Supplementary Document

Rethinking Generative Mode Coverage:
A Pointwise Guaranteed Approach

A Global Statistic Distance Based Generative Approaches

In this section, we analyze a few classic generative models to show their connections to the reduction
of a certain global statistical distance. The reliance on global statistical distances explains why they
suffer from missing modes, as empirically confirmed in Figure 2 of the main text.

Maximum Likelihood Estimation. Consider a target distribution P with density function p(-).
Suppose we are provided with n i.i.d. samples {21, 2, -+ ,z,} drawn from P. The goal of training
a generator through maximum likelihood estimation (MLE) is to find from a predefined generator
family G the generator G that maximize

L(@) = + 3 log g(a),

where g(+) is the probability density function of the distribution generated by G. When n approaches
00, the MLE objective amount to

lim <max L(G)) =max E [logg(z)] = Iggé/p(x) log g(x)dz = gellgl (—/p(x)logg(:v)dx) ,

n—oo \ GEG Geg z~P

which is further equivalent to solve the following optimization problem:

[o) togptayiz + min (— [1ogg<x>dx> ~ min D (P | G).

This is because the first term on the LHS is irrelevant from G and thus is a constant. From this
expression, it is evident that the goal of MLE is to minimize a global statistical distance, namely,
KL-divergence.

Figure 6 illustrates an 1D example wherein the MLE fails to achieve pointwise coverage. Although
Figure 6, for pedagogical purpose, involves a generator family G consisting of only two generators,
it is by no means a pathological case, since in practice generators always have limited expressive
power, limited by a number of factors. For GANS, it is limited by the structure of generators. For
VAE:s, it is the structure of encoders and decoders. For Gaussian Mixture models, it is the dimension
of the space and the number of mixture components. Given a G with limited expressive power, MLE
cannot guarantee complete mode coverage.

Variational Autoencoders (VAEs). A VAE has a encoder § € © and a decoder ¢ € ® chosen
from an encoder and decoder families, © and . It also needs a known prior distribution @ (whose
probability density is g(+)) of latent variable z. Provided a decoder ¢ and the prior distribution @,
we can construct a generator G': to generate an z, we firstly sample a latent variable 2 ~ Z and then
sample an x according to the (approximated) likelihood function pg(2|z). To train a VAE, a target
distribution P is provided and the training objective is

061(1912?;@/wp(56) -ELBOg ¢ (z)dz, @

where ELBOy 4 () is called the evidence lower bound, defined as

ELBOg ¢ () = /pg(z\x)logpq;(ﬂz)dz - /pg(z|x)log (%) dz, (8)

Here py(z|x) is the (approximated) posterior function.

13

0.40 — Generator 1
' —-— Generator 2
--- Target Distribution

0.351
0.301
0.251
0.201

0.154

0.05 1

0.00 1

-15 -10 -5 0 5 10 15

Figure 6: Consider a 1D target distribution P with three modes, i.e., a mixture of three Gaussians,
P =0.98-N(0,1) +0.01 - N'(10,1) + 0.01 - N (=10, 1). In this example, the generator class G
only contains two generators. The generated distribution of the first generator Gy is A/(0, 1), while
the distribution of the second generator G is 0.34 - N'(0,1) + 0.33 - A/(10,1) + 0.33 - (10, 1).
In this case, we have Dk, (P,G1) ~ 1.28, Dk (P,G2) ~ 1.40, Dk (G1,P) ~ 0.029, and
Dx1.(Ga, P) =~ 2.81 (all Dkr, measures use a log base of 2). To minimize Dxr, (P, G), maximum
likelihood estimation method will choose the first generator, G1. The probability of drawing samples
from the side modes (in [—14, —6] and [6, 14]) of the target distribution P is Pry.p[6 < |z| <
14] ~ 0.02, but the probability of generating samples from the first generator in the same intervals is
Pryq,[6 < |z| < 14] ~ 10~ 2. Thus, the side modes are almost missed. To make the first generator
satisfy Equation (1), we have to choose 1) =~ 10~7, which in practice implics no pointwise coverage
guarantee. In contrast, the generated distribution of the second generator can satisfy Equation (1)
with ¢ > 1/3, which is a plausible pointwise coverage guarantee.

Let G € G be a generator corresponding to the decoder ¢ and the prior Z, and let g(-) be the
generative probability density of G. Then, we have the following derivation:

Efozg(o)] = [pla)lozg(a)de = [ple) [po(ela) oz o(a) dzda

x T

:/p(x)/p9(2|a:) log <p—¢2§jz?§§z)> dzdz
=/p(x)/pe(z|a:) log (pigj(qu(z)pe(zhs)) dzdx

x)po(z|x)

= s ([tetoon (P o=+ [teonos (G55))
(
)

pe_>) dz + D, (pa(2|2) | m(ziw))) d

©)

= / p(z) (ELBOy 4(z) + Dk (po(2|7) || ps(z]2))) dz.
14

Algorithm 2 Training on empirical distribution

1: Parameters: 7', a positive integer number of generators, and § € (0, 1), a covering threshold.

: Input: aset {z;} ; of i.i.d. samples drawn from an unknown data distribution P.

: For each x;, initialize its weight wy (x;) = 1/n.

fort =1—=Tdo
Construct an empirical distribution Pt such that each z; is drawn with probability M‘L—’),
where Wy = >, we(z;).
Train G; on i.i.d. samples drawn from P;.

7. Train a discriminator D; to distinguish the samples from P; and the samples from G,.

8: For cach x;, if (Dtézl) - 1) . wa(aii) < 2 setwypr (27) = 2 wy(wy).

Otherwise, set wyy1(x;) = wi(x;).
9: end for
10: Output: a mixture of generators G* = {G1,...,Gr}.

TN

ISy

Notice that Dxr, (pg(z|) || pg(z|x)) is always non-negative and it reaches 0 when py(z|z) is the
same as py(z|z). This means

3CDNEP[logg(:I:)] > /zp(x) -ELBOg,4(x)dz

If 0 is perfectly trained, i.e., po(2|x) matches exactly py(z|z), then

2 B longto) = g, | ole)- BLBOG(a)is
From this perspective, it becomes evident that optimizing a VAE essentially amounts to a maximum
likelihood estimation. Depending on the generator family G (determined by ® and Z) and the encoder
family ©, mode collapse may not always happen. But since it is essentially a maximum likelihood
estimation method, the pointwise mode coverage (1) can not be guaranteed in theory, as discussed in
the previous paragraph.

Generative Adversarial Networks (GANs). Given a target distribution P, the objective of training
a GAN [9] is to solve the following optimization problem:

min max L(G, D),
GeG D

where L(G, D) is defined as
L(G,D) = E,llog(D@))] + E_llog(1 ~ D(@))] = | p(a)Iog(D(@)) + (s) og(1 ~ Dla))da.

As shown in [9], the optimal discriminator D* of Nash equilibrium satisfies D*(x) = 1/2. When
using D* in L(G, D), we have

N P+ G P+G
L(G,D)ZDKL (P I >+DKL (G I)—2:2D35(P I G)—2,

where Djg is the Jensen-Shannon divergence. Thus, GAN essentially is trying to reduce the global
statistical distance, measured by Jensen-Shannon divergence.

There are many variants of GANs, which use (more or less) different loss functions L(G, D) in
training. But all of them still focus on reducing a global statistical distance. For example, the
loss function of the Wasserstein GAN [10] is E,.p[D(z)] — Ez~g[D(x)]. Optimizing such a loss
function over all 1-Lipschitz D is essentially to reduce the Wasserstein distance, another global
statistical distance measure.

B Algorithm on Empirical Dataset

In practice, the provided dataset {x;}? , consists of n i.i.d. samples from P. According to the
Glivenko-Cantelli theorem [36], the uniform distribution over n i.i.d. samples from P will converge

15

to P when n approaches to infinity. As a simple example, let P be a discrete distribution over two
points, A and B, with P(A) = 5/7 and P(B) = 2/7. If 7 samples are drawn from P to form the
input data, ideally they should be a multiset { A, A, A, A, A, B, B}. Each sample has a weight 1/7,
and the total weights of A and B are 5/7 and 2/7. Then we will train a generator G from the training
distribution where point A has training probability 5/7 and point B has training probability 2/7.

If the generator G obtained is collapsed, e.g., G samples A with probability 1 and samples B with
probability 0, then ideally the discriminator D4 will satisfy D¢ (A) = 5/12 and D1(B) = 1. Suppose
the parameter 6 = 1/4 in Algorithm 1 (and Algorithm 2). We have

1 wy(A) 1 5 1 1 "
(D1<A>‘1>'W11<A> :(Dlw‘1>'?'525'P<A>-g=6/n:7

and

[\]

N

1 wq(B) 1 1 1 /4
-1]- = —1]-2-=<d6-PB)--=d/n=—+—.
(Dl(B>) m(B) ~ \Di(B) g <O PBg o=
Thus, each sample B will double the weight, and each sample A will remain the same weight
unchanged. The total weight of A is 5/7, and the total weight of B is 4/7. In the second iteration, the
total probability of A will be decreased to 3/9 and the total probability of B will be increased to 4/9.

We will use the new probability to train the generator G5 and the discriminator Do, and repeat the
above procedure.

In practice, we do not need to know the probability density p(x) of P; every sample x; is considered
to have a finite and uniform probability measure. After the generator G is trained over this dataset, its
generated sample distribution should approximate well the data distribution P. In light of this, the
Algorithm 1 can be implemented empirically as what is outlined in Algorithm 2.

C Statistical Distance from Lower-bounded Pointwise Coverage
Equation (1) (i.e., Vo € X, g(x) > ¢ - p(x)) is a pointwise lower-bounded data coverage that we

pursue in this paper. If Equation (1) is satisfied, then the total variation distance between P and G is
automatically upper bounded, because

Diy(P || Q) = / Ip(x) — g(z)|dz = /X 1(p(x) > 9(2)) - (plx) — g(x))da
< / 1(p() > 9()) - (p(x) — ¥ - p(z))da
X

— (- /X 1(p(z) > 9(2)) - pla)dz
< 1—1.

D Proof of Equation (3)

Suppose two arbitrary distributions P and () are defined over a data space X. G is the distribution of
generated samples over X'. If the total variation distance between Q) and G is at most 0.1, then we
have

pp oo > o] = [1060 = J00)) 0t

2~Q

\
T
=
N
=2
8
~—
Q
—
=
vV
=
]
—
2
N———
=
8
~—
o
8

> 3 [1(a) 2 100) > 900) fale) —) + o)
3 1
> 2 -01- =04,

16

where the first term of the right-hand side of the second inequality follows from
3

[1(ot0) = @) -awiae =1 [1) < o)) atoto =1~ [Gptarae =

And the third inequality follows from

[1(a60) > 1060 > 00) ate) - st < [16ate) > gl ato) gl <01
X X

and

[1(st0) > Go0@) > o))atwrda < [1(Got0) > o))ataida < [oo < .

E Theoretical Analysis Details

In this section, we provide proofs of the lemmas and theorem presented in Section 4. We repeat the
statements of the lemmas and theorem before individual proofs. We also provide details to further
elaborate the discussion provided in Sec. 4.3 of the paper.

We follow the notations introduced in Sec. 4 of the main text. In addition, we will use log(-) to denote
log,(+) for short.

E.1 Proof of Lemma 1

Lemma 1. Consider two distributions, P and Q, over the data space X, and a generator G producing
samples in X. For any 6,7 € (0,1], if Drv (G || Q) <, then G can (8,1 — 2§ — v)-cover (P, Q).

Proof. Since D1v(G||Q) < ~ and fX q(z)dz = [, g(xz)dz = 1, we know that

Dry(G || Q) = / lq(z) — g(z)|dz = /X]l(Q(ﬂﬁ) > g(x)) - (q(2) — g(x))dz <~. (10)

Next, we derive a lower bound of Pr,.q[x is §-covered by G under P]:
Plz2 [« is 0-covered by G under P]
z~

- / 1(g(x) > 5 p(a)) - qlx)da > / 1(g(2), q(z) > 6 - p(x)) - g(x)da

X X
- / 1(g(z) > 5 p(a)) - q()dz — / 1(g(x) > 5 p(2) > g(a) - g(z)dz

X X
—1- / 1(g(x) < 5 p(a)) - qla)dz — / L(g(z) > 5 - p(z) > g(z) - q(z)dz

X X

> 15 [p@ie— [1a(@) > 5-p(@) > o(a) - ala)ar
= 1=5— [Ua(@) = 5-pla) > 9(a)) - (ala) ~ gla) + gla))de
= 1=0— [U6@) > 5-p(0) > 9(e) - (ale) ~gla)da ~ [1(ala) >3- p(o) > @) - gle)da

Y

1—6—7—/11(q(1°)>5 p(x) > g(x)) - gla)de

>1-0—v— 5/ z)de =1-—26 — 1,
where the first equality follows from definition, the second equality follows from 1(g(x) > 6-p(x)) =

1(g(z),q(x) > d-p(x))+1(q(z) > §-p(x) > g(x)), the third inequality follows from Equation (10),
and the last inequality follows from

[1a@) > 5 pla) > gla)) - gla)de < [1600 > o) -g(a)do < [5 pla)da.
X X X
O

17

E.2 Proof of Lemma 2

Here we first assume that the probability density g; of generated samples is known. In Appendix E.5,
we will consider the case where gy is estimated by a discriminator as described in Section 3.

Lemma 2. Recall that T € N and § € (0,1) are the input parameters of Algorithm 1. For any
e € [0,1) and any measurable subset S € B(X) whose probability measure satisfies P(S) > 1/2"
with some) € (0, 1), ifin every round t € [T, Gy can (6,1 — &)-cover (P, P,), then the resulting
mixture of generators G* can (1 — £/ln2 — n)d-cover S under distribution P.

Proof. First, we consider the total weight W, after ¢ rounds, we derive the following upper bound:

Wi = /X wer (2)dz = /X wi(@) - (1+ 1ge(x) < 6 - pl(a)))dz

W W /X o) < 5-p(e) -

=W, +W,;- / L(gi(z) <6 p(x)) - pr(z)dz
X

= Wi+ Wy- Pr[g:(z) <6 p(x)]

=W+ W (1— Pr [g(z) >0 p(x)])

z~P;

SWe+We-(1—(1-¢9)
SWt'(1+5)v

where the first equality follows from definition, the second equality follows from Line 9 of Algo-
rithm 1, the forth equality follows from the construction of distribution P;. In addition, the first
inequality follows from that G can (3, 1—¢)-cover (P, P;). Thus, Wro1 < Wi-(14¢)T = (1+¢)7.

On the other hand, we have

Wri1 =/ wT+1($)d$Z/wT+1(1’)dl’Z/22’T=1]l(gt(x)d'p(xnp(i’?)dg?
X s s (11

- E [ngﬂmgt(m)dp(m))‘x c S] Pr [z € 8],
x~P x~P

where the first equality follows from definition, the first inequality follows from & C X, and the
second inequality follows from Line 9 of Algorithm 1. Dividing both sides by Pr,p[z € S] of (11)
and taking the logarithm yield

Wiy S A .
y [— L) > o L 1(ge(2) <8 p(z))’ ,
log <Prx~p[m € S]) > log (z@P [2 ' ve SD
(12)
> reS

9

T
[Z 1(g:(x) < 6 - p(a))

E
xz~P

where the last inequality follows from Jensen’s inequality.

18

Lastly, we have a lower bound for Pr,.[z € S]:

>

where the third inequality follows from Equation (12), while the last inequality follows from
log(Wri1) <log((1+4¢)T) <eT/In2and Pr,.p[z € S] = P(S) > 1/2"7. O

E.3 Proof of Theorem 1

Theorem 1. Recall that T € Nsq and 0 € (0,1) are the input parameters of Algorithm 1. For
any measurable subset S ¢ B(X) whose probability measure satisfies P(S) > 1/2"T with some

€ (0,1), ifin every round t € [T), Drv(Gy || P;) < , then the resulting mixture of generators G*
can (1 — (v +20)/In2 — n)d-cover S under distribution P.

Proof. From Lemma 1, we have Vt € [T, G; can (d,1 — v — 2§)-cover (P, P;). Combining it with
Lemma 2, we have VS C X with P(S) > 1/2"", G can (1 — (v +20)/In2 — n)d-cover S. O

E.4 Choice of T and § according to Theorem 1

Suppose the empirical dataset has n data points independently sampled from a target distribution P.
We claim that in our train algorithm, 7" = O(log n) suffices. This is because if a subset S € B(X)
has a sufficiently small probability measure, for example, P(S) < 1/n?, then with a high probability
(i.e., at least 1 — 1/n?), no data samples in {z;}, is located in S. In other words, the empirical
dataset of size n reveals almost no information of a subset S if P(S) < 1/n3, or equivalently if
1/2"T ~ 1/n? (according to Theorem 1). This shows that T' = O(log n) suffices.

Theorem 1 also sheds some light on the choice of § in Algorithm 1 (and Algorithm 2 in practice). We
now present the analysis details for choosing §. We use G to denote the type of generative models
trained in each round of our algorithm. According to Theorem 1, if we know 7 (depends on 7") and «
(depends on G), then we wish to maximize the lower bound (1 — (v 4 2d)/In2 — n)d over 4, and the

optimal § is w#. Although in practice y is unknown and not easy to estimate, we note that -y
is relatively small in practice, and 7 can be also small when we increase the number of rounds 7.

19

Given two arbitrary distributions P and) over X, if the total variation distance between) and a
generated distribution G is at most 7y (as we discussed in Sec. 1.1 of the main text), then we have

Pr [g(z) > 6 - p()]

/ 1(g(x) > 5p(e)) - q(x)de
X

Y

/X 1g(2),q(2) > 6 - p(a) - glx)dz

/ L(g(x) > 5 pl(a)) - q(x)dz — / 1(g(x) > 5 p(x) > g(x) - g(x)da
X

X

Y

|5 / L(g(z) = 6 - p(z) > g(x))(a(z) — g(x) + g(x))dx
X
>1—-0—y—06=1-20—7.

As discussed in Section 1.1, we can find a mixture of generators satisying pointwise (1 — 26 — 7)d-
coverage. Letting v = 0, we see that the optimal choice of J in this setting is 1/4. And in this case,
(1 —20)6 = 1/8 is a theoretical bound of the coverage ratio by our algorithm.

E.5 Use of Estimated Probability Density g,

In Algorithm 1, we use a discriminator D; to estimate the probability density g; of generated samples
of each generator G;. The discriminator D; might not be perfectly trained, causing inaccuracy of
estimating g;. We show that the pointwise lower-bound in our data coverage is retained if two mild
conditions are fulfilled by D;.

1. In each round, only a bounded fraction of covered data points x (i.e., those with g,(x) > 0 - p(z))
is falsely classified and their weights are unnecessarily doubled. Concretely, V¢ € [T, if a sample
x is drawn from distribution P, then the probability of both events—z is -covered by G, under

P and (#(w) - 1) . % < d—happening is bounded by £'.

2. For any data point x € X, if in round ¢, the weight of 2 is not doubled, then
with a good chance, z is really d¢’-covered, where &’ can be smaller than §. Formally,

Vo € X, |{t € [T)|gi(x) =& -p(x)} > X- Ht € [T]‘(Dtl(z) — 1) wi(@) 6}‘ Because

" p@)W, =

(#(I) — 1) : % < 0 happens if and only if wyt1(z) = 2 - we(z), we use the event

wyr1(x) = 2 - we(w) as an indicator of the event (ﬁ — 1) : J;T@V‘% < 4.

If the condition (1) is satisfied, then we are able to upper bound the total weight W . Similarly to
the proof of Lemma 2, this can be seen from the following derivation:

Wi =/ wyr1(v)d
x

< /X wy () - (1+1(ge(x) <6 - p(x)) +1(ge(x) > 6 - p() Awigr(2) = 2w (w)))da

w(x)

W, dx

=W Wi [(Lai(e) <+ pl)) + Dau(o) > 5 -pla) A (@) = 201(a) -

=W, +W,;- /X(]l(.flt(m) <0-p(x)) +L(ge(x) > 0 - p(x) A wgr(x) = 2we(x))) - pe(x)da
=W+ W, xPN’rPf[gt(:E) <6-plax)]+ W, - xErPf[gt(g;) > 5 p(@) Awees (z) = 2w, (2)]
SWi+We-(1- wEgﬁ[gt(ff) >6-p(x)]) + W, &

<W 4+ W (1= (1—2)+ W, - &

<Wi-(14e+¢),

20

Thus, the total weight Wy is bounded by (1 + & + &’)”. Again in parallel to the proof of Lemma 2,
we have

Wiy Z/XwTH(:I:)d:I:Z/SwTH(x)dxZ/S22‘11Mw”l(m)zzwt(wp(x)dx

) PZiJWHm%ﬂmmﬂzeg]Pﬂzggy
z~P

x~P

Dividing both sides by Pr,.p[z € S] yields

Wri1 T _
1 >1 (E Pzﬁﬂmwmmdmu»
©8 (Perp[m € S]) =8 2p

ves|)

> K Z]l(’wtﬂ(’) =2w(x))|z € S| .

z~P
) <
E

T
—mPlE:l) <8 pl))

t=1

Meanwhile, if the condition (2) is satisfied, then

T
A.(T_Iﬁjéjnwmﬂu):mem)xes

t=1

reS|. (13)

Following the proof of Lemma 2, we obtain

Prloes) - / th dx>/ Z (gu(x) > & plx)) - gu(2))da

> [23 (0(e) 2 8 p(@) 6 pla))da

T
> A(gi(x) > 6 pla))

IES}-PI‘[IES]
z~P

, T

:%(T x~PLz=;]lgt) <& - p(z))xeS)-IPN’rP[:UES]
, T

> 6T)\ (tg]l wit1(x) = 2w (z))|z € S)

> A1 = log(Wrpy1/ Pr [x eS)/T)- Pl}»[x € 8]

)\(1—(54-6)/1112 n)- PIP[SCES],

where the third inequality follows from Equation (13), and other steps are similar to the proof in
Lemma 2. By combining with Lemma 1, the final coverage ratio of Theorem 1 with imperfect
discriminators D; should be (1 — (7 + 20 +¢’)/In2 — n)d’A.

E.6 Discussion on Generalization

Recently, Arora et al. [26] proposed the neural net distance for measuring generalization performance
of GANs. However, their metric still relies on a global distance measure of two distributions, not
necessarily reflecting the generalization for pointwise coverage.

While a dedicated answer of this theoretical question is beyond the scope of this work, here we
propose our notion of generalization and briefly discuss its implication for our algorithm. Provided

21

a training dataset consisting of n i.i.d. samples {x;}?_; drawn from the distribution P, we train a
mixture of generators G*. Our notion of generalization is defined as Pr,.p[x is 1)-covered by G*],
the probability of x being 1-covered by empirically trained G* when x is sampled from the true
target distribution P. A perfect generalization has a value 1 under this notion. We claim that given
fixed 7" rounds of our algorithm and a constant ¢ € (0, 1), if G; in each round is from a family
G of generators (e.g., they are all GANs with the same network architecture), and if n is at least
Q(e~ T log|G|), then we have the generalization Pr, p [z is 1)-covered by G*] > 1 — e. Here |G|
is the size of essentially different generators in G. Next, we elaborate this statement.

Generalization Analysis. Our analysis start with a definition of a family of gencrators. In each
round of our algorithm, we train a generator GG;. We now identify a family of generators from which
G, is trained. In general, a generator G can be viewed as a pair (f(+), Z), where Z is the latent
space distribution (or prior distribution) over the latent space Z, and f(-) is a transformation function
that maps the latent space Z to a target data domain A&’. Let z be a random variable of distribution
Z. Then, the generated distribution (i.e., distribution of samples generated by G) is denoted by the
distribution of f(z). For example, for GANs [9] and VAEs [42], f(-) is a function represented by a
neural network, and Z is usually a standard Gaussian or mixture of Gaussians.

In light of this, we define a family G of generators represented by a pair (F, Z), where F is a set of
functions mapping from Z to X'. For example, in the framework of GANs, F can be expressed by a
neural network with a finite number of parameters which have bounded values. If the input to the
neural network (i.e., the latent space) is also bounded, then we are able to apply net argument (see
e.g., [26]) to find a finite subset 7' C F such that for any f € F, there exists a function f' € F’
sufficiently close to f. Then the size of F’, denoted by |F’|, can be regarded as the number of
“essentially different” functions (or neural networks).

Recall that the generator family G can be represented by (F, Z). If the latent space Z is fixed (such
as a single Gaussian), then we can define “essentially different” generators in a way similar to the
definition of “essentially different” functions in . If the number of “essentially different” generators
from G is finite, we define the size of G as |G|.

With this notion, the number of different mixture of generators G* = {Gi,...,Gr} is
at most |Q|T. Consider a uniform mixture G* of generators, G1,Gs,--- ,Gp € G. If
Pr,~p[z is not 1p-covered by G*| > ¢, then for n i.i.d. samples 1, x2, -, 2, ~ P, the prob-
ability that every z; is 1¥-covered by G is at most (1 — €)™, that is,
Pr levery z1, ..., zy is ¥-convered by G*] < (1 —¢)™.
Llyeeesnpr~
Next, by union bound over all possible mixtures G* that satisfies

Pr,~p[z is not 1)-covered by G*] > ¢, we have the following probability bound:

Pr [EIG*s.t. Pl}g [« is not ¢-covered by G*] > e and every a1, ..., 2, is ¢)-convered by G*]
T

L1y, Ty ~P
<(1-9o)m™glt. a4

Thus, if n > Q(7 1T log |G|), then with a high probability, the inverse of the probability condition
above is true, because in this case (1 —)™ on the right-hand side of (14) is small—that is, with a high
probability, for any mixture G* that satisfies Pr,.. p[z is not 1)-covered by G] > ¢, there must exist
a sample x; such that x; cannot be Y-covered by G*. The occurrence of this condition implies that if
we find a generator mixture G* that can i-cover every x;, then Pr,. p[z is ¢-covered by G] > 1 —e¢.
In other words, we conclude that if we have n > Q(¢ =T log |G|) i.i.d. samples {z;}? ; drawn from
the distribution P, and if our algorithm finds a mixture G* of generators that can i)-cover every z;,
then with a high probability, our notion of generalization has Pr,. p[x is ¢-covered by G] > 1 — &.

F Experiment Details and More Results

F.1 Network Architecture and Training Hyperparameters.

In our tests, we construct a mixture of GANSs. The network architecture of the GANSs in show in
Table 2 for experiments on synthetic datasets and in Table 3 for real image datasets. All experiments
use Adam optimizer [43] with a learning rate of 1073, and we set 3, = 0.5 and 35 = 0.999 with a
mini-batch size of 128.

22

layer output size activation function

input (dim 10) 10
Linear 32 ReLLU
Linear 32 ReLU
Linear 2

Table 2: Network structure for synthetic data generator.

layer output size kernel size stride BN activation function
input (dim 100) 100x1x1
Transposed Conv 512x4x4 4 1 Yes ReLU
Transposed Conv 256 x8x8 4 2 Yes ReLU
Transposed Conv 128x16x16 4 2 Yes ReLU
Transposed Conv ~ channel x32x32 4 2 No Tanh

Table 3: Network structure for image generator. channel=3 for Stacked MNIST and channel=1 for
FasionMNIST+MNIST.

F.2 Additional Experiment Details on Real Data

Stacked MNIST dataset. Stacked MNIST is an augmentation of MNIST dataset [13] for evaluating
mode collapse. We randomly sample three images from MNIST dataset and stack them in RGB
channels of an image. In this way, we construct a dataset of 100k images, each of which has a
dimension of 32 x 32 x 3.

Pre-trained classifier. For Fashion-MNIST with partial MNIST dataset, we use all the training
data of Fashion-MNIST and MNIST to train a 11-class classifier. For stacked MNIST dataset, we
train a 10-class classifier on MNIST, and use it as a 1000-class classifier on stacked MNIST (by
applying the 10-class MNIST classifier on each color channel). For each experiment, we regard each
class as a mode, and use the pre-trained classifier to classify the generated samples into individual
modes. After classifying generated samples, we can estimate the generation probability for each
mode.

F.3 Comparison with AdaGAN on Synthetic Dataset and Stacked MNIST

Mixture of Gaussians and Stacked MNIST. We conduct experiments on the same synthetic
dataset and Stacked MNIST as used in AdaGAN [33]. All synthetic data points are distributed
on a 2D plane, consisting of M (M = 10) Gaussians uniformly sampled in a squared region
[—15,15] x [—15, 15], all with the same variance 03 = 0.05.

We evaluate our algorithm by checking how many iterations (i.e., the parameter 7" in Algorithm 1)
it takes to cover all modes, and compare it with AdaGAN. A mode is considered covered, if in N
generated samples, there exist at least 0.01 - N/M samples landed within a distance 30 away from
the mode’s center. The experiments on both our algorithms and AdaGAN are repeated 15 times.
On this synthetic dataset, both our algorithm and AdaGAN can cover all modes in 2 iterations. For
Stacked MNIST, both our method and AdaGAN can cover all modes in 5 iterations.

More challenging synthetic datasets. Furthermore, we test our method and AdaGAN on two
other synthetic datasets that have more challenging mode distributions. The first one, referred as
D, has 20 modes distributed along a spiral curve (see Figure 7-left). Each mode is a set of points
following a Gaussian distribution (with a variance of 1). The center of ¢-th mode (z = 1..20) is
located at (cos(i/3) -4 - i,sin(i/3) - i - 7). The second dataset, referred as D;, has 21 x 21 + 1 modes,
among which 21 - 21 = 441 modes locate on a [—10, 10] x [—10, 10] uniform grid and one additional
mode is isolated at (100, 100) (see Figure 7-right). Each mode is also a set of points under a Gaussian
distribution (with a variance of 0.05).

For both datasets, we evaluate how many modes are covered as the number of iterations increases in
both our method and AdaGAN. The mode coverage is defined in the same way as in the previous
experiment. As shown in Figure 7, our algorithm covers all the modes, and outperforms AdaGAN
on both datasets. In terms of efficiency, AdaGAN takes 437 min (25 iterations) and still miss some
modes, while our method takes only 134 min (9 iterations) to cover all modes.

23

Ds Di .

Mode covered Frequency (x1072)
20

0.8] [— AdaGAN
16 Ours
0.4
12
/ — AdaGAN
8 Ours 0.0

0 5 10 15 20 0 5 10 15 20
Iterations Iterations

Figure 7: Challenging datasets. We compare our method with AdaGAN on two datasets (top).
(left) Our method covers all modes in D, dataset with 20 iterations in average. (right) Our method
increases the sampled {requency (sampling weights) of the separate mode as the training iteration
progresses, whereas AdaGAN increases the sampling frequency of the separated modes. Eventually,
AdaGAN can only cover 14 modes in Dy and never cover the separated mode in D;. In contrast, our
method successfully covers all modes.

TSR]
YaRARENS

Figure 8: Sampled ‘“1”” images by a single generator. Based on the observation we draw from
Figure 4, we train a single GAN using 60k Fashion-MNIST images together with 300 MNIST “1”
images, and the GAN is able to generate images close to “1”. Here we show a few generated images
from the resulting generator.

24

