
A Thermodynamic Integration

Thermodynamic integration is a technique used in physics and phylogenetics to approximate in-
tractable normalized constants of high dimensional distributions [14, 15]. It is based on the observa-
tion that it is easier to calculate the ratio of two unknown normalizing constants than it is to calculate
the constants themselves. More formally, consider two densities over space Z

⇡i(z) =
⇡̃i(z)

Zi
, Zi =

Z

Z
⇡̃(z) dz, i 2 {0, 1}. (18)

To apply TI, we form a continuous family (or “path”) between ⇡0(z) and ⇡1(z) via a scalar parameter
� 2 [0, 1]

⇡�(z) =
⇡̃�(z)

Z�
=

⇡̃1(z)� ⇡̃0(z)1��

Z�
, Z� =

Z

Z
⇡̃�(z) dz, � 2 [0, 1]. (19)

The central identity that allows us to compute the ratio log(Z1/Z0) is derived as follows. Assuming
we can exchange integration with differentiation,

@ logZ�

@�
=

1

Z�

@

@�
Z�

=
1

Z�

@

@�

Z
⇡̃�(z) dz

=

Z
1

Z�

@

@�
⇡̃�(z) dz

=

Z
⇡̃�(z)

Z�

@

@�
log ⇡̃�(z) dz,

which directly implies
@ logZ�

@�
= E⇡�

⇥
U 0
�(z)

⇤
, (20)

where the quantity U�(z) = log ⇡̃�(z) is referred to as the “potential” in statistical physics and
U 0
�(z) :=

@
@�U�(z). The variable � can be interpreted as the inverse temperature parameter. Because

one can typically compute log ⇡̃�(z), (20) allows us to exchange the first derivative of something we
cannot compute with an expectation over something we can compute. Then, to calculate the ratio
log(Z1/Z0) we integrate out � on both sides of (20)

Z 1

0

@ logZ�

@�
d� =

Z 1

0
E⇡�

⇥
U 0
�(z)

⇤
d� (21)

which via the fundamental theorem of calculus results in

log(Z1)� log(Z0) =

Z 1

0
E⇡�

⇥
U 0
�(z)

⇤
d�. (22)

B The Increasing Integrand

B.1 Notation

log p✓(x) =

Z 1

0
g(�)d� (23)

g(�) = E⇡�(z) [U
0(z)] (24)

U 0(z) = log
p✓(x, z)

q�(z |x)
(25)

Given our choice of geometric path ⇡�(z) = ⇡̃�(z)/Z� , ⇡̃�(z) = p(x, z)�q(z |x)1�� , the potential
U 0(z) = @

@� log ⇡̃�(z) loses its dependency on � after differentiating. This allows us to show

@

@�
g(�) = Var⇡�(z)[U

0(z)] (26)

11

which means @
@� g(�) � 0, 8� 2 [0, 1] and therefore that g(�) is monotonically non-decreasing.

Changes between lines are tracked in blue.

Proof of Equation (26).

@

@�
g(�) =

@

@�
E⇡�(z) [U

0(z)]

=
@

@�

 Z
⇡�(z)U

0(z) dz]

�

=

Z
U 0(z)

@

@�
⇡�(z) dz

=

Z
U 0(z)

@

@�

⇥
Z�1
� ⇡̃�(z)

⇤
dz

=

Z
U 0(z)


⇡̃�(z)

@

@�
Z�1
� + Z�1

�

@

@�
⇡̃�(z)

�
dz .

Now we use the “inverse log-derivative” trick @
@x (f(x)

�1) = � 1
f(x)

@
@x log f(x) on the first term,

and the log-derivative trick on the second

=

Z
U 0(z)


⇡̃�(z)

�1

Z�

@

@�
logZ� +

1

Z�
⇡̃�(z)

@

@�
log ⇡̃�(z)

�
dz (27)

=

Z
U 0(z)


�⇡�(z)

@

@�
logZ� + ⇡�(z)

@

@�
log ⇡̃�(z)

�
dz, (28)

Then we use (20) on the first term, and the definition of U 0(z) in the second

=

Z
U 0(z)


� ⇡�(z)E⇡�(z)

⇥
U 0(z)

⇤
+ ⇡�(z)U

0(z)

�
dz (29)

= �
Z

⇡�(z)U
0(z)E⇡�(z)

⇥
U 0(z)

⇤
dz+

Z
U 0(z)U 0(z)⇡�(z)dz (30)

Finally we rearrange, noting that the expectation is a scalar and can therefore come out of the
integrand

= �

E⇡�(z)

⇥
U 0(z)

⇤� Z
⇡�(z)U

0(z) dz

�
+

Z
U 0(z)U 0(z)⇡�(z) dz (31)

= �
⇥
E⇡�(z)[U

0(z)]
⇤2

+ E⇡�(z)

⇥
U 0(z)2

⇤
(32)

= Var⇡�(z)[U
0(z)]. (33)

Therefore,

@

@�
g(�) = Var⇡�(z)[U

0(z)]. (34)

C The generalized TVO

The TVO presented in §2 is a lower bound to log p✓(x) using a left Riemann sum approximation
to the thermodynamic variational identity. Using the right Riemann sum results in an upper bound
which can be minimized (rather than maximized) during optimization (cf. §5). This loss is used in
the inference compilation and during the sleep-phase � update in the Wake-Sleep algorithm. Below
we present both the upper-bound and lower-bound variants of the TVO, with non-equally spaced
partitions 0 = �0 < �1 < · · · < �K = 1, ��k = �k � �k�1, K > 1

12

TVOL
K(✓,�,x) := ��1 ELBO(✓,�,x) +

KX

k=2

��k E⇡�k�1


log

p✓(x, z)

q�(z |x)

�
 log p(x) (35)

TVOU
K(✓,�,x) := ��K EUBO(✓,�,x) +

K�1X

k=1

��k E⇡�k


log

p✓(x, z)

q�(z |x)

�
� log p(x), (36)

where

ELBO(✓,�,x) := Eq�(z |x)


p✓(x, z)

q�(z |x)

�
, EUBO(✓,�,x) := Ep✓(z |x)


p✓(x, z)

q�(z |x)

�
,

⇡�k(z) := p✓(x, z)
�q�(z |x)1��/Z� , Z� :=

Z
p✓(x, z)

�q�(z |x)1�� dz .

D Maximizing the TVO minimizes a divergence between the variational
distribution and true posterior

We now show:

TVO(✓,�,x) = log p✓(x)�D(q�(z |x)||p✓(z |x)) (37)

Where D(q�(z |x)||p✓(z |x)) is a divergence between the variational distribution q�(z |x) and true
posterior p✓(z |x). We refer to the notation defined in Appendix B.1 and the definition of divergence
defined by Eguchi et al. [39].

Proof. The TVO is a left Riemann sum approximation of log p✓(x) =
R 1
0 g(�)d�, where g(�) =

E⇡�(z) [U
0(z)] and g(�) is a differentiable monotonically non-decreasing function in � (cf. Equa-

tion (26)). The TVO is therefore a lower bound of log p✓(x) and can be written

TVO(✓,�,x)  log p✓(x)

TVO(✓,�,x) = log p✓(x)� c(✓,�,x), c(✓,�,x) � 0 (38)

We will show c(✓,�,x) = D(q�(z |x)||p✓(z |x)), which is equivalent to showing

1� c � 0, 8 p✓(z |x), q�(z |x) 2 Z

2� c = 0 () p✓(z |x) = q�(z |x)

1� is implied in the definition of c in 38. We now show 2�.

Forward direction
�
c = 0

�
)

�
p✓(z |x) = q�(z |x)

�

If c = 0, the left Riemann sum must be an exact approximation to
R 1
0 g(�)d�. Because is g(�) is

differentiable (and assuming it is finite), the Riemann approximation can only be exact when g(�) is
flat (i.e. @g(�)

@� = 0) in the region � 2 [0, 1]. We first recall that by definition, ⇡0(z) = q�(z |x) and
⇡1(z) = p✓(z |x). Therefore

Z 1

0

@g(�)

@�
d� =

Z 1

0
0 d� (39)

g(1)� g(0) = 0 (40)
g(1) = g(0) (41)

E⇡1(z) [U
0(z)] = E⇡0(z) [U

0(z)] (42)
Ep✓(z |x) [U

0(z)] = Eq�(z |x) [U
0(z)] (43)

Which is only possible when p✓(z |x) = q�(z |x).

13

Reverse direction
�
p✓(z |x) = q�(z |x)

�
)

�
c = 0

�

If p✓(z |x) = q�(z |x), the TVO can be written as

TVO(✓,�,x) =
1

K

K�1X

k=0

E⇡�k
(z)


log

p✓(x, z)

p✓(z |x)

�
(44)

=
1

K

K�1X

k=0

E⇡�k
(z) [log p✓(x)] (45)

= log p✓(x) (46)

Therefore c = 0.

E Derivation of the Covariance Gradient Estimator

We want to show that

r� E⇡�,� [f(z,�)] = E⇡�,� [r�f(z,�)] + Cov⇡�,� [r� log ⇡̃�,�(z), f(z,�)] . (47)

Our estimator holds under the common regularity conditions assumed for the score function estima-
tor L’Ecuyer [40]. We begin with a simple lemma.

Lemma 1.

r� logZ�,�(x) = E⇡�(z)[r� log ⇡̃�,�(z)] (48)

Proof of lemma 1.

r� logZ�,�(x) =
1

Z�,�(x)
r�Z�,�(x) (49)

=
1

Z�,�(x)
r�

Z
⇡̃�,�(z) dz (50)

=
1

Z�,�(x)

Z
r�⇡̃�,�(z) dz (51)

=

Z
⇡̃�,�(z)

Z�,�(x)
r� log⇡̃�,�(z) dz (52)

= E⇡�(z)[r� log ⇡̃�,�(z)] (53)

To prove (47), we use the product rule and rearrange

r� E⇡�(z)[f(z,�)] = E⇡�(z)[r�f(z,�) + f(z,�)r� log ⇡�,�(z |x)] (54)

= E⇡�(z)[r�f(z,�) + f(z,�)
�
r� log ⇡̃�,�(z)�r� logZ�,�(x)

�
] (55)

= E⇡�(z)[r�f(z,�)] + E⇡�(z)[f(z,�)r� log ⇡̃�,�(z)]

� E⇡�(z)[f(z,�)r� logZ�,�(x)]. (56)

Now using lemma 1 on the third term

= E⇡�(z)[r�f(z,�)] + E⇡�(z)[f(z,�)r� log ⇡̃�,�(z)]

� E⇡�(z)[f(z,�)]E⇡�(z)[r� log ⇡̃�,�(z)] (57)

= E⇡�(z)[r�f(z,�)] + Cov⇡�,�(z |x)
⇥
r� log ⇡̃�,�(z), f(z,�)

⇤
. (58)

14

Table 1: The effect of Common Random Numbers (CRN) on TVO variance. We use the discrete
model of §7.1

Iterations 10 1e6 2e6 3e6 4e6

Gradient std w/o CRN 52.33 2.88 2.57 2.39 2.47

Gradient std w/ CRN 8.19 1.38 1.17 1.05 1.03

F Variance of the Covariance Gradient Estimator and its Relationship to
REINFORCE

In this section we clarify the difference between the covariance estimator (11) and the REINFORCE
estimator and empirically investigate its variance.

While both estimators use the log-derivative trick, the main difference between the two is the REIN-
FORCE estimator requires differentiating through log ⇡�(z) which contains the intractable normaliz-
ing constant, while the covariance estimator only requires differentiating through the unnormalized
distribution log ⇡̃�(z).

We can state the difference as follows. Assuming ⇡�(z) = ⇡̃�(z)/Z� depends on parameters �, to
compute r� E⇡�(z) [f(z)], one can use the following gradient estimators:

REINFORCE: E⇡�(z) [f(z)r� log ⇡�(z)]

REINFORCE + BASELINE: E⇡�(z)

⇥�
f(z)� E⇡�(z) [f(z)]

�
r� log ⇡�(z)

⇤

COV. ESTIMATOR (ours): E⇡�(z)

⇥�
f(z)� E⇡�(z) [f(z)]

� �
r� log ⇡̃�(z)� E⇡�(z) [r� log ⇡̃�(z)]

�⇤

Unlike REINFORCE, where a baseline is typically added ad-hoc to reduce variance, the baseline
b = E⇡�(z) [f(z)] naturally appears as a result of differentiating through ⇡�(z) using the identity
r� logZ�,�(x) = E⇡�(z)[r� log ⇡̃�,�(z)] derived in appendix E. The baseline also partially explains
the low variance of our estimator, as it is equivalent to the “average baseline” often used reinforcement
learning [41, 42].

A second source of variance-reduction comes from reusing samples, a method known as “common
random numbers” [23]. The terms in the TVO are highly correlated, thus we expect reusing a single
batch of samples for each additional term will act to reduce variance according to equation 8.21
in Owen [23]. However, because the covariance term breaks into both positive and negative terms,
common random numbers could potentially increase variance. In Table 1 we show the average
gradient std at different iterations during the training procedure, using the S = 50 discrete model
described in §7.1 and in Figure 3 and Figure 5. It is evident reusing samples significantly reduces the
variance of the covariance gradient estimator, often by more than a factor of two.

In Figure 7 we compare the variance of our estimator to the reparameterization trick and REINFORCE
on the continuous model described in §7.2. To control for any possible effect on variance the
additional terms in the TVO could have, we use the ELBO (i.e the TVO with K = 1), and plot the
gradient standard deviation for the COV estimator (ours), the reparameterization trick and REINFORCE.
The COV estimator has higher variance than the reparameterization trick estimator, and outperforms
the REINFORCE estimator which is numerically unstable. Both the standard deviation of both the
COV estimator and the reparameterization trick improves as samples increase but the effect is more
prominent for the COV estimator.

G Special Cases of the TVO

In Table 2, we summarize the different ways the TVO generalizes existing variational objectives, and
in the following subsection we list the mathematical form of each objective. In the main text, we
mentioned that the lower bound variant of the TVO with K = 1 partition can be seen as the ELBO.
This connects the TVO to all methods that maximize the ELBO. The upper bound variant of the
TVO with K = 1 partition can be seen as EUBO. This therefore connects the TVO to all methods

15

Figure 7: Comparing the standard deviation of gradient estimators on continuous VAEs trained on the
ELBO. The covariance estimator has higher variance than the reparameterization trick for all S but
much lower than REINFORCE, which is numerically unstable.

that minimize the reverse KL divergence KL (p✓(z|x)||q�(z|x)), including WS, RWS and inference
compilation.

For K > 1, we have a novel objective which we can optimize with respect to ✓, � or both and
therefore apply to all the variational methods summarized in Table 2.

Table 2: The thermodynamic variational identity generalizes existing variational objectives.

Approximation Left Riemann sum
(lower bound—maximize)

Right Riemann sum
(upper bound—minimize)

Number of partitions 1 > 1 1 > 1

Optimize

✓ wake in WS TVOL
K(✓,x) N/A N/A

� VI TVOL
K(�,x)

wake-� in RWS,
sleep in WS,

inference compilation
TVOU

K(✓,�,x)

✓,� VAE TVOL
K(✓,�,x) N/A N/A

G.1 Variational Objective Zoo

In the following we show how a number of commonly used variational objectives can be recovered
from the TVO using a single partition K = 1. Each method can be extended by setting K > 1.

We have three degrees of freedom: 1) Whether we optimize ✓,�, or both 2) whether we maximize
TVOL

1 (✓,�,x) or minimize TVOU
1 (✓,�,x), and 3) whether we use data sampled from the true data

distribution {xi}Ni=1
i.i.d⇠ p(x) or from our generative model {xi}Ni=1

i.i.d⇠ p✓(x), as in the case of
inference compilation and the sleep phase of the wake-sleep algorithm.

16

Variational Inference Variational inference [26] can be recovered by learning �, maximizing
TVOL

1 (�,x), and using real data {xi}Ni=1 ⇠ p(x):

�⇤ = argmax
�

Ex⇠p(x)

⇥
TVOL

1 (�,x)
⇤

(59)

= argmax
�

Ex⇠p(x) [ELBO(�,x)] (60)

Inference Compilation If we instead sample data from our generative model {xi}Ni=1 ⇠ p✓(x)
and minimize TVOU

1 (�,x) we recover the inference compilation objective [27]:

�⇤ = argmin
�

Ex⇠p✓(x)

⇥
TVOU

1 (�,x)
⇤

(61)

= argmin
�

Z
p✓(x)


Ep✓(z |x)


log

p(x, z)

q�(z |x)

��
dx (62)

= argmin
�

Z
p✓(x)

Z
p✓(x, z)

p✓(x)


log

p(x, z)

q�(z |x)

��
dz dx (63)

= argmin
�

Z Z
p✓(x, z)


log

p(x, z)

q�(z |x)

�
dz dx (64)

= argmin
�

Ep(x,z) [� log q�(z |x)] (65)

Variational Autoencoders The loss for VAEs[1, 2] follows the same setting as in the variational
inference objective, above except now we learn both � and ✓.

�⇤ = argmax
�,✓

Ex⇠p(x)

⇥
TVOL

1 (✓,�,x)
⇤

(66)

= argmax
�,✓

Ex⇠p(x) [ELBO(✓,�,x)] (67)

Wake-sleep and reweighted wake sleep In the original wake-sleep algorithm [18], the authors
proposed the wake-phase ✓ update and sleep-phase � updates to train the generative model and
inference network respectively. In Reweighted Wake-Sleep [19], two more objectives were proposed,
the reweighted wake-phase ✓ update2 and the wake-phase � update. All except the reweighted

wake-phase ✓3 are special cases of the TVO and are listed below.

• Wake-phase ✓ update In the wake phase ✓ update, we consider � fixed and maximize
TVOL

1 (✓,x), using data {xi}Ni=1 ⇠ p(x) sampled from the true distribution. This is similar
to the variational inference update except we’re learning ✓ instead of �:

✓⇤ = argmax
✓

Ex⇠p(x)[TVOL
1 (✓,x)] (68)

= argmax
✓

Ex⇠p(x) [ELBO(✓,x)] (69)

• Sleep-phase � update In the sleep phase � update, we consider ✓ fixed and minimize
TVOU

1 (�,x) using simulated data {xi}Ni=1 ⇠ p✓(x) and a single partition. This objective
is the same as the inference compilation objective.

• Wake-phase � update In the wake phase � update, we instead use real data {xi}Ni=1 ⇠ p(x)
and again minimize TVOU

1 :

�⇤ = argmin
�

Ex⇠p(x)

⇥
TVOU

1 (�,x)
⇤

(70)

= argmin
�

Ex⇠p(x)


Ep✓(z |x)


log

p✓(x, z)

q�(z |x)

��
(71)

= argmin
�

Ex⇠p(x)

⇥
Ep✓(z |x) [� log q�(z |x)]

⇤
(72)

2This was not the authors’ original terminology and is used here to differentiate this objective from the
original wake-phase ✓ update.

3This objective is not a special case of the TVO and is therefore not included in Table 2

17

This is the objective given in the wake-phase � update in equation 6 of Le et al. [20]. The
gradient estimator for performing this update given in Le et al. [20] is equivalent to the
gradient estimator obtained via equations (11) and (13).

H Additional Illustrations of the Thermodynamic Variational Identity

In Figure 8, we provide illustrations of how the E⇡� [U
0(z)] curve relates to log p✓(x), KL (q||p),

KL (p||q), ELBO and EUBO for the cases of ELBO < 0 < EUBO and ELBO < EUBO < 0. In the
following, we provide derivations to justify the illustrations.

β

Eπβ

h

log pθ(z;x)
qφ(zjx)

i

elbo

eubo

0
1

A

B

C

log pθ(x) = B + C

eubo = A+B + C

elbo = C
kl(qjjp) = B
kl(pjjq) = A

β

Eπβ

h

log pθ(z;x)
qφ(zjx)

i

elbo

eubo

0
1

log pθ(x) = B − C
A

B

C
D

eubo = A+B
elbo = −C −D
kl(qjjp) = B +D
kl(pjjq) = A+ C

log pθ(x) = −A−B

eubo = −A
elbo = −A−B − C
kl(qjjp) = C
kl(pjjq) = B

β

Eπβ

h

log pθ(z;x)
qφ(zjx)

i

elbo

eubo

0
1

A

B

C

Figure 8: Different scenarios of the E⇡� [U
0(z)] curve where ELBO < 0. On the left, 0 < ELBO <

EUBO. In the middle, ELBO < 0 < EUBO. On the right ELBO < EUBO < 0.

Case ELBO < 0 < EUBO The top-most point of the curve is the EUBO by definition which means
that the area A + B is equal to the EUBO because of the unit length of the rectangle. In a similar
manner, the ELBO is the negative of the area of C +D. Now, due to the thermodynamic identity,
log p✓(x) =

R 1
�=0 E⇡� [U

0(z)] d�, it is equal to B � C which is the area denoted by the definite
integral.

To obtain the expressions for the KL, we use the identities

log p✓(x) = ELBO(x, ✓,�) + KL (q�(z|x)||p✓(z|x)) (73)
= EUBO(x, ✓,�)� KL (p✓(z|x)||q�(z|x)) (74)

Case ELBO < EUBO < 0 The top-most point of the curve is the EUBO by definition which means
that �A is equal to the EUBO because of the unit length of the rectangle. In a similar manner, the
ELBO is �A� B � C. Due to the thermodynamic identity, log p✓(x) =

R 1
�=0 E⇡� [U

0(z)] d�, it is
equal to �A�B which is the area denoted by the definite integral. We obtain expressions for the KL
similarly as before.

Similar line of reasoning gives rise to the relationships in Figure 8 (left).

I Details for Deep Generative Models

Discrete latent variables. Sigmoid belief networks are used to evaluate objectives, continuous
relaxations and control variate methods for learning discrete latent variable models [3–5, 19, 24, 25,
43]. The generative model is of the form p(z1:L,x) = p(zL)

QL�1
`=1 p(z`|z`+1)p(x|z1) where each

conditional on z` is an independent Bernoulli whose parameters are a linear function of z`+1. The
likelihood p(x|z1) is also an independent Bernoulli whose parameters are a linear function of z1 and
we parameterize the prior p(zL).

p✓(zL) = Bernoulli(zL|bL),

p✓(z`|z`+1) = Bernoulli(z`|decoder`(2 z`+1 �1)) ` = L� 1, . . . , 1,

p✓(x|z1) = Bernoulli(x|decoderx(2 z1 �1) + x̃)

The inference network is factorized in the opposite way to the generative model, where q(z|x) =
q(z1|x)

QL
`=2 q(z`|z`�1). Here, each conditional is an independent Bernoulli whose parameters are

linear functions of the condition.

q�(z1|x) = Bernoulli

✓
z1

����encoder1
✓
x�x̄+ 1

2

◆◆
,

q�(z`|z`�1) = Bernoulli(z`|encoder`(2 z`�1 �1)) ` = 2, . . . , L,

18

where x 2 {0, 1}Dx and z` 2 {0, 1}Dz . We set L = 2, Dx = 784 and Dz = 200. We used Pytorch’s
default parameter initialization. The Bernoulli distributions are independent Bernoulli distributions
whose parameters are logits, i.e. they get passed through a sigmoid function to obtain the probability.
x̄ is the mean over training data set and x̃ = log (x̄� 1). In the linear case, the encoders and decoders
are linear functions of their inputs. In the non-linear case, they are a three-layer multilayer perceptrons
with tanh nonlinearities of the form input_dim Lin+tanh������! Dz

Lin+tanh������! Dz
Lin��! output_dim.

We used the Adam optimizer with the learning rate in {3 ⇥ 10�4, 10�3, 3 ⇥ 10�3} and the other
hyperparameters being set to the defaults. We picked the learning rate which performed best on the
validation set which was 3⇥ 10�4 for all algorithms. We ran the optimization for 4 million iterations
with batch size 24.

Continuous latent variables. The model is of the form p(z)p✓(x|z) =
Normal(z|0, I)Bernoulli(x|decoder✓(z)), where z is 200-dimensional and decoder✓ is a
three-layer multilayer perceptron with tanh activations and sigmoid output which parameterizes the
probabilities of the independent Bernoulli distribution.

p(z) = Normal(z|0, I),
p✓(x|z) = Bernoulli(x|decoder✓(z))

The inference network is of the form q�(z|x) = Normal(z|encoder�(x)), where the encoder is a
two-layer multilayer perceptron with tanh activations. The output is passed through two separate
linear layers which output the mean and the log standard deviations of the independent normal
distribution.

q�(z|x) = Normal(z|encoder�(x)),

where x 2 {0, 1}Dx and z 2 RDz for Dx = 784 and Dz = 200. The decoder is of the form
Dz

Lin+tanh������! Dz
Lin+tanh������! Dz

Lin��! Dx and its output is passed through a sigmoid to obtain
probabilities for the Bernoulli distribution. The encoder is of the form Dx

Lin+tanh������! Dz
Lin+tanh������!

Dz . Its output is passed through two separate neural networks of the form Dz
Lin��! Dz which output

the means and log standard deviations of the independent Normal distribution.

19

J Notation

Table 3: Table of Notation

{xi}Ni=1 := Data set consisting of N i.i.d samples xi 2 RD

{zi}Ni=1 := Unobserved latent random variables zi 2 RM

p✓(x, z) = p✓(x | z)p✓(z) := The joint model parameterized by ✓, which factor-
izes into a likelihood p✓(x | z) and prior p✓(z)

p✓(z |x) = p✓(x, z)/p✓(x) := The true (often intractable) posterior

q�(z |x) := The variational distribution parameterized by �.
By assumption q�(z |x) is correctly normalized.

⇡̃�,�(z) = p✓(x, z)�q�(z |x)1�� := The unnormalized path distributions. By construc-
tion, ⇡̃�,�=1(z) = p✓(x, z) and ⇡̃�,�=0(z |x) =
q�(z |x)

⇡�,�(z |x) = ⇡̃�,�(z)/Z�,�(x) := The path distributions parameterized by
� = { ✓, � } and scalar parameter � 2 [0, 1].
By construction, ⇡�,�=1(z |x) = p✓(z |x) and
⇡�,�=0(z |x) = q�(z |x)

Z�,�(x) =
R
⇡̃�,�(z) dz1:N := The normalizing constant for the path distribu-

tions. By construction Z�,�=1(x) = p✓(x) and
Z�,�=0(x) = 1 (because q�(z |x) is assumed to
be correctly normalized).

U�,�(z) = log ⇡̃�,�(z) := The potential energy.

U 0
�,�(z) =

@
@�U�,�(z) := The first derivative of the potential w.r.t �, the

inverse temperature.

K Acronyms

AIS Annealed Importance Sampling

ELBO Evidence Lower Bound

EUBO Evidence Upper Bound

IS Importance Sampling

IWAE Importance Weighted Autoencoder

KL Kullback Leibler

RWS Reweighted Wake Sleep

SGD Stochastic Gradient Descent

TI Thermodynamic Integration

TVI Thermodynamic Variational Identity

TVO Thermodynamic Variational Objective

VAE Variational Autoencoder

VI Variational Inference

VIMCO Variational Inference For Monte Carlo Objectives

WS Wake Sleep

20

