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Abstract

While graph kernels (GKs) are easy to train and enjoy provable theoretical guar-
antees, their practical performances are limited by their expressive power, as the
kernel function often depends on hand-crafted combinatorial features of graphs.
Compared to graph kernels, graph neural networks (GNNs) usually achieve better
practical performance, as GNNs use multi-layer architectures and non-linear acti-
vation functions to extract high-order information of graphs as features. However,
due to the large number of hyper-parameters and the non-convex nature of the
training procedure, GNNs are harder to train. Theoretical guarantees of GNNs are
also not well-understood. Furthermore, the expressive power of GNNs scales with
the number of parameters, and thus it is hard to exploit the full power of GNNs
when computing resources are limited. The current paper presents a new class
of graph kernels, Graph Neural Tangent Kernels (GNTKs), which correspond to
infinitely wide multi-layer GNNs trained by gradient descent. GNTKs enjoy the full
expressive power of GNNs and inherit advantages of GKs. Theoretically, we show
GNTKs provably learn a class of smooth functions on graphs. Empirically, we test
GNTKs on graph classification datasets and show they achieve strong performance.

1 Introduction

Learning on graph-structured data such as social networks and biological networks requires one to
design methods that effectively exploit the structure of graphs. Graph Kernels (GKs) and Graph
Neural Networks (GNNs) are two major classes of methods for learning on graph-structured data.
GKs, explicitly or implicitly, build feature vectors based on combinatorial properties of input graphs.
Popular choices of GKs include Weisfeiler-Lehman subtree kernel [Shervashidze et al., 2011],
graphlet kernel [Shervashidze et al., 2009] and random walk kernel [Vishwanathan et al., 2010,
Gärtner et al., 2003]. GKs inherit all benefits of kernel methods. GKs are easy to train, since the
corresponding optimization problem is convex. Moreover, the kernel function often has explicit
expressions, and thus we can analyze their theoretical guarantees using tools in learning theory. The
downside of GKs, however, is that hand-crafted features may not be powerful enough to capture
high-order information that involves complex interaction between nodes, which could lead to worse
practical performance than GNNs.
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GNNs, on the other hand, do not require explicitly hand-crafted feature maps. Similar to convolutional
neural networks (CNNs) which are widely applied in computer vision, GNNs use multi-layer struc-
tures and convolutional operations to aggregate local information of nodes, together with non-linear
activation functions to extract features from graphs. Various architectures have been proposed [Xu
et al., 2019a, 2018]. GNNs extract higher-order information of graphs, which lead to more powerful
features compared to hand-crafted combinatorial features used by GKs. As a result, GNNs have
achieved state-of-the-art performance on a large number of tasks on graph-structured data. Nev-
ertheless, there are also disadvantages of using GNNs. The objective function of GNNs is highly
non-convex, and thus it requires careful hyper-parameter tuning to stabilize the training procedure.
Meanwhile, due to the non-convex nature of the training procedure, it is also hard to analyze the
learned GNNs directly. For example, one may ask whether GNNs can provably learn certain class of
functions. This question seems hard to answer given our limited theoretical understanding of GNNs.
Another disadvantage of GNNs is that the expressive power of GNNs scales with the number of
parameters. Thus, it is hard to learn a powerful GNN when computing resources are limited. Can
we build a model that enjoys the best of both worlds, i.e., a model that extracts powerful features as
GNNs and is easy to train and analyze like GKs?

In this paper, we give an affirmative answer to this question. Inspired by recent connections between
kernel methods and over-parameterized neural networks [Arora et al., 2019b,a, Du et al., 2019, 2018,
Jacot et al., 2018, Yang, 2019], we propose a class of new graph kernels, Graph Neural Tangent
Kernels (GNTKs). GNTKs are equivalent to infinitely wide GNNs trained by gradient descent, where
the word “tangent” corresponds to the training algorithm — gradient descent. While GNTKs are
induced by infinitely wide GNNs, the prediction of GNTKs depends only on pairwise kernel values
between graphs, for which we give an analytic formula to calculate efficiently. Therefore, GNTKs
enjoy the full expressive power of GNNs, while inheriting benefits of GKs.

Our Contributions. First, inspired by recent connections between over-parameterized neural
networks and kernel methods Jacot et al. [2018], Arora et al. [2019a], Yang [2019], we present a
general recipe which translates a GNN architecture to its corresponding GNTK. This recipe works
for a wide range of GNNs, including graph isomorphism network (GIN) [Xu et al., 2019a], graph
convolutional network (GCN) [Kipf and Welling, 2016], and GNN with jumping knowledge [Xu
et al., 2018]. Second, we conduct a theoretical analysis of GNTKs. Using the technique developed in
Arora et al. [2019b], we show for a broad range of smooth functions over graphs, a certain GNTK
can learn them with polynomial number of samples. To our knowledge, this is the first sample
complexity analysis in the GK and GNN literature. Finally, we validate the performance of GNTKs
on 7 standard benchmark graph classification datasets. On four of them, we find GNTK outperforms
all baseline methods and achieves state-of-the-art performance. In particular, GNKs achieve 83.6%
accuracy on COLLAB dataset and 67.9% accuracy on PTC dataset, compared to the best of baselines,
81.0% and 64.6% respectively. Moreover, in our experiments, we also observe that GNTK is more
computationally efficient than its GNN counterpart.

This paper is organized as follow. In Section 2, we provide necessary background and review
operations in GNNs that we will use to derive GNTKs. In Section 3, we present our general recipe
that translates a GNN to its corresponding GNTK. In Section 4, we give our theoretical analysis
of GNTKs. In Section 5, we compare GNTK with state-of-the-art methods on graph classification
datasets. We defer technical proofs to the supplementary material.

2 Preliminaries

We begin by summarizing the most common models for learning with graphs and, along the way,
introducing our notation. Let G = (V,E) be a graph with node features hv ∈ Rd for each v ∈ V .
We denote the neighborhood of node v by N (v). In this paper, we consider the graph classification
task, where, given a set of graphs {G1, ..., Gn} ⊆ G and their labels {y1, ..., yn} ⊆ Y , our goal is to
learn to predict labels of unseen graphs.

Graph Neural Network. GNN is a powerful framework for graph representation learning. Modern
GNNs generally follow a neighborhood aggregation scheme Xu et al. [2019a], Gilmer et al. [2017],
Xu et al. [2018], where the representation h(`)

v of each node v (in layer `) is recursively updated by
aggregating and transforming the representations of its neighbors. After iterations of aggregation,
the representation of an entire graph is then obtained through pooling, e.g., by summing the rep-
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resentations of all nodes in the graph. Many GNNs, with different aggregation and graph readout
functions, have been proposed under the neighborhood aggregation framework Xu et al. [2019a,b,
2018], Scarselli et al. [2009], Li et al. [2016], Kearnes et al. [2016], Ying et al. [2018], Velickovic
et al. [2018], Hamilton et al. [2017], Duvenaud et al. [2015], Kipf and Welling [2016], Defferrard
et al. [2016], Santoro et al. [2018, 2017], Battaglia et al. [2016].

Next, we formalize the GNN framework. We refer to the neighbor aggregation process as a BLOCK
operation, and to graph-level pooling to as a READOUT operation.

BLOCK Operation. A BLOCK operation aggregates features over a neighborhood N (u) ∪ {u}
via, e.g., summation, and transforms the aggregated features with non-linearity, e.g. multi-layer
perceptron (MLP) or a fully-connected layer followed by ReLU. We denote the number of fully-
connected layers in each BLOCK operation, i.e., the number of hidden layers of an MLP, by R.

When R = 1, the BLOCK operation can be formulated as

BLOCK(`)(u) =

√
cσ
m
· σ

W` · cu
∑

v∈N (u)∪{u}

h(`−1)
v

 .

Here,W` are learnable weights, initialized as Gaussian random variables. σ is an activation function
like ReLU. m is the output dimension of W`. We set the scaling factor cσ to 2, following the
initialization scheme in He et al. [2015]. cu is a scaling factor for neighbor aggregation. Different
GNNs often have different choices for cu. In Graph Convolution Network (GCN) [Kipf and Welling,
2016], cu = 1

|N (u)|+1 , and in Graph Isomorphism Network (GIN) [Xu et al., 2019a], cu = 1, which
correspond to averaging and summing over neighbor features, respectively.

When the number of fully-connected layers R = 2, the BLOCK operation can be written as

BLOCK(`)(u) =

√
cσ
m
σ

W`,2

√
cσ
m
· σ

W`,1 · cu
∑

v∈N (u)∪{u}

h(`−1)
v

 ,

where W`,1 and W`,2 are learnable weights. Notice that here we first aggregate features over
neighborhood N (u) ∪ {u} and then transforms the aggregated features with an MLP with R = 2
hidden layers. BLOCK operations can be defined similarly for R > 2. Notice that the BLOCK
operation we defined above is also known as the graph (spatial) convolutional layer in the GNN
literature.

READOUT Operation. To get the representation of an entire graph hG after L steps of aggrega-
tion, we take the summation over all node features, i.e.,

hG = READOUT
({
h(L)
u , u ∈ V

})
=
∑
u∈V

h(L)
u .

There are more sophisticated READOUT operations than a simple summation Xu et al. [2018], Zhang
et al. [2018a], Ying et al. [2018]. Jumping Knowledge Network (JK-Net) Xu et al. [2018] considers
graph structures of different granularity, and aggregates graph features across all layers as

hG = READOUTJK
({
h(`)
u , u ∈ V, ` ∈ [L]

})
=
∑
u∈V

[
h(0)
u ; . . . ;h(L)

u

]
.

Building GNNs using BLOCK and READOUT. Most modern GNNs are constructed using the
BLOCK operation and the READOUT operation Xu et al. [2019a]. We denote the number of
BLOCK operations (aggregation steps) in a GNN by L. For each ` ∈ [L] and u ∈ V , we define
h
(`)
u = BLOCK(`)(u). The graph-level feature is then hG = READOUT

({
h
(L)
u , u ∈ V

})
or

hG = READOUTJK
({
h
(`)
u , u ∈ V, ` ∈ [L]

})
, depending on whether jumping knowledge (JK) is

applied or not.

3



3 GNTK Formulas

In this section we present our general recipe which translates a GNN architecture to its corresponding
GNTK. We first provide some intuitions on neural tangent kernels (NTKs). We refer readers to Jacot
et al. [2018], Arora et al. [2019a] for more comprehensive descriptions.

3.1 Intuition of the Formulas

Consider a general neural network f(θ, x) ∈ R where θ ∈ Rm is all the parameters in the network
and x is the input. Given a training dataset {(xi, yi)ni=1}, consider training the neural network by
minimizing the squared loss over training data

`(θ) =
1

2

n∑
i=1

(f(θ, xi)− yi)2.

Suppose we minimize the squared loss `(θ) by gradient descent with infinitesimally small learning
rate, i.e., dθ(t)dt = −∇`(θ(t)). Let u(t) = (f(θ(t), xi))

n
i=1 be the network outputs. u(t) follows the

evolution
du

dt
= −H(t)(u(t)− y),

where

H(t)ij =

〈
∂f(θ(t), xi)

∂θ
,
∂f(θ(t), xj)

∂θ

〉
for (i, j) ∈ [n]× [n].

Recent advances in optimization of neural networks have shown, for sufficiently over-parameterized
neural networks, the matrix H(t) keeps almost unchanged during the training process Arora et al.
[2019b,a], Du et al. [2019, 2018], Jacot et al. [2018], in which case the training dynamics is identical
to that of kernel regression. Moreover, under a random initialization of parameters, the random
matrixH(0) converges in probability to a certain deterministic kernel matrix, which is called Neural
Tangent Kernel (NTK) Jacot et al. [2018] and corresponds to infinitely wide neural networks. See
Figure 4 in the supplementary material for an illustration.

Explicit formulas for NTKs of fully-connected neural networks have been given in Jacot et al. [2018].
Recently, explicit formulas for NTKs of convolutional neural networks are given in Arora et al.
[2019a]. The goal of this section is to give an explicit formula for NTKs that correspond to GNNs
defined in Section 2. Our general strategy is inspired by Arora et al. [2019a]. Let f(θ,G) ∈ R be the
output of the corresponding GNN under parameters θ and input graph G, for two given graphs G and
G′, to calculate the corresponding GNTK value, we need to calculate the expected value of〈

∂f(θ,G)

∂θ
,
∂f(θ,G′)

∂θ

〉
in the limit that m→∞ and θ are all Gaussian random variables, which can be viewed as a Gaussian
process. For each layer in the GNN, we use Σ to denote the covariance matrix of outputs of that
layer, and Σ̇ to denote the covariance matrix corresponds to the derivative of that layer. Due to the
multi-layer structure of GNNs, these covariance matrices can be naturally calculated via dynamic
programming.

3.2 Formulas for Calculating GNTKs

Given two graphs G = (V,E), G′ = (V ′, E′) with |V | = n, |V ′| = n′ and a GNN with L BLOCK
operations and R fully-connected layers with ReLU activation in each BLOCK operation. We give
the GNTK formula of pairwise kernel value Θ(G,G′) ∈ R induced by this GNN.

We first define the covariance matrix between input features of two input graphs G,G′, which we use
Σ(0)(G,G′) ∈ Rn×n′

to denote. For two nodes u ∈ V and u′ ∈ V ′,
[
Σ(0)(G,G′)

]
uu′ is defined to

be h>u hu′ , where hu and hu′ are the input features of u ∈ V and u′ ∈ V ′.
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BLOCK Operation. A BLOCK operation in GNTK calculates a covariance matrix Σ
(`)
(R)(G,G

′) ∈
Rn×n′

using Σ
(`−1)
(R) (G,G′) ∈ Rn×n′

, and calculates intermediate kernel values Θ
(`)
(r)(G,G

′) ∈
Rn×n′

, which will be later used to compute the final output.

More specifically, we first perform a neighborhood aggregation operation[
Σ

(`)
(0)(G,G

′)
]
uu′

=cucu′

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Σ

(`−1)
(R) (G,G′)

]
vv′

,

[
Θ

(`)
(0)(G,G

′)
]
uu′

=cucu′

∑
v∈N (u)∪{u}

∑
v′∈N (u′)∪{u′}

[
Θ

(`−1)
(R) (G,G′)

]
vv′

.

Here we define Σ
(0)
(R)(G,G

′) and Θ
(0)
(R)(G,G

′) as Σ(0)(G,G′), for notational convenience. Next we
perform R transformations that correspond to the R fully-connected layers with ReLU activation.
Here σ(z) = max{0, z} is the ReLU activation function. We denote σ̇(z) = 1[z ≥ 0] to be the
derivative of the ReLU activation function.

For each r ∈ [R], we define

• For u ∈ V, u′ ∈ V ′,

[
A

(`)
(r) (G,G′)

]
uu′

=


[
Σ

(`)
(r−1)(G,G)

]
u,u

[
Σ

(`)
(r−1)(G,G

′)
]
uu′[

Σ
(`)
(r−1)(G

′, G)
]
uu′

[
Σ

(`)
(r−1)(G

′, G′)
]
u′u′

 ∈ R2×2.

• For u ∈ V, u′ ∈ V ′,[
Σ

(`)
(r)(G,G

′)
]
uu′

=cσE(a,b)∼N
(
0,
[
A

(`)

(r)
(G,G′)

]
uu′

) [σ (a)σ (b)] , (1)[
Σ̇

(`)
(r) (G,G′)

]
uu′

=cσE(a,b)∼N
(
0,
[
A

(`)

(r)
(G,G′)

]
uu′

) [σ̇(a)σ̇(b)] . (2)

• For u ∈ V, u′ ∈ V ′,[
Θ

(`)
(r)(G,G

′)
]
uu′

=
[
Θ

(`)
(r−1)(G,G

′)
]
uu′

[
Σ̇

(`)
(r) (G,G′)

]
uu′

+
[
Σ

(`)
(r) (G,G′)

]
uu′

.

Note in the above we have shown how to calculate Θ
(`)
(R)(G,G

′) for each ` ∈ {0, 1, . . . , L}. These
intermediate outputs will be used to calculate the final output of the corresponding GNTK.

READOUT Operation. Given these intermediate outputs, we can now calculate the final output
of GNTK using the following formula.

Θ(G,G′) =


∑
u∈V,u′∈V ′

[
Θ

(`)
(R) (G,G′)

]
uu′

without jumping knowledge∑
u∈V,u′∈V ′

[∑L
`=0 Θ

(`)
(R)(G,G

′)
]
uu′

with jumping knowledge
.

To better illustrate our general recipe, in Figure 1 we give a concrete example in which we translate a
GNN with L = 2 BLOCK operations, R = 1 fully-connection layer in each BLOCK operation, and
jumping knowledge, to its corresponding GNTK.

4 Theoretical Analysis of GNTK

In this section, we analyze the generalization ability of a GNTK that corresponds to a simple GNN.
We consider the standard supervised learning setup. We are given n training data {(Gi, yi)}ni=1
drawn i.i.d. from the underlying distribution D, where Gi is the i-th input graph and yi is its label.
Consider a GNN with a single BLOCK operation, followed by the READOUT operation (without

jumping knowledge). Here we set cu =
(∥∥∥∑v∈N (u)∪{u} hv

∥∥∥
2

)−1
. We use Θ ∈ Rn×n to denote

the kernel matrix, where Θij = Θ(Gi, Gj). Here Θ(G,G′) is the kernel function that corresponds to
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Figure 1: Illustration of our recipe that translates a GNN to a GNTK. For a GNN with
L = 2 BLOCK operations, R = 1 fully-connected layer in each BLOCK operation, and jump-
ing knowledge, the corresponding GNTK is calculated as follow. For two graphs G and G′,
we first calculate

[
Θ

(0)
(1)(G,G

′)
]
uu′

=
[
Σ

(0)
(1)(G,G

′)
]
uu′

=
[
Σ(0)(G,G′)

]
uu′ = h>u hu′ . We

follow the kernel formulas in Section 3 to calculate Σ
(`)
(0),Θ

(`)
(0) using Σ

(`−1)
(R) ,Θ

(`−1)
(R) (Aggre-

gation) and calculate Σ
(`)
(r), Σ̇

(`)
(r),Θ

(`)
(r) using Σ

(`)
(r−1),Θ

(`)
(r−1) (Nonlinearity). The final output is

Θ(G,G′) =
∑
u∈V,u′∈V ′

[∑L
`=0 Θ

(`)
(R)(G,G

′)
]
uu′

.

the simple GNN. See Section 3 for the formulas for calculating Θ(G,G′). Throughout the discussion,
we assume that the kernel matrix Θ ∈ Rn×n is invertible.

For a testing point Gte, the prediction of kernel regression using GNTK on this testing point is

fker(Gte) = [Θ(Gte, G1),Θ(Gte, G1), . . . ,Θ(Gte, Gn)]
>

Θ−1y.

The following result is a standard result for kernel regression proved using Rademacher complexity.
For a proof, see Bartlett and Mendelson [2002].

Theorem 4.1 (Bartlett and Mendelson [2002]). Given n training data {(Gi, yi)}ni=1 drawn i.i.d.
from the underlying distribution D. Consider any loss function ` : R× R→ [0, 1] that is 1-Lipschitz
in the first argument such that `(y, y) = 0. With probability at least 1− δ, the population loss of the
GNTK predictor can be upper bounded by

LD (fker) = E(G,y)∼D [`(fker(G), y)] = O

(√
y>Θ−1y · tr (Θ)

n
+

√
log(1/δ)

n

)
.

Note that this theorem presents a data-dependent generalization bound which is related to the kernel
matrix Θ ∈ Rn×n and the labels {yi}ni=1. Using this theorem, if we can bound y>Θ−1y and tr (Θ),
then we can obtain a concrete sample complexity bound. We instantiate this idea to study the class of
graph labeling functions that can be efficiently learned by GNTKs.

The following two theorems guarantee that if labels are generated as described in (3), then the GNTK
that corresponds to the simple GNN described above can learn this function with polynomial number
of samples. We first give an upper bound on y>Θ−1y.
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Theorem 4.2. For each i ∈ [n], if the labels {yi}ni=1 satisfy

yi = α1

∑
u∈V

(
h
>
u β1

)
+

∞∑
l=1

α2l

∑
u∈V

(
h
>
u β2l

)2l
, (3)

where hu = cu
∑
v∈N (u)∪{u} hv , α1, α2, α4, . . . ∈ R, β1,β2,β4, . . . ∈ Rd, and Gi = (V,E), then

we have √
y>Θ−1y ≤ 2|α1| · ‖β1‖2 +

∞∑
l=1

√
2π(2l − 1)|α2l| · ‖β2l‖2l2 .

The following theorem gives an upper bound on tr (Θ).

Theorem 4.3. If for all graphs Gi = (Vi, Ei) in the training set, |Vi| is upper bounded by V , then
tr(Θ) ≤ O(nV

2
). Here n is the number of training samples.

Combining Theorem 4.2 and Theorem 4.3 with Theorem 4.1, we know if

2|α1| · ‖β1‖2 +

∞∑
l=1

√
2π(2l − 1)|α2l| · ‖β2l‖2l2

is bounded, and |Vi| is bounded for all graphs Gi = (Vi, Ei) in the training set, then the GNTK that
corresponds to the simple GNN described above can learn functions of forms in (3), with polynomial
number of samples. To our knowledge, this is the first sample complexity analysis in the GK and
GNN literature.

5 Experiments

In this section, we demonstrate the effectiveness of GNTKs using experiments on graph classification
tasks. For ablation study, we investigate how the performance varies with the architecture of the
corresponding GNN. Following common practices of evaluating performance of graph classification
models Yanardag and Vishwanathan [2015], we perform 10-fold cross validation and report the mean
and standard deviation of validation accuracies. More details about the experiment setup can be found
in Section B of the supplementary material.

Datasets. The benchmark datasets include four bioinformatics datasets MUTAG, PTC, NCI1,
PROTEINS and three social network datasets COLLAB, IMDB-BINARY, IMDB-MULTI. For each
graph, we transform the categorical input features to one-hot encoding representations. For datasets
where the graphs have no node features, i.e. only graph structure matters, we use degrees as input
node features.

5.1 Results

We compare GNTK with various state-of-the-art graph classification algorithms: (1) the WL subtree
kernel Shervashidze et al. [2011]; (2) state-of-the-art deep learning architectures, including Graph
Convolutional Network (GCN) Kipf and Welling [2016], GraphSAGE Hamilton et al. [2017], Graph
Isomorphism Network(GIN) Xu et al. [2019a], PATCHY-SANNiepert et al. [2016] and Deep Graph
CNN (DGCNN) Zhang et al. [2018a]; (3) Graph kernels based on random walks, i.e., Anonymous
Walk Embeddings Ivanov and Burnaev [2018] and RetGK Zhang et al. [2018b]. For deep learning
methods and random walk graph kernels, we report the accuracies reported in the original papers.
The experiment setup is deferred to Section B.

The graph classification results are shown in Table 1. The best results are highlighted as bold. Our
proposed GNTKs are powerful and achieve state-of-the-art classification accuracy on most datasets.
In four of them, we find GNTKs outperform all baseline methods. In particular, GNTKs achieve
83.6% accuracy on COLLAB dataset and 67.9% accuracy on PTC dataset, compared to the best of
baselines, 81.0% and 64.6% respectively. Notably, GNTKs give the best performance on all social
network datasets. Moreover, In our experiments, we also observe that with the same architecture,
GNTK is more computational efficient that its GNN counterpart. On IMDB-B dataset, running GIN
with the default setup (official implementation of Xu et al. [2019a]) takes 19 minutes on a TITAN X
GPU and running GNTK only takes 2 minutes.
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Method COLLAB IMDB-B IMDB-M PTC NCI1 MUTAG PROTEINS

G
N

N
GCN 79.0 ± 1.8 74.0 ± 3.4 51.9 ± 3.8 64.2 ± 4.3 80.2 ± 2.0 85.6 ± 5.8 76.0 ± 3.2
GraphSAGE – 72.3 ± 5.3 50.9 ± 2.2 63.9 ± 7.7 77.7 ± 1.5 85.1 ± 7.6 75.9 ± 3.2
PatchySAN 72.6 ± 2.2 71.0 ± 2.2 45.2 ± 2.8 60.0 ± 4.8 78.6 ± 1.9 92.6 ± 4.2 75.9 ± 2.8
DGCNN 73.7 70.0 47.8 58.6 74.4 85.8 75.5
GIN 80.2 ± 1.9 75.1 ± 5.1 52.3 ± 2.8 64.6 ± 7.0 82.7 ± 1.7 89.4 ± 5.6 76.2 ± 2.8

G
K

WL subtree 78.9 ± 1.9 73.8 ± 3.9 50.9 ± 3.8 59.9 ± 4.3 86.0 ± 1.8 90.4 ± 5.7 75.0 ± 3.1
AWL 73.9 ± 1.9 74.5 ± 5.9 51.5 ± 3.6 – – 87.9 ± 9.8 –
RetGK 81.0 ± 0.3 71.9 ± 1.0 47.7 ± 0.3 62.5 ± 1.6 84.5 ± 0.2 90.3 ± 1.1 75.8 ± 0.6

GNTK 83.6 ± 1.0 76.9 ± 3.6 52.8 ± 4.6 67.9 ± 6.9 84.2 ± 1.5 90.0 ± 8.5 75.6 ± 4.2

Table 1: Classification results (in %) for graph classification datasets. GNN: graph neural net-
work based methods. GK: graph kernel based methods. GNTK: fusion of GNN and GK.
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Figure 2: Effects of number of BLOCK operations and the scaling factor cu on the performance
of GNTK. Each dot represents the performance of a particular GNTK architecture. We divide
different architectures into different groups by number of BLOCK operations. We color these GNTK
architecture points by the scaling factor cu. We observe the test accuracy is correlated with the dataset
and the architecture.

5.2 Relation between GNTK Performance and the Corresponding GNN

We conduct ablation study to investigate how the performance of GNTK varies as we change the
architecture of the corresponding GNN. We select two representative datasets, one social network
dataset IMDBBINARY, and another bioinformatics dataset NCI1. For IMDBBINARY, we vary the
number of BLOCK operations in {2, 3, 4, 5, 6}. For NCI1, we vary the number of BLOCK operations
in {8, 10, 12, 14, 16}. For both datasets, we vary the number of MLP layers in {1, 2, 3}.

Effects of Number of BLOCK Operations and the Scaling Factor cu. We investigate how the
performance of GNTKs is correlated with number of BLOCK operations and the scaling factor cu.
First, on the bioinformatics dataset (NCI), we observe that GNTKs with more layers perform better.
This is perhaps because, for molecules and bio graphs, more global structural information is helpful,
as they provide important information about the chemical/bio entity. On such graphs, GNTKs are
particularly effective because GNTKs can easily scale to many layers, whereas the number of layers
in GNNs may be restricted by computing resources.

Moreover, the performance of GNTK is correlated with that of the corresponding GNN. For example,
in social networks, GNTKs with sum aggregation cu = 1 work better than average aggregation
cu = 1

|N (u)|+1 . The similar pattern holds in GNNs, because sum aggregation learns more graph
structure information than average aggregation Xu et al. [2019a]. This suggests GNTK can indeed
inherit the properties and advantages of the corresponding GNN, while also gaining the benefits of
graph kernels.
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Figure 3: Effects of jumping knowledge and number of MLP layers on the performance of
GNTK. Each dot represents the test performance of a GNTK architecture. We divide all GNTK
architectures into different groups, according to whether jumping knowledge is applied, or number of
MLP layers.

Effects of Jumping Knowledge and Number of MLP Layers In the GNN literature, jumping
knowledge network (JK) is expected to improve performance Xu et al. [2018], Fey [2019]. In Figure 3,
we observe that a similar trend holds for GNTK. The performance of GNTK is improved on both
NCI and IMDB datasets when jumping knowledge is applied. Moreover, increasing the number of
MLP layers can increase the performance by ∼ 0.8%. These empirical findings further confirm that
GNTKs can inherit the benefits of GNNs, since improvements on GNN architectures are reflected in
the improvements GNTKs.

We conclude that GNTKs are attractive for graph representation learning because they can combine
the advantages of both GNNs and GKs.
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Supplementary Material for “Graph Neural Tangent Kernel: Fusing Graph
Neural Networks with Graph Kernels”

Figure 4: Illustration of NTK theory. Consider a general neural network with L layers θ(1), . . . , θ(L),
given input xi and xj , the neural network will output f(θ(t), xi), f(θ(t), xj). When trained by
gradient descent, evolution of u(t) follows du

dt = −H(t)(u(t) − y). One can show that when the
number of parameters in the neural network is large enough, and parameters of the neural network
are initialized as Gaussian variables,H(t) ≈H(0) and can be calculated analytically.

A Missing Proofs

A.1 Proof of Theorem 4.2

Proof. By Section 3, for two graph G and G′, the GNTK kernel function that corresponds to the
simple GNN can be described as

Θ(G,G′) =
∑

u∈V,u′∈V ′

([
Σ

(1)
(0)(G,G

′)
]
uu′

[
Σ̇

(1)
(1)(G,G

′)
]
uu′

+
[
Σ

(1)
(1)(G,G

′)
]
uu′

)
.

Here, we have

[
Σ

(1)
(0)(G,G

′)
]
uu′

= cucu′

 ∑
v∈N (u)∪{u}

hv

> ∑
v′∈N (u′)∪{u′}

hv′

 = h
>
u hu′ .

Recall that [
Σ

(`)
(r)(G,G

′)
]
uu′

=cσE(a,b)∼N
(
0,
[
A

(`)

(r)
(G,G′)

]
uu′

) [σ (a)σ (b)] ,[
Σ̇

(`)
(r) (G,G′)

]
uu′

=cσE(a,b)∼N
(
0,
[
A

(`)

(r)
(G,G′)

]
uu′

) [σ̇(a)σ̇(b)]

and

[
A

(`)
(r) (G,G′)

]
uu′

=


[
Σ

(`)
(r−1)(G,G)

]
u,u

[
Σ

(`)
(r−1)(G,G

′)
]
uu′[

Σ
(`)
(r−1)(G

′, G)
]
uu′

[
Σ

(`)
(r−1)(G

′, G′)
]
u′u′

 ∈ R2×2.

Since σ(z) = max{0, z} is the ReLU activation function, and σ̇(z) = 1[z ≥ 0] is the derivative of
the ReLU activation function, and ‖hu‖2 = 1 for all nodes u, by calculation, we have

[
Σ̇

(1)
(1)(G,G

′)
]
uu′

=
π − arccos

([
Σ

(1)
(0)(G,G

′)
]
uu′

)
2π

,
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[
Σ

(1)
(1)(G,G

′)
]
uu′

=
π − arccos

([
Σ

(1)
(0)(G,G

′)
]
uu′

)
+

√
1−

[
Σ

(1)
(0)(G,G

′)
]2
uu′

2π
.

Since

arcsin(x) =

∞∑
l=0

(2l − 1)!!

(2l)!!
· x

2l+1

2l + 1
,

we have[
Σ

(1)
(0)(G,G

′)
]
uu′

[
Σ̇

(1)
(1)(G,G

′)
]
uu′

=
1

4

[
Σ

(1)
(0)(G,G

′)
]
uu′

+
1

2π

[
Σ

(1)
(0)(G,G

′)
]
uu′

arcsin
([

Σ
(1)
(0)(G,G

′)
]
uu′

)
=

1

4

[
Σ

(1)
(0)(G,G

′)
]
uu′

+
1

2π

∞∑
l=1

(2l − 3)!!

(2l − 2)!! · (2l − 1)
·
[
Σ

(1)
(0)(G,G

′)
]2l
uu′

=
1

4
h
>
u hu′ +

1

2π

∞∑
l=1

(2l − 3)!!

(2l − 2)!! · (2l − 1)
·
(
h
>
u hu′

)2l
.

Let Φ(2l)(·) be the feature map of the polynomial kernel of degree 2l, i.e.,

k(2l)(x,y) =
(
x>y

)2l
= Φ(2l)(x)>Φ(2l)(y).

We have [
Σ

(1)
(0)(G,G

′)
]
uu′

[
Σ̇

(1)
(1)(G,G

′)
]
uu′

=
1

4
h
>
u hu′ +

1

2π

∞∑
l=1

(2l − 3)!!

(2l − 2)!! · (2l − 1)
·
(
Φ(2l)(hu)

)>
Φ(2l)(hu′).

Let
Θ1(G,G′) =

∑
u∈V,u′∈V ′

[
Σ

(1)
(0)(G,G

′)
]
uu′

[
Σ̇

(1)
(1)(G,G

′)
]
uu′

,

we have

Θ1(G,G′) =
1

4

(∑
u∈V

hu

)>( ∑
u′∈V ′

hu′

)
+

1

2π

∞∑
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(2l − 3)!!

(2l − 2)!! · (2l − 1)
·

(∑
u∈V

Φ(2l)(hu)

)>( ∑
u′∈V ′

Φ(2l)(hu′)

)
.

Since Θ = Θ1 + Θ2 where Θ2 is a kernel matrix (and thus positive semi-definite), for any y ∈ Rn,
we have

y>Θ−1y ≤ y>Θ−11 y.

Recall that

yi = α1

∑
u∈V

(
h
>
u β1

)
+

∞∑
l=1

α2l

∑
u∈V

(
h
>
u β2l

)2l
.

We rewrite

yi = y
(0)
i +

∞∑
l=1

y
(2l)
i ,

where

y
(0)
i = α1

(∑
u∈V

hu

)>
β1,

and for each l ≥ 1,

y
(2l)
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(
h
>
u β2l

)2l
= α2l

∑
u∈V

(
Φ2l

(
hu
))>

Φ2l (β2l) = α2l
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u∈V

Φ2l
(
hu
))>

Φ2l (β2l) .
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We have

y = y(0) +

∞∑
l=1

y(2l).

Thus, √
y>Θ−1y ≤

√
y>Θ−11 y ≤

√(
y(0)

)>
Θ−11 y(0) +

∞∑
l=1

√(
y(2l)

)>
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When l = 0, we have √
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>
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When l ≥ 1, we have √
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A.2 Proof of Theorem 4.3

Proof. Recall that

Θ(G,G′) =
∑

u∈V,u′∈V ′

([
Σ

(1)
(0)(G,G

′)
]
uu′

[
Σ̇

(1)
(1)(G,G

′)
]
uu′

+
[
Σ

(1)
(1)(G,G

′)
]
uu′

)
,

where [
Σ

(1)
(0)(G,G

′)
]
uu′

= cucu′

 ∑
v∈N (u)∪{u}

hv

> ∑
v′∈N (u′)∪{u′}

hv′

 = h
>
u hu′

and [
Σ̇

(1)
(1)(G,G

′)
]
uu′

=
π − arccos

([
Σ

(1)
(0)(G,G

′)
]
uu′

)
2π

,

[
Σ

(1)
(1)(G,G

′)
]
uu′

=
π − arccos

([
Σ

(1)
(0)(G,G

′)
]
uu′

)
+

√
1−

[
Σ

(1)
(0)(G,G

′)
]2
uu′

2π
.

Since for each node u, hu = cu
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Thus,
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2
.
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B Experiment Setup

To calculate GNTKs, we adopt the formulas provided in Section 3.2. To calculate the expectation of
the post-activation output, i.e., (1) and (2), we use the same approach as in Arora et al. [2019a] (cf.
Section 4.3 in Arora et al. [2019a]).

For GNTKs, we tune the following hyperparameters.

1. The number of BLOCK operations. We search from candidate values {1, 2, . . . , 14}.
2. The number of fully-connected layers in each BLOCK operation. We search from candidate

values {1, 2, 3}.
3. The parameter cu. We search from candidate values

{
1, 1
|N (u)|+1

}
.

To utilize the GNTKs we compute to perform graph classification, we test with kernel regression
and C-SVM as the final classifier. In our experiments, the regularization parameter C in C-SVM is
determined using grid search from 120 values evenly chosen from [10−2, 104], in log scale.

We would like to remark that GNTK has strictly smaller number of hyper-parameters than GNN since
we do not need to tune the learning rate, momentum, weight decay, batch size and the width of the
MLP layers for GNTK. Furthermore, we find on bioinformatics datasets, we get consistently good
results by setting the number of BLOCK operations to be 10, the number of MLP layers to be 1 and
cu to be 1/|N (u)|. We get 75.3% accuracy on PROTEINS, 67.9% on PTC, and 83.6% on NCI1. For
social network datasets, by setting the number of BLOCK operations to be 2, the number of MLP
layers to be 2 and cu to be 1, we get 76.7% accuracy on IMDB-B, 52.8% on IMDB-M, and 83.3% on
COLLAB.
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