
Supplementary Material

No-Regret Learning in Unknown Games with Correlated Payoffs

Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause (NeurIPS 2019)

A Proof of Theorem 1

We make use of the following well-known confidence lemma.
Lemma 1 (Confidence Lemma). Let Hk be a RKHS with underlying kernel function k. Consider an
unknown function f : A ! R in Hk such that kfkk B, and the sampling model yt = f(at) + ✏t
where ✏t is �-sub-Gaussian (with independence between times). By setting

�t = B +
p
2(�t�1 + log(1/�))

the following holds with probability at least 1� �:
|µt�1(a)� f(a)| �t�t�1(a) , 8a 2 A, 8t � 1 ,

where µt�1(·) and �t�1(·) are given in (2)-(3).

Lemma 1 follows directly from [2, Theorem 3.11 and Remark 3.13] as well as the definition of the
maximum information gain �t�1.

We can now prove Theorem 1. Recall the definition of regret

Ri(T) = max
a2Ai

TX

t=1

ri(a, a�i
t)�

TX

t=1

ri(ait, a
�i
t) .

Defining ā = argmaxa2Ai

PT
t=1 r

i(a, a�i
t), Ri(T) can be rewritten as

Ri(T) =
TX

t=1

ri(ā, a�i
t)�

TX

t=1

ri(ait, a
�i
t) .

By Lemma 1 and since rewards are in [0, 1], with probability 1� �
2 the true unknown reward function

can be upper and lower bounded as:

UCBt(a)� 2�t�t�1(a) ri(a) min{1, UCBt(a)}, 8a 2 A1 ⇥ · · ·⇥AN , 8t � 1 , (7)

with UCBt defined in (4) and �t chosen according to Theorem 1. Thus, UCBt(a)� 2�t�t�1(a) is
a lower confidence bound of ri(a).

Hence,

Ri(T)
TX

t=1

min{1, UCBt(ā, a
�i
t)}�

TX

t=1

⇥
UCBt(a

i
t, a

�i
t)� 2�t�t�1(a

i
t, a

�i
t)

⇤

TX

t=1

min{1, UCBt(ā, a
�i
t)}�

TX

t=1

min{1, UCBt(a
i
t, a

�i
t)}+ 2�T

TX

t=1

�t�1(a
i
t, a

�i
t) ,

where the first inequality follows by (7) and the second one since �t is increasing in t.

Moreover, by [23, Lemma 5.4] and the choice �T = B +
p

2(�T + log(2/�)), we have

2�T

TX

t=1

�t�1(a
i
t, a

�i
t) = O

⇣
B
p
T�T +

p
T�T (�T + log(2/�))

⌘
.

Next, we show that with probability 1� �
2 ,

TX

t=1

min{1, UCBt(ā, a
�i
t)}�

TX

t=1

min{1,UCBt(a
i
t, a

�i
t)}

= O
⇣p

T logKi +
p

T log(2/�)
⌘
. (8)

11

The statement of the theorem then follows by standard probability arguments:

P[E1 \ E1] = P[E1] + P[E2]� P[E1 [E2] �
⇣
1� �

2

⌘
+
⇣
1� �

2

⌘
� 1 = 1� � ,

where E1 and E2 are the events (7) and (8), respectively.

To show (8), define the function f i
t (·) = min{1, UCBt(·, a�i

t)}. Note that if (7) holds, UCBt(·) � 0
since ri(·) � 0, hence f i

t (·) 2 [0, 1]Ki . Using such definition, the left hand side of (8) can be upper
bounded as:

TX

t=1

f i
t (ā)�

TX

t=1

f i
t (a

i
t) max

a2Ai

TX

t=1

f i
t (a)�

TX

t=1

f i
t (a

i
t) . (9)

Observe that the right hand side of (9) is precisely the regret which player i incurrs in an adver-
sarial online learning problem with reward functions f i

t (·) 2 [0, 1]. The actions ait, moreover,
are exactly chosen by the HEDGE [11] algorithm which receives the full information feedback
r̂t = [f i

t (a1), . . . , f
i
t (aKi)]. Note that the original version of HEDGE works with losses instead

of rewards, but the same happens in GP-MW since the mixed strategies are updated with 1 � r̂t.
Therefore, by [7, Corollary 4.2], with probability 1� �

2 ,

max
a2Ai

TX

t=1

f i
t (a)�

TX

t=1

f i
t (a

i
t) = O

⇣p
T logKi +

p
T log(2/�)

⌘
.

Note that according to [7, Remark 4.3], the functions f i
t (·) can be chosen by an adaptive adversary

depending on past actions ai1, . . . , ait�1, but not on the current action ait. This applies to our setting,
since f i

t depends only on ai1, . . . , a
i
t�1 and not on ait.

B Proof of Corollary 1

A function f : X ! R is Lipschitz continuous with constant L (or L-Lipschitz) if

|f(x)� f(x0)| Lkx� x0k1 8x, x0 2 X .

Define A�i = A1⇥ · · ·⇥Ai�1⇥Ai⇥ · · ·⇥AN . The fact that ri is L-Lispschitz in its first argument
implies that

|ri(a, a�i)� ri(a0, a�i)| Lka� a0k1 8a, a0 2 Ai, 8a�i 2 A�i . (10)

Moreover, recall the discrete set [Ai]T with |[Ai]T | = (Lb
p
diT)di such that ka � [a]T k1

bdi/Lb
p
diT =

p
di/T/L 8a 2 Ai, where [a]T is the closest point to a in [Ai]T . An example of

such a set can be obtained for instance by a uniform grid of points in [0, b]di .

As in the proof of Theorem 1, let ā = argmaxa2Ai

PT
t=1 r

i(a, a�i
t). Moreover, let [ā]T be the

closest point to ā in [Ai]T . We have:

Ri(T) =
TX

t=1

ri(ā, a�i
t)�

TX

t=1

ri(ait, a
�i
t)

=
TX

t=1

ri(ā, a�i
t)�

TX

t=1

ri([ā]T , a
�i
t)

| {z }
:=Ri

1(T)

+
TX

t=1

ri([ā]T , a
�i
t)�

TX

t=1

ri(ait, a
�i
t)

| {z }
:=Ri

2(T)

.

We prove the corollary by bounding Ri
1(T) and Ri

2(T) separately.

By the Lipschitz property (10) of ri, and by construction of [Ai]T , we have that

|ri(ā, a�i)� ri([ā]T , a
�i)| Lkā� [ā]T k1 L

p
di/T

L
=

p
di/T , 8a�i 2 A�i . (11)

Hence, by (11),
Ri

1(T) T
p
di/T =

p
diT .

12

To bound Ri
2(T), note that Ri

2(T) argmaxa2[Ai]T

PT
t=1 r

i(a, a�i
t) �

PT
t=1 r

i(ait, a
�i
t). More-

over, note that actions ait are chosen by running GP-MW on the discretized domain [Ai]T with
Ki = |[Ai]T | = (Lb

p
diT)di . Hence, according to Theorem 1 it must hold that with probability at

least 1� �,

Ri
2(T) = O

⇣p
T logKi +

p
T log(2/�) +B

p
T�T +

p
T�T (�T + log(2/�))

⌘
.

The final bound then follows by substituting Ki = (Lb
p
diT)di in the bound above and noting that

Ri
1(T) is dominated by Ri

2(T).

C Repeated traffic routing - Experimental setup

In this section we give a detailed explanation of our traffic routing experiment of Section 4.2.

We consider the Sioux-Falls road network [14, 1], a directed graph with 24 nodes and 76 edges e 2 E.
We use the demand data from [14, 1]. Such data indicate the units of flow to be sent from each node
(origin) to any other node (destination) in the network. Each of those origin-destination pair is here
represented by an agent, for a total of N = 528 agents. The goal of each agent i is to send ui units of
demand to destination, while minimizing the total travel time. The time to reach destination, however,
depends on the total occupancy of the edges the agent chooses to traverse and hence on the routes
chosen by all the other agents.

Each edge e has a travel time te(x) which is a function of the total number of units x traversing e .
Intuitively, we expect such travel time to increase with x. According to [14, 1], we select te to be the
Bureau of Public Roads (BPR) function

te(x) = ce
⇣
1 + 0.15

� x

Ce

�4⌘
,

where ce and Ce are free-flow time and capacity of edge e, respectively. Values for ce and Ce are
taken from [1].

Each agent i can choose among Ki = 5 routes, and we assume that she cannot split her demand over
different routes. Hence, the action space Ai represents the 5 shortest routes that agent i can take.
Moreover, we remove from Ai any route more than three times longer than the shortest one. Let
E(i) ⇢ E be the subset of edges that agent i could possibly traverse. Each route in Ai corresponds
to a vector ai 2 R|E(i)| 2 Ai such that [ai]e = ui if edge e belongs to the given route, and [ai]e = 0
otherwise. Moreover, we let (a�i) =2 R|E(i)| be the total occupancy by the other agents on such
edges, i.e., [(a�i)]e =

P
j 6=i[a

j]e for every e 2 E(i). The travel time of agent i can thus be written
as

li(ai, a�i) =
X

e2E(i)

[ai]e te([a
i]e + [(a�i)]e) , (12)

i.e., the sum of the travel times on the selected edges, weighted by ui. Hence, we let the reward
function of agent i be ri(ai, a�i) = �li(ai, a�i).

Note that agents don’t know the actual te’s functions, hence their reward function is unknown. This
does not limit the bandit EXP3.P algorithm, where agents only need to observe their experienced travel
times. However, it makes the full information feedback HEDGE algorithm unrealistic. Nevertheless,
we used HEDGE in our experiments as an idealized benchmark.

To run GP-MW, agent i observes the experienced travel time as well as the vector of occupancies
 (a�i). This allows GP-MW to exploit the correlations in the unknown reward function by choosing
a suitable kernel. For every agent i, we chose a composite kernel ki such that for every a1,a2 2 A,
ki((ai1, a

�i
1), (ai2, a

�i
2)) = ki1(a

i
1, a

i
2) · ki2(ai1 + (a�i

1), ai2 + (a�i
2)), with ki1 and ki2 being linear

and polynomial kernels, respectively. This reflects the different dependences that ri has on ai and
a�i. In fact, for fixed total occupancy in each edge, we expect ri to be linear in ai, being the
travel time an additive quantity (see (12)). On the other hand, given a specific route chosen, ri
grows polynomially with the total occupancy on such route (see (12)). Kernels hyperparameters are
optimized via maximum-likelihood over 200 random outcomes.

To scale their rewards in [0,1] agents need to know upper bounds on their travel times. Such bounds
are estimated by 100000 random outcomes and fed to the agents. Moreover, standard deviations of

13

measurement noises are chosen 0.1 % of such upper bounds. Finally, to evaluate a given outcome at
of the game, we compute the congestion on a given edge e via the expression:

0.15 ·
� NX

j=1

[ajt]e/Ce

�4
. (13)

The average congestion in the network is obtained by averaging the quantity above over all the edges
e 2 E.

14

	Introduction
	Problem Formulation
	The GP-MW Algorithm
	Experiments
	Repeated random matrix games
	Repeated traffic routing
	GP-MW and robust Bayesian Optimization

	Conclusions
	Proof of Theorem 1
	Proof of Corollary 1
	Repeated traffic routing - Experimental setup

