A Proof of Theorem 2

Before we begin the proof, let us introduce more notation. Since we only consider
a single critical point, for simplicity of notation we denote the critical point as 8 =
(w,V1,Va,Us,..., V1, UL, z), without x. Forl € [2 : L], let J;(z) := VoL (U h_1(z)) €
R™Xm e, J!(x) is the Jacobian matrix of ¢ (-) evaluated at U;h;_1 (), whenever it exists. Also,
let :=col ([U] - UL|) S R%.

The proof is divided into two cases: 1) if w ¢ U, and 2) if w € U. For Case 1,
we will show that R(0*) < Ry,; we also note that our representation coverage condition

rank(E(, ) ~p [¢" (fo(2);y)ho(x)hr(z)T]) = dy is not required for Case 1. For Case 2, we
will show that at least one of :3(8*) < Ry, or Awin (VZ9R(6%)) < 0 has to hold.

Case 1: If w ¢ Y. From standard matrix calculus, we can calculate the partial derivatives of R
with respect to w and V;’s. Since 0 is a critical point we have

PR 0) = E¢ (folw))he(a)] = 0,

IR L
W(g) =E |[('(fo(z);y) J] U+ Ung(iﬁ)TV{)wﬁblz(Ulhz1($))T] =0, 1=2,...,L,
! k=I+1
OR / - T Ty T 1, n\T
av, O =E | (fe(x):y) [[U + UL @) VD weL(x)"| =o0.
k=2
For V5, ..., V1, note that we can arrange terms and express the partial derivatives as
OR / 1 T - T
Tvl(a) = wE [('(fo(z); y)dL (Uihi—1(z))]” + Z U,E, =0, )]
k=1+1

where Ej, € R™*™ are appropriately defined matrices. Note that any column of Zé:l 11 UkT.Ek is
inl. Since w ¢ U, the sum being zero (1) implies that E [¢/(fo(z); y)¢L (Uihi—1(z))] = O (because
w ¢ U already implies that w # 0), for all [ € [2 : L]. Similarly, we have E [¢'(fo(z); y)¢L(z)] =
0.

Now, from E [¢/(fo(x); y)hr(z)] = 0,

=E [’ (fo(x);y) (hr—1(x) + VoL (Urhr_1(x)))]
=E ['(fo(x); y)hr—1(x)] + VLE [£'(fo(x); y)p% (Urhr_1(z))]
=E[l'(fo(x);y)hr—1(2)] =--- =E[l'(fo(z); y)z].

Recall that by convexity, ¢(p; y} — g y) < (p; y)(p q). Now for any t € R%, we can apply this
inequality for p = fo(z) = w'hy(z) and ¢ = tTz:

E[((fo(x);y)] — E [£(t"z;9)] <E[0'(fo(x);y)(w hp(z) —t")]
= wE[l'(fo(x); y)hi(x)] — t"E['(fo(z); y)z] = 0.
Thus, E [((fo(x); y)] < E [¢(t"x;y)] for all ¢, so taking infimum over ¢ gives R(6") < Riin.
Case 2: If w € U. For this case, we will consider the Hessian of R with respect to w and V', for
each [ € [L]. We will show that if E [¢/( fo(z); y)oL(Uihy—1(z))] # 0, then Apin (VZR(0)) < 0.

This implies that if E [¢/( fo(x); y)¢L (Uihy—1(z))] = 0 for all [ € [L], then by the same argument
as in Case 1 we have R(0*) < Ryiy; otherwise, we have A\yin (VZR(0)) < 0.

Because 0 is a twice-differentiable critical point of R(-), if we apply perturbation 4 to 6 and do
Taylor expansions, what we get is

R(O + 8) = R(O) + 16T V2R(0)8 + o(||0]°). 2)

11



So, if we apply a particular form of perturbation §, calculate R(0 + d), and then show that the
sum of all second-order perturbation terms are negative for such a 4, it is equivalent to showing

16TV2R(0)8 < 0, hence Apin (VZR(0)) < 0

Now fix any [ € [2 : L], and consider perturbing w by € and V; by A, while leaving all other
parameters unchanged. We will choose A = aBT, where a € R% is chosen from o € U=, the
orthogonal complement of I/, and 8 € R™ will be chosen later. We will now compute J3(6 + J)
directly from the network architecture. The residual block output hy(x),. .., hj_1(z) stays invariant
after perturbation because their parameters didn’t change. For [-th residual block, the output after

perturbation, denoted as hy (z), becomes
?ll(.r) = hl(x) + A¢2(Ulhl_1($)).
The next residual block output is
hir(z) = hy(z) + Vi ¢ (U ()
= hi(z) + AQL(Uihi—1(2)) + Vg0t (Urpahi(x) + Uy AgL (U hi -1 (2)))
£ hy(@) + AdL(Uh—1(2) + Vi ot (Ui ()
= his1(z) + AQL(Uhi—1(x)),

Yvhere (a) used the fact that~Ul+1A =U;4; aBT = 0 because o € U~+. We can propagate this up to
hy(x) and similarly show hz(z) = hp(x) + A¢L (U h;—1(z)). Using this, the network output after
perturbation, denoted as fgy5(), is

fors(@) = (w+€)" (hp(x) + AgL(Uhi—1(x)))
= fo(z) + €T hp(z) + wT AL (Uihi—1(z)) + €T A¢L (U hi—1(z))
€ fo(z) + € hp(z) + €F AgL (U by (x)),

where (b) used w” A = wTaB” = 0 because w € U and o € U+. Using this, the risk function
value after perturbation is

N(O+6)=E[l (fe+ () )1
E[0(f ) + € hi (@) + € AL U1 (@) )]
[e y) + £ (fo(@)y) (€ hu (@) + €T AGLUIR-1(2))

30 (ol); ) (€7 (2))* + o(]13])]
2 R(0) + E [¢(Jo w):w)e” AL Urhi (2)) + 5" (Jo(w):) ("he ()] + o(6]),

where (c) used Taylor expansion of £(-;y) and (d) used that E[¢( fo(z); y)h.(2)] = $2(0) = 0.
Comparing with the expansion (2), the second term in the RHS corresponds to the second-order
perturbation 367 V29R(8)4.

Now note that
E[/(Fol@)iy)e” AdL(Uihi-1 (@) + 30" (fo(@)iy) (" he(x))’]
—=e" AE [/ (fo(@);y)¢L (Urhi—1(2))] + 3 E [ (fo(@)sp)hs (@)he(2)] e

Let A :=E[("(fo(x);y)hr(z)hi(x)"] and b := E [¢'( fo(z); y) oL (Uihy—1(x))] for simplity. By
the representation coverage condition of the theorem A is full-rank, hence invertible. We can
choose € = —A~!Ab to minimize the expression above, then the minimum value we get is

— 1T AT AL AD.

First, note that A is positive definite, and so is A~'. If b # 0, we can choose § = b, so
Ab = afTh = ||b)*a # 0, s0 —2b"ATA"'Ab < 0. This proves that Awin(V29(6)) < 0
it E [0/(fo(2);y)¢L (Uhi—1(x))] # 0, as desired.

The case when [ = 1 can be done similarly, by perturbing w and V';. This finishes the proof.
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B Proof of Theorem 4

Since we only consider a single critical point, we denote the critical point as @ = (w), z), without *.
By the same argument as in Case 1 of Proof of Theorem 2, we can use convexity of ¢ to get the
following bound:

E[¢(fo(2):y)] — E [((iT2)] < E[¢(fa(w); y)(why(x) — iTa)]
= (w—H"E[('(fo(2);y)he(x)] + FEC'(fo(x);y) (he(z) — )]
T [6’(]”9(93); y) Z; ¢lz(hll(m))}

< pllEl D B[k (@]
=1

where (a) used the fact that E [¢'(fo(z); y)hi(z)] = 22 = 0. Now, for any fixed | € [L], using
Assumption 5.1 we have
6% (ha—1 (@) < pullhu—1 ()|

< pi(lh—2(@)]| + (|65 (hi_a(2)])
< pi(1+ pr—1)|[h—2(2)]|

-1
<o <o [T+ pw)lll.
k=1
Substituting this bound to the one above, we get
L 1-1 I
36) = R < ulfIE (lel] 3 o [T+ pe) = e ol (T, (14 ) 1)
=1 k=1

C Proof of Theorem 5

First, we collect the symbols used in this section. Given a real number p, define [p], := max{p,0}
and [p]_ := max{—p,0}. Notice that [p| = [p], +[p]_. Recall that given a vector z, let ||| denotes
its Euclidean norm. Recall also that given a matrix M, let || M| denote its spectral norm, and || M|
denote its Frobenius norm.

The proof is done by a simple induction argument using the “peeling-off” technique used for
Rademacher complexity bounds for neural networks. Before we start, let us define the function class
of hidden layer representations, for 0 <[ < L:

Hy = (bR o R ||V U < M forall j € (1)},

defined with the same bounds as used in F,. Note that H is a singleton with the identity mapping
x +— x. Also, define F; to be the class of functions represented by a [-block ResNet (0 < < L):

Fr={zr— wThl(x) [ lw|l <1,k € H;}.
Note that if [ = L, this recovers the definition of F, in the theorem statement. Since
Fo:={z— wlx [ Jw|| <1},
it is well-known that %, (Fols) < %. The rest of the proof is done by proving the following:
Gn(Fils) < (1+2M7)Zn(Fials),

forl € [L].
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Fix any [ € [L]. Then, by the definition of Rademacher complexity,

n

nIn(Fils) = Ee,., | sup Z finhl(xi)
H“’HSL i=1
hi€H,

n

=E,., sup sup Z ew” (hi—1(2:) + Vio(Uihi—1 (2;)))
[lw][ <1, HVZHFSMl i=1

Lhi—1€Hi—1 ||U||p <M,

n n
T T
<E., sup eiw” hi—1(z;) | + B, sup sup g ew” Vio(Uihi—1(z;))
lwl<1, i=1 lwll <1, |Villp<M, i=1
Lhi—1€H1 1 hi—1€Hi—1 U ||z <M,
=/

The first term in RHS is n.%Z,, (Fi—1]s) by definition. It is left to show an upper bound for the second
term in RHS, which we will call 7.

First, because ||[w|| < 1 and ||V|| < ||Vi||y < M;, we have ||V w|| < M;. So, by using dual norm,

n

n
o =E sup ol Z eio(Uihi—1(x;))| = MiE sup
||| <My, Uil|lg <My,

€iO'(Ulhg_1 (1‘1)) H .

i=1 | i=1
HUZHFSJMl hi—1€H-1
hi—1€Hi—1
Letu,ul,..., uf be the rows of U,. Then, by positive homogeneity of ReLU o, we have
n 2 k n T 2
ws hy—1 ()
> eoUihia(@:)| =Y [l <Z €0 <JHH
i=1 j=1 i=1 “
The supremum of this quantity over w1, . .., uj under the constraint that ||U; ||§ = 2521 [lu; ||2 <
M} is attained when ||u;|| = M, for some j and ||u;|| = 0 for all other j/ # j. This means that
% i n n
=B sup Z eo(Uihi—1(z:))|[| =E | sup eio(ul hi—1(x;))
l HUI,”FSMZa =1 HUHSJWI» =1
Lhi—1€H1—1 hi—1€H;—1
[ [ n ] n
=E| sup |Y o ha(z)| +|) eia(uThll(xi))]
lull<My, |5 —
_hLY1€H1l,1 Li=1 4+ i=1 -
- - ) : -
<E sup Z eia(uThl,1(xi)) +E sup Z eia(uThl,1(J;i))
HUHSJWZ» Li=1 14 ||“H§Ml7 i=1 _
Lhi—1€HI—1 hi—1€HI—1 i
(@) . ) .
Dok | sup | aoTha@)| |2 || s Yo hiw)
lul <My, |52 n lul <My, =4
Lhi—1€Hi—1 hi—1€EH;1 44
(C) [ n (d) n
=2E | sup ZGiU(UThl—1(9Ci)) <2E | sup Z euhi_1(x) |
[lul| <M, i=1 [lul| <M, i=1
Lhi—1€H1—1 hi—1€Hi1-1

where equality (a) is due to symmetry of Rademacher random variables and (b) uses sup [t], =
[sup ] - Equality (c) uses the fact that the supremum is nonnegative, because setting u = 0
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already gives > | €;0(u” hy_1(z;)) = 0. Inequality (d) uses contraction property of Rademacher
complexity.

Lastly, one can notice that

n n
. T _ T _ 7]
E sup g eu' hi—1(x;)| = MiE sup E ew' hy—1(x;) | = Min%n(Fi-1ls).
lull <My, 5= lwl<1, =7
hi—1€Hi—1 hi—1€H—1

This establishes R
4 S 2M12n%n(]:l—1 |S)7

which leads to the conclusion that
Bn(Fils) < (1+2MP)n(Fials),

as desired.
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