∆minT +

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c,∆i(c) ≥ ∆min), (7)

and would like to bound the expectation of this latter sum. To do so, we again divide it into two parts461

(RegPRE and RegPOST ), but we define these parts differently as in the proof of Theorem 1. Recall462

that τi,t(c) equals the number of times arm i has been pulled in context c up to (and including) round463

t. Define464

τ ′i,t(c) =
∑

c′∈P (c)

τi,t(c
′).

Note that τ ′i,t(c) is equal to the number of times up to round t we observe the reward of arm i in465

context c. We now define466
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RegPRE =

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c, τ ′i,t(c) ≤ mi(c)),

and467

RegPOST =

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c, τ ′i,t(c) > mi(c)).

We can then rewrite (7) as468

Reg(A) ≤ ∆minT + RegPRE + RegPOST . (8)

We proceed to bound E[RegPRE ] and E[RegPOST ].469

Lemma 15.

E [RegPRE ] ≤
16 log T

(∑K
i=1 κ(Gi)

)
∆min

.

Proof. Fix an action i, and let S1, S2, . . . , Sκ(Gi) be a minimal clique covering of the graph Gi. Let470

r(c) equal the value of r such that c ∈ Sr. For each r ∈ [κ(Gi)], define471

τ̃i,t(r) =
∑
c∈Sr

τi,t(c).

Note that for all c, Sr(c) ⊆ Pi(c) (since Sr(c) is a clique, all contexts in Sr(c) have an edge leading to472

c). It follows that τ̃i,t(r(c)) ≤ τ ′i,t(c). Now, define X(c) as473

X(c) =

T∑
t=1

1(ct = c, It = i, τ̃i,t(r(c)) ≤ mi(c)).

Note that since τ̃i,t(r(c)) ≤ τ ′i,t(c), it is true that474

1(ct = c, It = i, τ̃i,t(r(c)) ≤ mi(c)) ≥ 1(ct = c, It = i, τ ′i,t(c) ≤ mi(c)),

and therefore475

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c, τ ′i,t(c) ≤ mi(c)) ≤
C∑
c=1

∆i(c)X(c).

We will now repeat the argument in Lemma 2 (in the analysis of UCB1.CL) for each subclique Sr. Fix476

an r, and order the contexts in Sr c(1), c(2), . . . , c(n) so that ∆i(c(1)) ≥ ∆i(c(2)) ≥ · · · ≥ ∆i(c(n))477

(and thus mi(c(1)) ≤ mi(c(2)) ≤ · · · ≤ mi(c(n))). From the ordering of the mi(c(j)), we have the478

following system of inequalities:479

X(c(1)) ≤ mi(c(1))

X(c(1)) +X(c(2)) ≤ mi(c(2))

...
X(c(1)) +X(c(2)) + · · ·+X(c(n)) ≤ mi(c(n)) . (9)

Repeating the logic in Lemma 2, these inequalities imply that480

14



∑
c∈Sr

∆i(c)X(c) ≤ 16 log T

∆min
.

Therefore, summing over all r ∈ [κ(Gi)], we have that481

∑
c

∆i(c)X(c) ≤ 16κ(Gi) log T

∆min
.

Finally, summing over all actions i, we have that482

RegPRE ≤
16 log T

∆min

(
K∑
i=1

κ(Gi)

)
.

483

We next proceed to bound the expected value of RegPOST . Again, this follows from the standard484

analysis of UCB1.485

Lemma 16.
E [RegPOST ] ≤ Kπ2

3

Proof. The proof is identical to the proof of Lemma 3.486

Substituting the results of Lemmas 2 and 3 into (8), we obtain487

E[Reg(A)] ≤ ∆minT +
16Kκ log T

∆min
+
Kπ2

3
.

Substituting in ∆min =
√
κK log T/T , it is straightforward to verify that E[Reg(A)] ≤488

O(
√
κKT log T ), as desired.489

4.3 Adversarial rewards490

Algorithm 4 O(
√
νKT logK) regret algorithm (EXP3.P-CL) for the contextual bandits problem

with partial cross-learning where rewards are adversarial and contexts are stochastic.

1: Choose α = β =
√

logK
νKT (where ν = 1

K

∑K
i=1 ν(Gi)).

2: Initialize K · C weights, one for each pair of action i and context c, letting wi,t(c) be the value
of the ith weight for context c at round t. Initially, set all wi,0 = 1.

3: for t = 1 to T do
4: Draw context ct from D.
5: For all i ∈ [K] and c ∈ [C], let pi,t(c) = (1−Kα)

wi,t−1(c)∑K
j=1 wj,t−1(c)

+ α.

6: Sample an arm It from the distribution pt(ct).
7: Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all c ∈ Ni(ct).
8: for each c in Ni(ct) do
9: Set wIt,t(c) = wIt,t−1(c) · exp

(
β · rIt,t(c)∑

c′∈P (c) Pr[c′]·pIt,t(c′)

)
.

10: end for
11: end for

In this section we present an algorithm for contextual bandits with partial cross-learning when rewards491

are adversarial and contexts are stochastic. As with EXP3.CL, this comes down to constructing a492

low variance unbiased estimator r̂i,t(c) for this setting. Since we no longer learn the reward for all493

contexts c, we cannot use the estimator in EXP3.CL; instead we modify it to the following estimator:494
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r̂i,t(c) =
ri,t(c)∑

c′∈Pi(c)
Pr[c′] · pi,t(c′)

1(It = i, ct ∈ Pi(c)).

Let λ̄ = 1
K

∑
i∈[K] λ(Gi) be the average size of the maximum acyclic subgraph over all graphs Gi495

(note that since λ(G) ≤ κ(G) for all graphs G by Lemma 13, λ ≤ κ). We will show that EXP3.P-CL496

obtains at most O(
√
λKT ) regret.497

Theorem 17. UCB1.P-CL (Algorithm 4) has regret O(
√
λKT logK) for the contextual bandits498

problem with partial cross-learning when rewards are stochastic.499

Proof. The proof is similar to that of Theorem 23. If we define the estimator500

r̂i,t(c) =
ri,t(c)∑

c′∈Pi(c)
Pr[c′] · pi,t(c′)

1(It = i, ct ∈ Pi(c)).

Note that501

Pr[It = i, ct ∈ P (c)] =
∑

c′∈Pi(c)

Pr[c′] · pi,t(c′),

so taking expectations over history, we have that502

E[r̂i,t(c)] = ri,t(c),

and503

E[r̂i,t(c)
2] =

ri,t(c)
2∑

c′∈Pi(c)
Pr[c′] · pi,t(c′)

.

Define Wt(c) =
∑K
i=1 wi,t(c). Now, proceeding in the same way as the proof of Theorem 23, we504

arrive at the inequalities505

E[Reg(A)] ≤
C∑
c=1

Pr[c]

(
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E

[
pi,t(c)∑

c′∈Pi(c)
Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα

)

=
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

C∑
c=1

Pr[c] · E

[
pi,t(c)∑

c′∈Pi(c)
Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα

≤ logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E

[
C∑
c=1

Pr[c]pi,t(c)∑
c′∈Pi(c)

Pr[c′] · pi,t(c′)

]
+KTα

≤ logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

ν(Gi) +KTα

=
logK

β
+ (e− 2)βνKT +KTα

= O(
√
νKT logK).

Here we use the fact that
∑C
c=1

Pr[c]pi,t(c)∑
c′∈Pi(c)

Pr[c′]·pi,t(c′) ≤ λ(Gi), since from Lemma 12506

λ(Gi) = sup
f :[C]→R+

C∑
c=1

f(c)∑
c′∈Pi(c)

f(c′)
,

and we can take f(c) = Pr[c] · pi,t(c).507
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Note that this algorithm requires knowledge of both the distribution over contexts and the feedback508

graphs Gi over contexts. It is an interesting question whether it is possible to get similar regret509

bounds when the graphs Gi are unknown.510

4.4 Lower bounds511

In this section we prove some lower bounds on regret for contextual bandits with partial cross-learning512

that complement the results of the previous two sections. In our lower bounds, we will consider a513

restricted set of instances where the graph Gi of each arm i is equal to the same graph G.514

Theorem 18. Any learning algorithm solving the contextual bandits problem with partial cross-515

learning (for a fixed feedback graph G) with stochastic rewards and stochastic contexts must incur516

expected regret Ω(
√
ν2(G)KT ).517

Proof. To prove this, we will need a slightly stronger variant of Lemma 6.518

Lemma 19. There exists a distribution over instances of the multi-armed bandit problem (with K519

arms and T rounds) where for any round t ∈ [T ], any algorithm must incur an expected regret of at520

least Ω(
√
K/T ) in round t.521

Proof. See Appendix.522

Now, let f : [C] → R+ be any distribution on contexts (i.e.
∑
c f(c) = 1). Define g(c) =523 ∑

c′→c f(c′). Consider the following distribution over instances of the contextual bandits problem524

with partial cross-learning:525

• Every round, the context ct is drawn independently from the distribution f .526

• The distribution of rewards for a context c is drawn from the distribution over hard instances527

in Lemma 19 for a multi-armed bandit problem with K arms and g(c)T/2 rounds.528

Note that in the second point, the distribution over reward distributions changes per context depending529

on g(c). Intuitively, this is because we expect to observe (through cross-learning) the performance of530

some action in context c in approximately g(c)T rounds.531

For each context c and round t, let τc(t) =
∑t
s=1 1(cs ∈ P (c)) be the number of rounds up to round532

t where we observe the performance of some action in context c. Let Tc be the total number of rounds533

t where ct = c and τc(t) ≤ g(c)T . We claim that we must incur regret at least534

Ω

(
E[Tc]

√
K

g(c)T

)
(10)

from the rounds where ct = c. To see this, let {t1, t2, . . . , tmin(τc(T ),g(c)T )} be the set of (the first535

g(c)T ) rounds where ct → c, and let S(c) = {i|cti = c} be the subset of indices where cti equals c.536

We claim that, conditioned on S(c), we must incur expected regret at least537

Ω

(
|S(c)|

√
K

g(c)T

)
.

from the rounds ti for i ∈ S. If not, this means that there is one i ∈ S(c) where the expected regret538

from this round is o(
√
K/(g(c)T )); but this would violate Lemma 19 (in particular, this gives a539

regular multi-armed bandits algorithm which incurs expected regret o(
√
K/(g(c)T )) in round i).540

Since |Sc| = Tc, taking expectations over Tc, equation (10) follows.541

Now, we claim that E[Tc] = Ω(f(c)T ). This follows since542
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E[Tc] =

g(c)T∑
i=1

Pr[cti = ct] · Pr[τc(T ) ≥ i]

=
f(c)

g(c)

g(c)T∑
i=1

Pr[τc(T ) ≥ i]

≥ f(c)

g(c)
(g(c)T/2) · Pr[τc(T ) ≥ g(c)/2]

≥ f(c)T

2
· (1− exp(−g(c)2T/2))

≥ Ω(f(c)T )

where in the last step, we use that (1− exp(−g(c)2T/2)) ≥ Ω(1) for sufficiently large T .543

This implies that the expected regret from rounds where ct = c is at least Ω(f(c)
√
KT/g(c)).544

Summing over all contexts c, the total expected regret is at least545

Ω

((
C∑
c=1

f(c)√
g(c)

)
√
KT

)
.

Since ν2(G) = supf

(∑C
c=1

f(c)√
g(c)

)2

, taking the supremum over f we find that any algorithm must546

incur expected regret at least Ω(
√
ν2(G)KT ), as desired.547

548

When we allow the contexts to be adversarially chosen, we can improve this lower bound to549

Ω(
√
λ(G)KT ).550

Theorem 20. Any learning algorithm solving the contextual bandits problem with partial cross-551

learning (for a fixed feedback graph G) with stochastic rewards and adversarial contexts must incur552

regret Ω(
√
λ(G)KT ).553

Proof. Let {v1, v2, . . . , vλ(G)} be a maximum acyclic subset of G (with the property that if i < j,554

there is no edge vi → vj). We now proceed as in the proof of Theorem 7. Divide the T rounds into555

λ(G) epochs of T/λ(G) rounds each. The adversary must decide both the contexts every round, and556

the reward distributions for each context. The adversary will do so as follows:557

• For each round t in epoch i, the adversary will set the context ct = vi.558

• For each context c, the adversary will set the reward distribution equal to a hard instance for559

the multi-armed bandit problem sampled from the distribution from Lemma 6.560

Note that since the contexts vi belong to an acyclic subset of G, any information cross-learned in561

epoch i will reveal nothing about the reward distribution for any context vj with j > i (and hence562

nothing about the reward distribution in any epoch j > i). Since the hard instances are all independent563

of each other, any algorithm for the contextual bandits problem with partial cross-learning which564

achieves o(
√
λ(G)KT ) expected regret on this instance must achieve o(

√
KT/λ(G)) expected565

regret on one of the individual instances, which contradicts Lemma 6.566

Note that when the graphs are undirected, λ(G) = ι(G) (since in that case, the definition of acyclic567

subgraph and independent set coincide), and therefore λ(G) = ν2(G) = ι(G) (by Lemma 13). It568

follows that when all Gi are undirected and equal, the lower bound of Theorem 18 matches the upper569

bound of Theorem 17 in the setting where contexts are stochastic. Likewise, when G is the disjoint570

union of r cliques, all of our graph invariants coincide, and our lower bounds are tight. In other571

settings and for other feedback structures an instance-dependent gap between the best upper bound572

and best lower bound persists; reducing this gap is an interesting open problem.573
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5 Applications574

In this section, we discuss how to apply our results on cross-learning to some of the settings mentioned575

in the introduction: learning to bid in a first-price auction, multi-armed bandits with exogenous costs,576

and sleeping bandits. In all cases, we show that the regret bound we obtain by applying the algorithms577

of Section 3 and Section 4 are optimal (up to log T factors) and a non-trivial improvement over578

naively applying S-EXP3 or S-UCB (possibly discretizing the context space beforehand). We begin579

by discussing how to efficiently implement our algorithms when the number of contexts is infinite.580

5.1 Cross-learning between infinitely many contexts581

We begin with a brief note on efficiency. Even though the regret bounds we prove in Section 3 do not582

scale with C, note that the computational complexity of all three of our algorithms from Section 3583

(EXP3.CL-U, EXP3.CL, and UCB1.CL) scales with the number of contexts C: all three algorithms584

have time complexity O(C +K) per round and space complexity O(CK).585

In many of the above settings, the number of contexts can be very large (in some cases, like when the586

space of contexts is the interval [0, 1], the number of contexts is infinite). However, these settings587

often also have additional structure which let us run these same algorithms with improved complexity.588

Most generally, for all the settings we consider, the observed reward is always an affine function
of a straightforward embedding ρ(c) (computable by the learner) of the context into Rd for some
small d. That is, for each i and t, it is possible to write ri,t(c) = a>i,tρ(c) + bi,t, where ai,t ∈ Rd
and bi,t ∈ R; moreover, the coefficients aIt,t and bIt,t are directly revealed to the learner each round.
It in turn follows that the averages ri,t(c) stored by UCB1.CL are simply linear functions of ρ(c).
Since there is one such function for each arm i, this requires a total of O(Kd) space (i.e., we simply
store the running averages ai,t and bi,t and then determine the average reward using the formula
bi,t = a>i,tρ(c) + bi,t). Similarly, the coefficients can be updated each round in O(d) time simply by
updating the average for It. For example, for bi,t the update is given by

bIt,t =
τIt,t−1bIt,t−1 + bIt,t

τIt,t−1 + 1
.

Likewise, the weights wi,t(c) stored by EXP3.CL-U, for example, are always of the form589

exp(xi,tρ(c) + yi,t), and again it suffices to just maintain a linear function of ρ(c). A similar590

argument shows that EXP3.CL can be implemented efficiently (with the caveat that to compute the591

estimators, we must be able to efficiently take expectations over our known distribution on contexts).592

5.2 Applications of cross-learning593

Bidding in first-price auctions In the problem of learning to bid in a first-price auction, every594

round t (for a total of T rounds) an item is put up for auction. This item has value vt ∈ [0, 1] to our595

bidder. Based on vt, our bidder submits a bid bt ∈ [0, 1]. Simultaneously, other bidders submit bids596

for this item; we let ht be the highest bid of the other bidders in the auction. Finally, if bt ≥ ht,597

the buyer receives the item and pays bt, obtaining an utility of vt − bt; otherwise, the buyer does598

not receive the item and pays nothing, obtaining a utility of zero. The buyer only learns whether599

or not they receive the item and how much they pay – notably, they do not learn ht (i.e. this is a600

non-transparent first price auction). The bidder’s goal is to maximize their total utility (total value601

of items received minus total payment) over the course of T rounds. We assume vt and ht are602

independently drawn each round from distributions Dv and Dh respectively, where both distributions603

are unknown to the bidder.604

This can be thought of as a contextual bandits problem, where the contexts are values, the actions are605

bids, and the rewards are net utilities. Naively applying S-UCB to our problem by discretizing the606

value space and bid space into C and K pieces respectively results in a regret bound of Õ(
√
CKT +607

T/C + T/K) (here the last two terms come from discretization error). Optimizing C and K, we608

find that when C = K = T 1/4, we can achieve Õ(T 3/4) regret in this way.609

On the other hand, cross-learning between contexts is possible here (the reward rbt,t(v) is a known610

linear function of the value/context v), so we can apply UCB1.CL. Doing this (after discretizing the611
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bid space into K pieces) results in a regret bound of Õ(
√
KT + T/K), and optimizing this results612

in an algorithm which achieves Õ(T 2/3) regret. It follows from a reduction to known results about613

dynamic pricing that any algorithm must incur Ω(T 2/3) regret when learning to bid (even when the614

value v is fixed) – see Appendix A.3 for details.615

In the case of bidding in first-price auctions, the decision maker could potentially cross learn across616

auctions. For example, if the decision maker wins when submitting a bid bt, then a higher bid b′617

would also win the auction and lead to an utility vt − b′. Conversely, if the decision maker does not618

win, lower bids would necessarily lose in the auction too. While our algorithm does not explicitly619

take into account cross-learning across actions, the previous lower bound shows that, in the worst620

case, cross-learning across actions does not lead to lower regret. An interesting research direction is621

to design algorithms that exploit both cross-learning across actions and values when the problem has622

special structure that allows for cross-learning (e.g., the distribution of bids being nicely behaved).623

Finally, we emphasize that our algorithms apply when the auctioneer runs other non-truthful auctions.624

Multi-armed bandits with exogenous costs In this problem, as in the standard stochastic multi-625

armed bandit problem, a learner must repeatedly (for T rounds) make a choice between K options,626

where the reward ri,t ∈ [0, 1] from choosing option i is drawn from some distribution Di with mean627

µi. However, in addition to this, at the beginning of each round t, a cost si,t ∈ [0, 1] of playing arm i628

this round is adversarially chosen and publicly announced (and choosing arm i this round results in a629

net reward of ri,t − si,t). The learner’s goal is to get low regret compared to the optimal strategy,630

which always chooses the option which maximizes µi − di,t.631

This can be thought of as a contextual bandits problem where the context ct is the cost vector st.632

Discretizing the context space [0, 1]K into (1/ε)K pieces and running S-UCB results in an overall633

regret bound of Õ(
√
TKε−K + εT ). Optimizing this over ε, when ε = (K/T )1/(K+2), this results634

in a regret of Õ(T (K+1)/(K+2)K1/(K+2)).635

Again, cross-learning between contexts is possible. Applying UCB1.CL, this immediately leads636

to an algorithm which achieves regret Õ(
√
KT ) (which is optimal since the standard stochastic637

multi-armed bandit problem is a special case of this problem).638

Sleeping bandits In this variant of sleeping bandits, there areK arms (with stochastically generated639

rewards in [0, 1]) and in each round some nonempty subset St of these arms are awake. The learner640

can play any arm and observe its reward, but only receives this reward if they play an awake arm.641

The learner would like to get low regret compared to the best policy (which always plays the awake642

arm whose distribution has the highest mean).643

This is a contextual bandits problem where the context ct is the set St of awake arms. Since there are644

2K − 1 possible contexts, naively applying S-UCB results in an regret bound of Õ(
√

2KKT ). On645

the other hand, cross-learning between contexts is again present in this setting: given the observation646

of the reward of arm i, one can infer the received reward for any context S′t by just checking whether647

i ∈ S′t. Applying UCB1.CL, this leads to an optimal Õ(
√
KT ) regret algorithm for this problem.648

In the setting of sleeping bandits originally studied by Kleinberg, Niculescu-Mizi, and Sharma, ([16])649

the learner can neither play nor observe sleeping arms. We can capture this setting via contextual650

bandits with partial cross-learning. We adjust the previous setting so that if a learner chooses an651

asleep arm, they receive zero reward and observe nothing else. Note that in this case, we have the652

following partial learning structure between contexts:653

• If arm It ∈ St, you learn rIt,t(S) for all other subsets S (namely, rIt,t(S) = 1(It ∈654

S)rIt,t(St)).655

• If arm It 6∈ St, you learn rIt,t(S) only subsets S where It 6∈ S (where rIt,t(S) = 0).656

In other words, Gi is the following graph: there is an edge from S1 → S2 if either i ∈ Si or if657

i 6∈ S1 ∪S2. Note that Gi has clique cover number κ(Gi) = 2; the set of subsets containing i and the658

set of subsets not containing i both form subcliques of Gi. It follows from Theorem 14 that running659

Algorithm 3 results in an optimal regret bound of Õ(
√
KT ).660
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6 Empirical evaluation661

In this section, we empirically evaluate the performance of our contextual bandit algorithms on the662

problem of learning how to bid in a first-price auction.663

Recall that our cross-learning algorithms rely on cross-learning between contexts being possible: if664

the outcome of the auction remains the same, the bidder can compute their net utility they would665

receive given any value they could have for the item. This is true if the bidder’s value for the item is666

independent of the other bidders’ values for the item. Of course, this assumption (while common in667

much research in auction theory) does not necessarily hold in practice. We can nonetheless run our668

contextual bandit algorithms as if this were the case, and compare them to existing contextual bandit669

algorithms which do not make this assumption.670

Our basic experimental setup is as follows. We take existing first-price auction data from a large671

ad exchange that runs first-price auctions on a significant fraction of traffic, remove one participant672

(whose true values we have access to), substitute in one of our bandit algorithms for this participant,673

and replay the auction, hence answering the question “how well would this (now removed) participant674

do if they instead ran this bandit algorithm?”.675

We collected anonymized data from 10 million consecutive auctions from this ad exchange, which676

were then divided into 100 groups of 105 auctions. To remove outliers, bids and values above the677

90% quantile were removed, and remaining bids/values were normalized to fit in the [0, 1] interval.678

We then replayed each group of 105 auctions, comparing the performance of our three algorithms679

with cross-learning (EXP3.CL-U, EXP3.CL, and UCB1.CL) and the performance of classic contextual680

bandits algorithms that take no advantage of cross-learning (S-EXP3, and S-UCB1). Since all681

algorithms require a discretized set of actions, allowable bids were discretized to multiples of 0.01.682

Parameters for each of these algorithms (including level of discretization of contexts for S-EXP3 and683

S-UCB1) were optimized via cross-validation on a separate data set of 105 auctions from the same684

ad exchange.685

Figure 1: Graph of average cumulative regrets of various learning algorithms (y-axis) versus time
(x-axis). Grey regions indicate 95% confidence intervals.

The results of this evaluation are summarized in Figure 1, which plots the average cumulative regret686

of these algorithms over the 105 rounds. The three algorithms which take advantage of cross-learning687

(EXP3.CL-U, EXP3.CL, and UCB1.CL) significantly outperform the two algorithms which do not688

(S-EXP3 and S-UCB1). Of these, EXP3.CL-U performs the worst, followed by EXP3.CL, followed689

by UCB1.CL, which vastly outperforms both EXP3.CL-U and EXP3.CL.690

What is surprising about these results is that cross-learning works at all, let alone gives an advantage,691

given that the basic assumption necessary for cross-learning – that your values are independent from692

other players’ bids, so that you can predict what would have happened if your value was different693

– does not hold. Indeed, for this data, the Pearson correlation coefficient between the values v and694

the maximum bids r of the other bidders is approximately 0.4. This suggests that these algorithms695

are somewhat robust to errors in the cross-learning hypothesis. It is an interesting open question to696

understand this phenomenon theoretically.697
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A Appendix762

A.1 Regret in contextual bandits763

We define the regret of an algorithm A in the contextual setting as the difference between the764

performance of our algorithm and the performance of the best stationary strategy π. In other words,765

Reg(A) =

T∑
t=1

rπ(ct),t(ct)−
T∑
t=1

rIt,t(ct).

However, when contexts are stochastic, there are two different natural ways to define “the best766

stationary strategy” π. The first maximizes the reward of this strategy for the specific contexts ct we767

observed in our run of algorithm A:768

π(c) = arg max
i

T∑
t=1

ri,t(c)1ct=c

The second way simply maximizes the reward of this strategy in expectation over all time:769

π′(c) = arg max
i

T∑
t=1

ri,t(c)

These two stationary strategies give rise to two different definitions of regret. We call the regret770

against strategy π the ex post regret Regpost(A) (and denote the associated strategy by πpost), and we771

call the regret againtst strategy π′ the ex ante regret, Regante(A) (and denote the associated strategy772

by πante). This captures the idea that to the adversary at the beginning of the game (who knows all773

the rewards, but not when each context will occur), the best stationary strategy in expectation is πante.774

On the other hand, after the game has finished, the best stationary strategy in hindsight is πpost.775

In this paper, all bounds we show are for ex ante regret (unless otherwise stated, e.g. in Section 3.1).776

One reason for this is that, while it is possible to eliminate the dependence on C in the ex ante regret,777
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it is impossible to do so for the ex post regret. In particular, for a large enough number of different778

contexts C, it is impossible to get ex post regret that is sublinear in T .779

Theorem 21. For any algorithm A, there is an instance of the contextual bandits problem with780

cross-learning where E[Regpost(A)] ≥ T/2.781

Proof. We will consider an instance of the problem where there are K = 2 actions and C contexts,782

where the distribution D is uniform over all C contexts. We will choose C to be large enough so that783

with high probability all the observed contexts ct are distinct.784

The adversary will assign rewards as follows. For each round t and context c, with probability 1/2 he785

will set r1,t(c) = 1 and r2,t(c) = 0, and with probability 1/2 he will set r1,t(c) = 0 and r2,t(c) = 1.786

Now consider the best strategy πpost in hindsight. Since each context only appears once, and since787

there is always an arm with reward 1, for any context and any time, πpost will receive total reward T .788

On the other hand, since each ri,t is completely independent of the rewards from previous rounds,789

the maximum expected reward any learning algorithm can guarantee is T/2. It follows that M must790

have Regpost(A) at least T/2.791

On the other hand, in many settings, the strategies πpost and πante agree with high probability,792

and therefore the two notions of regret Regante(A) and Regpost(A) are similar in expectation. For793

example, this occurs when each context occurs often enough.794

Theorem 22. For each context c, let ∆c = mini 6=πante(c)
1
T

∑
t(rπante(c),t(c) − ri,t(c)), and let795

M = minc Pr[c] ·∆c. If M ≥
√

2 log(TCK)/T , then
∣∣E[Regante(A)]− E[Regpost(A)]

∣∣ ≤ 1.796

Proof. We will show that the probability that πante 6= πpost is at most 1
T , from which the result797

follows.798

Fix a context c, and consider the probability that πpost(c) = i 6= πante(c). For this to happen, it must799

be the case that800

T∑
t=1

(rπante(c),t(c)− ri,t(c))1ct=c < 0.

Since each 1ct=c is an independent Bernoulli random variable with probability Pr[c], we have801

ED

[
T∑
t=1

(rπante(c),t(c)− ri,t(c))1ct=c < 0

]
= Pr[c]

T∑
t=1

(rπante(c),t(c)− ri,t(c))

≤ −Pr[c]∆c

≤ −M,

It follows from Hoeffding’s inequality (and our assumption that M ≥
√

2T log(TCK)) that802

Pr

[
T∑
t=1

(rπante(c),t(c)− ri,t(c))1ct=c < 0

]
≤ exp

(
−A

2

2T

)
≤ 1

TCK
.

Taking the union bound over all alternate actions i and all possible contexts c, we find that Pr[πante 6=803

πpost] ≤ 1
T , as desired.804

Throughout the entire paper (unless otherwise specified) we work entirely with ex ante regret unless805

otherwise specified, and suppress subscripts and write Regante(A) as Reg(A) and πante(A) as π(A).806
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A.2 EXP3.CL-U: Adversarial rewards, stochastic contexts with unknown distribution807

In this section we present an Õ(K1/3T 2/3) regret algorithm for the contextual bandits problem with808

cross-learning in the setting when rewards are adversarial and contexts are stochastic, but when the809

learner does not know the distribution D over contexts. We call this algorithm EXP3.CL-U (see810

Algorithm 5).811

Algorithm 5 Õ(K1/3T 2/3) regret algorithm (EXP3.CL-U) for the contextual bandits problem with
cross-learning when the distribution D over contexts is unknown.

1: Choose α = (logK/K2T )1/3, and β =
√

α logK
T .

2: Initialize K · C weights, one for each pair of action i and context c, letting wi,t(c) be the value
of the ith weight for context c at round t. Initially, set all wi,0 = 1.

3: for t = 1 to T do
4: Observe context ct ∼ D.
5: For all i ∈ [K] and c ∈ [C], let pi,t(c) = (1−Kα)

wi,t−1(c)∑K
j=1 wj,t−1(c)

+ α.

6: Sample an arm It from the distribution pt(ct).
7: Pull arm It, receiving reward rIt,t(ct), and learning the value of rIt,t(c) for all c.
8: for each c in [C] do
9: Set wIt,t(c) = wIt,t−1(c) · exp

(
β · rIt,t(c)pIt,t(ct)

)
.

10: end for
11: end for

EXP3.CL-U is similar to S-EXP3, in that both algorithms maintain a weight for each action in812

each context, and update the weights via multiplicative updates by an exponential of an unbiased813

estimator of the reward. The main difference between these two algorithms is that while S-EXP3814

only updates the weight of the chosen action for the current context (i.e. wIt,t(ct)), EXP3.CL-U uses815

the information from cross-learning to update the weight of the chosen action for all contexts. More816

formally, note that for EXP3 r̂i,t(c) = (ri,t(c)/pi,t(ct))1(It = i) is an unbiased estimator (over the817

algorithm’s randomness) of the reward the adversary chooses from pulling arm i in context c, where818

pi,t(c) is the probability the algorithm chooses action i in round t if the context is c. Each round,819

EXP3.CL-U updates the weight wIt,t(c) by multiplying it exp(βr̂i,t(c)) (whereas S-EXP3 does this820

only for wIt,t(ct)).821

Why does EXP3.CL-U have regret of order T 2/3 when the dependence on T in S-EXP3 is only of822

order
√
T ? The answer lies in understanding how the variance of the unbiased estimator used affects823

the regret bound of the algorithm. In the analysis of EXP3, one of the quantities in the regret bound824

is the total expected variance of the unbiased estimator. In S-EXP3, this quantity takes the form825

T∑
t=1

pi,t(ct)E[r̂i,t(c)
2] =

T∑
t=1

pi,t(ct)

pi,t(ct)
r̂i,t(c)

2 =

T∑
t=1

r̂i,t(c)
2 ≤ T.

However, in EXP3.CL-U (where the desired exploration distribution pi,t(c) can differ from the826

exploration distribution due to cross-learning), this quantity becomes827

T∑
t=1

pi,t(c)E[r̂i,t(c)
2] =

T∑
t=1

pi,t(c)

pi,t(ct)
r̂i,t(c)

2 ≤ T

min pi,t(c)
.

Optimizing min pi,t(c) (through selecting the parameter α) leads to an Õ(T 2/3K1/3) regret bound.828

Theorem 23. EXP3.CL-U (Algorithm 5) has regret O(K1/3T 2/3(logK)1/3) for the contextual829

bandits problem with cross-learning.830

Proof. We proceed similarly to the analysis of EXP3. Begin by defining831
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r̂i,t(c) =
ri,t(c)

pi,t(ct)
1(It = i).

Note that since Pr[It = i|ct = c] = pi,t(ct), the expectation2 E[r̂i,t(c)] = ri,t(c) and thus r̂i,t(c) is832

an unbiased estimator of ri,t(c). In addition, since pi,t(c) ≥ α, we can bound the variance of r̂i,t(c)833

via834

E
[
r̂i,t(c)

2
]

=
ri,t(c)

2

pi,t(ct)
≤ ri,t(c)

2

α
. (11)

Now, let Wt(c) =
∑K
i=1 wi,t(c). Note that835

Wt+1(c)

Wt(c)
=

K∑
i=1

wi,t(c)

Wt(c)
· eβr̂i,t(c)

=

K∑
i=1

pi,t(c)− α
1−Kα

eβr̂i,t(c)

≤ 1

1−Kα

K∑
i=1

(pi,t(c)− α)
(
1 + βr̂i,t(c) + (e− 2)β2r̂i,t(c)

2
)

≤ 1 +
β

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c) +
(e− 2)β2

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c)
2 ,

where the first equation holds because for any c ∈ [C], wi,t+1(c) = wi,t(c) · eβr̂i,t(c), and the second836

equation follows because pi,t(c) = (1−Kα)
wi,t(c)
Wt(c)

+ α.837

In the first inequality, we have used the fact that βr̂i,t(c) ≤ βri,t(c)/α ≤ 1 (since β/α ≤ 1 for any838

choice of T and K), that ex ≤ 1 + x + (e − 2)x2 for x ∈ [0, 1], and that all rewards ri,t(c) are839

bounded in [0, 1]. Now, using the fact that log(1 + x) ≤ x, we have that:840

log
Wt+1(c)

Wt(c)
≤ β

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c) +
(e− 2)β2

1−Kα

K∑
i=1

pi,t(c)r̂i,t(c)
2 ,

and therefore (summing over all t)841

log
WT (c)

W0(c)
≤ β

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c) +
(e− 2)β2

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2. (12)

Recall that we compute regret against the optimal stationary policy π(c) = arg maxi
∑T
t=1 ri,t(c).842

Then,843

log
WT (c)

W0(c)
≥ log

wπ(c),T (c)

K

= β

T∑
t=1

r̂π(c),t(c)− logK , (13)

2Unless otherwise specified, all expectations of quantities at time t are taken conditioned on the history of
the previous t− 1 rounds.

26



where the first inequality holds because (i) wi,0(c) = 1 for any i ∈ [K] and as a result, W0(c) = K,844

and (ii) WT (c) =
∑K
i=1 wi,T (c) ≥ wπ(c),T (c). From (12) and (13), we get845

β

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)+
(e− 2)β2

1−Kα

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2 ≥ β

T∑
t=1

r̂π(c),t(c)−logK. (14)

Simplifying (14) (multiplying through by (1−Kα)/β3 and applying the fact that ri,t(c) is bounded),846

this becomes847

T∑
t=1

r̂π(c),t(c)−
T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c) ≤
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2 +KTα. (15)

We now take expectations (with respect to all randomness, both of the algorithm and of the contexts)848

of both sides of (14) and apply our bound (11) on the variance of r̂i,t(c).849

T∑
t=1

rπ(c),t(c)−
T∑
t=1

K∑
i=1

E[pi,t(c)]ri,t(c) ≤
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E[pi,t(c)]

α
ri,t(c)

2 +KTα

≤ logK

β
+ (e− 2)

βT

α
+KTα

≤ O(K1/3T 2/3(logK)1/3) (16)

where this last inequality follows from the definition of α and β.850

Now, note that the expected regret E[Reg(A)] of our algorithm is equal to851

E[Reg(A)] = E

[
T∑
t=1

rπ(ct),t(ct)−
T∑
t=1

rIt(ct),t(ct)

]

=

T∑
t=1

E
[
rπ(ct),t(ct)− rIt(ct),t(ct)

]
=

T∑
t=1

C∑
c=1

Pr[c]E
[
rπ(c),t(c)− rIt(c),t(c)

]
=

T∑
t=1

C∑
c=1

Pr[c]
(
rπ(c),t(c)− E

[
rIt(c),t(c)

])
Considering the fact arm that It is drawn from distribution pt(c), we get852

E[Reg(A)] =

T∑
t=1

C∑
c=1

Pr[c]

(
rπ(c),t(c)−

K∑
i=1

E[pi,t(c)]ri,t(c)

)

=

C∑
c=1

Pr[c]

(
T∑
t=1

rπ(c),t(c)−
T∑
t=1

K∑
i=1

E[pi,t(c)]ri,t(c)

)

≤
C∑
c=1

Pr[c] ·O(K1/3T 2/3(logK)1/3)

= O(K1/3T 2/3(logK)1/3) ,

where the inequality follows from (16).853

854

3Note that for T ≥ K logK, α ≤ 1/K, so 1−Kα is always positive.
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A.3 Lower bound for learning to bid855

In this section, will show that any algorithm for learning to bid in a first-price auction must incur856

at least Ω(T 2/3) regret even if there is only one value (so no potential for cross-learning between857

contexts). To show this, we will use a reduction to the problem of dynamic pricing.858

The problem of dynamic pricing is as follows. You must repeatedly (for T rounds) sell an item to a859

buyer with value xt drawn iid from some unknown distribution D. You do this by proposing a price860

pt. If xt ≥ pt, the buyer buys the item and you receive payment pt (alternatively, regret (xt − pt));861

otherwise if xt < pt the buyer does not buy the item and you receive regret xt. The goal of this game862

is to maximize total revenue, or equivalently, minimize the total regret (with respect to the optimal863

fixed price p∗).864

Kleinberg and Leighton [15] prove the following bounds on this problem.865

Theorem 24 (Theorem 4.3 in [15]). For any T , there exists a family of distributions P = {Di}866

on [0, 1] such that if D is sampled uniformly from P and the buyer’s valuations are sampled iid867

according to D, any pricing strategy must incur expected regret Ω(T 2/3).868

This lower bound can be matched (up to log factors) by discretizing (to K = O(T 1/3) intervals) and869

running EXP3.870

We now show this lower bound immediately implies a lower bound on the learning to bid problem,871

even when there is only one context.872

Theorem 25. Any algorithm must incur Ω(T 2/3) regret for the learning to bid in first price auctions873

problem, even if the value of the bidder is fixed (i.e. there is only one context).874

Proof. We will show how to use a learning algorithm for the learning to bid problem to solve the875

dynamic pricing problem.876

Consider an instance of the learning to bid problem where vt = 1 always (i.e. Dv is the singleton877

distribution supported on 1). If the bidder bids bt in this auction, then with probability Prh∼Dh
[bt ≥ h]878

the bidder wins the auction and receives reward (1− bt), and with probability 1−Pt the bidder loses879

the auction and receives reward 0.880

Now consider pricing when the value of the buyer is drawn fromD = 1−Dh (that is, one can sample881

from D by sampling x from Dh and returning 1 − x). If set a price pt in this auction, then with882

probability Prx∼D[x ≥ pt], the item is sold and the seller receives reward pt, and with probability883

1− Prx∼D[x ≥ pt], the item is not sold and the seller receives reward 0.884

But note that Prx∼D[x ≥ pt] = Prh∼Dh
[1− h ≥ pt] = Prh∼Dh

[1− pt ≥ h]. In particular, setting885

a price of pt in the pricing problem with distribution 1−Dh results in the exact same feedback and886

rewards as bidding 1− pt in the learning to bid problem with distribution Dh. One can therefore use887

any algorithm for the learning to bid problem to solve the dynamic pricing problem with the same888

regret guarantee; since Theorem 24 implies any learning algorithm must incur Ω(T 2/3) regret on the889

dynamic pricing problem, it follows that any learning algorithm must incur Ω(T 2/3) regret for the890

learning to bid problem.891

A.4 Omitted proofs892

A.4.1 Proof of Lemma 3893

Proof of Lemma 3. Essentially, we must show that after observing arm i mi(c) times, we no longer894

lose substantial regret from that arm in context c. Begin by noting that895

K∑
i=1

C∑
c=1

T∑
t=1

∆i(c)1(It = i, ct = c, τi,t > mi(c)) ≤
K∑
i=1

C∑
c=1

T∑
t=1

1(It = i, ct = c, τi,t > mi(c))

=

K∑
i=1

T∑
t=1

1(It = i, τi,t > mi(ct)) ,
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where the inequality holds the reward of each arm i and consequently gap ∆i(c) is bounded in [0, 1].896

In expectation, this is equal to897

K∑
i=1

T∑
t=1

Pr[It = i, τi,t > mi(ct)].

Now, define Ui,t(c) = ri,t(c) + ω(τi,t) to be the upper confidence bound for arm i under context c in898

round t. Note that if It = i, then Ui,t−1(ct) ≥ Uj,t−1(ct) for any other arm j. This holds because the899

algorithm chooses the arm with the highest upper confidence bound. It follows that (fixing i and t)900

Pr[It = i, τi,t > mi(ct)] ≤ Pr
[
Ui,t−1(ct) ≥ Ui∗(ct),t−1(ct), τi,t > mi(ct)

]
.

Define ti(n) to be the minimum round t such that τi,t = n, and define xi,n(c) = ri,ti(n)(c) (in other901

words, xi,n(c) is the average value of the first n rewards from arm i, in context c). Note that if902

τi,t ≥ mi(c), then Ui,t−1(c) ≥ Ui∗(c),t−1(c) implies that903

max
mi(ct)≤n≤t

xi,n(c) + ω(n) ≥ min
0<n′<t

xi∗(c),n′(c) + ω(n′).

We can therefore write904

Pr
[
Ui,t−1(ct) ≥ Ui∗(ct),t−1(ct), τi,t > mi(ct)

]
≤ Pr

[
max

mi(ct)≤n≤t
xi,n(ct) + ω(n) ≥ min

0<n′<t
xi∗(ct),n′(ct) + ω(n′)

]
≤

t∑
n=mi(ct)

t∑
n′=1

Pr
[
xi,n(ct) + ω(n) ≥ xi∗(ct),n′(ct) + ω(n′)

]
.

Finally, observe that if xi,n(ct) + ω(n) ≥ xi∗(ct),n′(ct) + ω(n′), then one of the following events905

must occur:906

1. xi∗(ct),n′(ct) ≤ µ∗(ct)− ω(n′).907

2. xi,n(ct) ≥ µi(ct) + ω(n).908

3. µ∗(ct) < µi(ct) + 2ω(n).909

Now, recall that mi(c) = 8 log T
∆i(c)2

. Note that since n ≥ mi(ct), we have that ω(n) ≤ ω(mi(ct)) ≤910

∆i(ct)/2, so µi(ct) + 2ω(n) ≤ µi(ct) + ∆i(ct) ≤ µ∗(ct), and therefore the third event can never911

occur. Since the first two events both occur with probability at most t−4 (by Hoeffding’s inequality),912

we have that913

Pr[It = i, τi,t > mi(ct)] ≤
t∑

n=mi(ct)

t∑
n′=1

Pr
[
xi,n(ct) + ω(n) ≥ xi∗(ct),n′(ct) + ω(n′)

]
≤

t∑
n=mi(ct)

t∑
n′=1

2t−4 ≤ 2t−2.

Further summing this over all i ∈ [K] and t ∈ [T ], we have that914

K∑
i=1

T∑
t=1

Pr[It = i, τi,t > mi(ct)] ≤
Kπ2

3
,

915
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A.4.2 Proof of Theorem 5916

Proof of Theorem 5. The proof is similar to that of Theorem 23. Begin by defining the estimator917

r̂i,t(c) =
ri,t(c)∑

c′ Pr[c′] · pi,t(c′)
· 1(It = i).

Note that918

Pr[It = i] =
∑
c′

Pr[c′] · pi,t(c′),

so taking expectations over the algorithm’s choice of It, we have that919

E[r̂i,t(c)] = ri,t(c),

and920

E[r̂i,t(c)
2] =

ri,t(c)
2∑

c′ Pr[c′] · pi,t(c′)
.

Define Wt(c) =
∑K
i=1 wi,t(c). Now, proceeding in the same way as the proof of Theorem 23, we921

arrive at the inequality922

T∑
t=1

r̂π(c),t(c)−
T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c) ≤
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

pi,t(c)r̂i,t(c)
2 +KTα. (17)

We now take expectations (with respect to all randomness, both of the algorithm and of the contexts)923

of both sides of (17).924

T∑
t=1

rπ(c),t(c)−
T∑
t=1

K∑
i=1

E[pi,t(c)]ri,t(c)

≤ logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E
[

pi,t(c)∑
c′ Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα . (18)

Note that the expected regret E[Reg(A)] of our algorithm is equal to925

E[Reg(A)] = E

[
T∑
t=1

rπ(ct),t(ct)−
T∑
t=1

rIt(ct),t(ct)

]

=

T∑
t=1

E
[
rπ(ct),t(ct)− rIt(ct),t(ct)

]
=

T∑
t=1

C∑
c=1

Pr[c]E
[
rπ(c),t(c)− rIt(c),t(c)

]
=

T∑
t=1

C∑
c=1

Pr[c]
(
rπ(c),t(c)− E

[
rIt(c),t(c)

])
30



Since arm It is drawn from distribution pt(c), we have926

E[Reg(A)] =

T∑
t=1

C∑
c=1

Pr[c]

(
rπ(c),t(c)−

K∑
i=1

E[pi,t(c)]ri,t(c)

)

=
∑
c

Pr[c]

(
T∑
t=1

rπ(c),t(c)−
T∑
t=1

K∑
i=1

E[pi,t(c)]ri,t(c)

)
From (18), we get that927

E[Reg(A)] ≤
C∑
c=1

Pr[c]

(
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

E
[

pi,t(c)∑
c′ Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα

)

=
logK

β
+ (e− 2)β

T∑
t=1

K∑
i=1

C∑
c=1

Pr[c] · E
[

pi,t(c)∑
c′ Pr[c′] · pi,t(c′)

]
ri,t(c)

2 +KTα

≤ logK

β
+ (e− 2)βKT +KTα

= O(
√
KT logK).

Here the final inequality holds since ri,t(c) is bounded in [0, 1].928

A.4.3 Proof of Lemma 19929

Proof of Lemma 19. Consider the following distribution over instances of the multi-armed bandit930

problem. Let ε = Θ(
√
K/T ) (the precise value to be chosen later). An i is drawn uniformly at931

random from [K]. The rewards from arm i are distributed according to B((1 + ε)/2), and the arms932

for all j 6= i are distributed according to B((1− ε)/2) (where here B(p) is the Bernoulli distribution933

with probability p).934

We wish to claim that at any round t ≤ T , the probability any learner plays the optimal arm i is less935

than 1/2, and therefore the learner must incur Ω(ε) = Ω(
√
K/T ) regret this round. This is therefore936

a best-arm identification problem. Theorem 4 in [3] implies there exists some ε = Θ(
√
K/T ) such937

that this result holds for our distribution of instances.938
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