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A Additional Simulations and Experimental Settings

This section presents a number of additional experiments w.r.t. the proposed method and shows more
comparison with rival methodologies. We also give an extensive description of the experimental
setting that we have used for our computer simulations.

A.1 Additional Simulations

Figure A.1 depicts the error-rate corresponding to DRL, SSDRL and F-SSDRL as a function of γ−1,
on adversarial examples in the MNIST dataset which are generated via the maximization problem
argmaxz′ ` (z′; θ) − γc (z′; ·) (as described in [1]). Unlike Figures 1 and 2, we have shown the
results for a range of values of γ and λ, in order to experimentally measure the sensitivity of our
method to these hyper-parameters. Also, we have performed the same procedure for DRL for the sake
of comparison. In particular, Figure A.1a shows the comparison between DRL and SSDRL (with λ
set to −1 for SSDRL) and different values of γ. As it is evident for the majority of cases (γ ≥ 0.05),
SSDRL performs much better than DRL. This result indicates that employing the unlabeled data
samples improves the generalization, which is highly favorable. Figure A.1b depicts the comparison
between F-SSDRL and the original SSDRL (again λ is set to -1 for SSDRL). Figure A.1c shows
the effect of varying λ (with γ fixed to 1). Surprisingly, the error-rate experiences a drastic jump
when one changes the sign of λ, which indicates a trade-off between optimism and pessimism. This
result might be related to the fact that for the case of MNIST dataset, learned neural networks on
the labeled part of the dataset are sufficiently reliable, and thus encourage the user to employ an
optimistic approach (i.e., setting a negative λ) in order to improve the performance. However, while
the sign of λ is fixed, error-rate does not show that much sensitivity to the magnitude of λ, which can
be noted as a point of strength for SSDRL.

Figure A.2 is a complete version of Figure 1 from Section 3, where the performances of SSDRL, fully-
supervised DRL, PL and VAT are extensively investigated on three benchmark datasets, i.e. MNIST,
SVHN and CIFAR-10. SSDRL and VAT have been tested with a variety of their corresponding
hyper-parameters γ and ε. Figure A.3 is the counterpart of Figure A.2, where the attack strategy is
replaced with Projected-Gradient Method (PGM). Again, error-rates have been depicted as a function
of PGM’s attack strength, i.e. ε. Even though more variation in hyper-parameters has been considered,
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Figure A.1: Error rates on adversarial examples generated via the algorithm in [1] vs. γ−1
eval on the

MNIST dataset.
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Figure A.2: Comparison of test error rates of SSDRL, DRL, PL and VAT on the adversarial examples
generated via [1] on different datasets. λ is set to −1.

we have not observed any significant sensitivity that is caused by a slight change of parameter values.
As a result, one can say that DRL, SSDRL and VAT are all stable algorithms w.r.t. to their parameter
values, at least up to some certain levels.

Figures A.4 and A.5 represent the performance (again in terms of error-rate) over clean examples
from different datasets, and for SSDRL and VAT, respectively. In Figure A.4, different values of γ
have been used for training and the test error-rate is depicted as a function of γ−1. Also, λ is set to
−1 for SSDRL. Apparently, SSDRL (or F-SSDRL), for a particular range of parameters, over-fits
during the training stage on MNIST and as a result its performance is degraded when compared
to that of DRL. However, SSDRL outperforms DRL (its fully-supervised counterpart) on SVHN
and CIFAR-10 datasets. Also, SSDRL and VAT have comparable performances on clean examples,
specifically on SVHN and CIFAR-10 datasets. This observation is in agreement with Table 2.

So far, the performance of SSDRL has been demonstrated w.r.t. its misclassification rate. We have
also provided extensive experimental results on the value of adversarial loss φγ , which are crucial for
the computation of our generalization bound in Section 2.2. Figure A.6 shows the average adversarial
loss, i.e. 1

ntest

∑
i∈test φγ (zi), for different methods and on different datasets. λ is set to −1 for

SSDRL. Again, it should be noted that the adversarial examples used in Figures A.2 and A.6 are
generated via the procedure described in [1]. Figure A.7 is the counterpart of Figure A.6, where the
attack strategy is replaced with Projected-Gradient Method (PGM). As a result, adversarial loss values
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(b) SVHN
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Figure A.3: Comparison of the test error rates on adversarial examples computed by Projected-
Gradient Method (PGM) [2] under `2 norm constraint.
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Figure A.4: Test error rates of distributionally robust learning methods on clean examples. The
solid lines and shaded regions around them represent the mean and standard deviation of results over
multiple random seeds, respectively.

have been depicted as a function of PGM’s strength of attack, i.e. ε. As can be seen, SSDRL (or its
fast version F-SSDRL) are always among the few methods that generate the smallest adversarial loss
values, regardless of the strength of attacks. This means that the proposed method can establish a
reliable certificate of robustness for test samples via Theorem 3. Note that VAT, another method that
performs well in practice in terms of error-rate, does not have any theoretical guarantees.

A.2 Experimental Settings

In this part, we present a detailed description of the experimental settings which have been used for
Section 3. It should be noted that the majority of the settings used for SVHN and CIFAR-10 datasets
follow the same procedure as described in [3].

A.2.1 Real-world Datasets

Three main datasets have been used during the experiments: MNIST, SVHN and CIFAR-10.

• The MNIST dataset consists of 28 × 28 pixel, gray-scale images of handwritten digits
together with their corresponding labels. Each label is a natural number from 0 to 9. The
number of training examples and test examples in the dataset are 60, 000 and 10, 000,
respectively.

• The SVHN dataset consists of 32× 32× 3 pixel RGB images of street view house numbers
with their corresponding labels. Again, labels are natural numbers ranging from 0 to 9. The
number of training and test samples in the dataset are 73, 257 and 26, 032, respectively.
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Figure A.5: Test error rates of VAT on clean examples with different ε. The solid lines and shaded
regions around them represent the mean and standard deviation of results over multiple random seeds,
respectively.
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(b) SVHN
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Figure A.6: Comparison of the average adversarial loss among different methods.

• CIFAR-10 dataset consists of 32×32×3 pixel RGB images of categorized objects, i.e., cars,
trucks, planes, animals, and humans. The number of training examples and test examples
in the dataset are 50, 000 and 10, 000, respectively. For CIFAR-10 dataset, we conducted
Zero-phase Component Analysis (ZCA) as a pre-processing stage prior to the experiments.

A.2.2 Supervision Ratio and Training Data-points

In order to create a dataset (training+testing) for the semi-supervised learning task in the paper, we
selected a subset of size 1, 000 as the labeled dataset from MNIST and SVHN, while the size goes up
to 4, 000 for CIFAR-10. The rest of the samples in the training partition are treated as unlabeled data.
We repeated the experiment three times with different choices of labeled and unlabeled data-points on
all of the three datasets. For MNIST, a mini-batch of size 64 is used for both the labeled and unlabeled
term, and for SVHN and CIFAR-10, a mini-batch of size 32 is used for the calculation of the labeled
term, while a mini-batch of size 128 is employed for the unlabeled term during the implementation
of each method. We trained each model with 50, 000 updates for MNIST and 48, 000 updates for
SVHN and CIFAR10. We have used ADAM optimizer in the training stage. In this regard, the initial
learning rate of ADAM is set to 0.001 and then linearly decayed over the last 10, 000 updates for
MNIST, and the last 16, 000 updates for SVHN and CIFAR-10.

As for the transportation cost function c, we follow the work presented in [1] and thus employed the
following cost function throughout all our experiments:

c(z, z′) = ‖z − z′‖22 +∞ · 1{y 6= y′}, (A.1)

where 1 (·) is an indicator function which returns 1 if its input condition holds and zero, otherwise. It
should be noted that this choice is solely for the sake of simplicity, and as described before, every
valid lower semi-continuous function is a legitimate choice for c.
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Figure A.7: Comparison of the loss on adversarial examples calculated by projected-gradient method
(PGM) [2] under `2 norm constraint.

Also, the pessimism/optimism trade-off parameter λ is always set to−1, except when stated otherwise.
This option yields certain degrees of optimism during the learning stage, which is motivated by the
fact that Deep Neural Networks (DNN) have already proven to work well on all the above-mentioned
three datasets. Thus, trusting the learner to assign soft pseudo-labels to the unlabeled data is somehow
encouraged which in turn indicates a negative value for λ.

A.2.3 Creating Adversarial Examples

To solve the inner maximization problem in (4) and (E.2) for each pair of (X, y) ∈ X × Y , we
simply apply Gradient Ascent with the following update rule:

Xt+1 = Xt + rt∇Xt
[`((Xt, y); θ)− γc ((Xt, y) , (X, y))] , (A.2)

where the initial value X0 is set to X , and the ascent rate is defined as rt ,
κ/γ

(t+1) , where κ is a
hyper-parameter. We set κ to 1.0 for MNIST and CIFAR-10, and 0.5 for SVHN. During the training,
we repeat the update in (A.2) 5 times for both the DRL and SSDRL method. However, we repeat it
15 times during the evaluation.

While generating the adversarial examples via the Projected-Gradient Method (PGM), we applied the
following update rule which is also used in some previous works in this area [1, 2]:

Xt+1 = ProjX,ε

(
Xt + ξ∇Xt`((Xt, y); θ)

)
, (A.3)

where ProjX,ε represents the projection operator to an ε-ball (w.r.t. `2 norm) centered onX . Also, v̄
for an arbitrary vector v denotes its normalized version, which is mathematically defined as v/‖v‖2
under the `2-norm constraint. We have defined the length parameter ξ as ε/ log(T ), where T denotes
the number of iterations of the update (A.3). Accordingly, we set T = 15.

A.2.4 Architecture of Deep Neural Networks

A class of Convolutional Neural Networks (CNN) has been used for the loss function set L =
{` (·; θ) , θ ∈ Θ}. Table 1 shows the CNN models used in our experiments. We use ELU [4] for
the activation function in MNIST, and leakyReLU (lReLU) [5] for SVHN and CIFAR-10. In the
CNNs used for SVHN and CIFAR-10, all the convolutional layers as well as the fully connected (or
equivalently dense) layers are followed by batch normalization [6], except for the fully connected
layer on CIFAR-10. The slopes of all lReLU in the network are set to 0.1.

B Additional Definitions

Additional definitions and/or notations are presented in this section.
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(a) For MNIST

28×28 gray-scale image

4×4 conv. stride 2, 64 ELU
4×4 conv. stride 2, 64 ELU
4×4 conv. stride 2, 64 ELU

global average pool

dense 64→ 10

10-way softmax

(b) For SVHN and CIFAR-10

32×32 RGB image

3×3 conv. 128 lReLU
3×3 conv. 128 lReLU
3×3 conv. 128 lReLU

2×2 max-pool, stride 2
dropout, p = 0.5

3×3 conv. 256 lReLU
3×3 conv. 256 lReLU
3×3 conv. 256 lReLU

2×2 max-pool, stride 2
dropout, p = 0.5

3×3 conv. 512 lReLU
1×1 conv. 256 lReLU
1×1 conv. 128 lReLU

global average pool

dense 128→ 10

10-way softmax

Table 1: CNN models used
in our experiments. The
deep structures that have been
used for SVHN and CIFAR-
10 datasets are different from
the one used for MNIST. The
specifications that correspond
to each structure are inspired
from [3].

Definition B.1 (Wasserstein distance). Assume c : Z × Z → [0,+∞) to be a non-negative and
lower semi-continuous function, where c (z, z) = 0 for all z ∈ Z . Then, the Wasserstein distance
between two distributions P and Q in M (Z) with respect to cost c is defined as:

Wc (P,Q) , inf
µ∈M(Z2)

∫
c (z, z′) dµ (z, z′) (B.1)

subject to µ (·,Z) = P , µ (Z, ·) = Q,

where M
(
Z2
)

represents the set of all couplings between any two random variables supported on Z .
Also, µ (Z, ·) and µ (·,Z) denote the marginals of µ w.r.t. the first and second variables, respectively.

C Minimum Supervision Ratio: Definition and Implications

In this section, we present some complementary discussions with respect to our generalization bound
in Section 2.2. In particular, the mathematical definition and intuitive implications behind one of our
proposed complexity measures, i.e. the Minimum Supervision Ratio, are explained in details.

In order to better understand the intuition behind the proposed optimization programs in (2) or (3), it
is necessary to investigate them under the asymptotic regime of n→∞. In this regard, this section
provides a rigorous mathematical framework to study the semi-supervised learning in general (and its
distributionally robust extension in particular), under the specific problem setting of this paper. We
then provide conditions on the hypothesis set and data-generating distribution, under which unlabeled
data can help the overall learning procedure. Final bounds on the performance improvement through
incorporation of unlabeled samples (which is mostly from the generalization aspect), are given with
mathematical details in Theorem 3 and its proof. In order to achieve the above-mentioned goal, first
let us make the following definition:

Definition C.1. For a feature space X and a finite label set Y , the conditional composition of a
distribution P ∈ M (X × Y) with a conditional distribution Ω ∈ MX (Y) through a supervision
ratio of 0 ≤ η ≤ 1, denoted by comp (P,Ω, η) ∈M (X × Y), is defined as

comp (P,Ω, η) (X, y) , ηP (X, y) + (1− η) Ω (y|X)

∑
y′∈Y

P (X, y′)

 . (C.1)
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It can be easily verified that the following properties hold for the conditional composition distribution
of any two corresponding distributions:

comp (P,Ω, η)X = PX , comp (P,Ω, η)|X = ηP|X + (1− η) Ω|X , (C.2)

where the first relation means: the marginal of the composition distribution w.r.t. X (which is a
measure supported on X ) is the same as that of P , while the second property states that: conditional
distribution over Y (givenX ∈ X ) is a weighted mixture of conditional distributions P|X and Ω|X .

An interesting asymptotic property of a consistent distribution set (see Definition 1) is that, given
both fully and partially-observed samples inD are i.i.d. samples generated from a single arbitrary
distribution P0 ∈M (X × Y), the following relation holds almost surely w.r.t. P0:

lim
n→∞

P̂ (D)
a.s.
=

{
comp

(
P0,Ω, η = lim

n→∞

nl

n

) ∣∣∣∣Ω ∈MX (Y)

}
, (C.3)

where the asymptotic equality in the above relation corresponds to a member-wise convergence
between the two sets. Consequently, rewriting (3) in the asymptotic regime of n→∞ would give us
the following equalities:

lim
n→∞

R̂SSAR (θ;D)
a.s.
= EP0

{
R̂SSAR (θ;D)

}
(C.4)

= ηE(X,y)∼P0
{φγ (X, y; θ)}+ (1− η)EX∼P0X

{
(λ)

softmin
y∈Y

{φγ (X, y; θ)}

}
.

The first term in the r.h.s. of (C.4) is proportional to the true risk which we intend to bound. However,
the second term models the asymptotic effect of unlabeled data for a fixed supervision ratio η. The
main question that we try to answer in this section can be intuitively stated as: under what conditions,
the second term becomes approximately proportional to the true risk as well?

Before investigating the above question in more theoretical details, a closer look at the semi-supervised
adversarial risk R̂SSAR reveals that

∂

∂λ
R̂SSAR (θ;D) ≥ 0. (C.5)

This fact implies that by decreasing λ, one can also decrease R̂SSAR (at least in the majority of
non-trivial scenarios). This issue has been previously mentioned in Section 2, which indicates that
optimism always results in lower empirical risks. But how does this strategy affect the true expected
loss, i.e. EP0

{φγ (Z; θ)}? On the other hand, moving λ toward +∞ guarantees that the learner is
minimizing a legitimate upper-bound of the true risk, i.e. extreme pessimism, however, this also
increases the empirical risk. Again, one could ask is it really necessary to be so pessimistic?

In order to answer the above questions, we introduce a new compatibility measure function for a
function set Φ ⊂ RX×Y and distribution P0, denoted by minimal supervision ratio or MSR(Φ,P0) :
R×R≥0 → [0, 1]. We then show that as long as a particular inequality holds among parameters such
as n, λ and η according to MSR(Φ,P0), one can guarantee minimizing a valid upper-bound for the
true risk, while avoiding the extreme pessimism of [7] (less harm to the empirical risk minimization).
In order to do so, first let us introduce a number of useful additional tools:
Definition C.2. Assume function class Φ ⊆ R(X×Y) and distribution P0 ∈M (X × Y) for a finite
label-set Y . For the ease of notation, let φX , φ (X, ·) ∈ RY for ∀X ∈ X . Then, ρλ (φ) for φ ∈ Φ
and λ ∈ R ∪ {±∞} is defined as

ρλ (φ) , EP0X

{
(λ)

softmin
y∈Y

{φX}

}
− EP0 {φ} . (C.6)

As it becomes evident in the proceeding arguments of this section, the introduced functional in
Definition C.2, i.e. ρλ, plays an important role in determining the relation of expected (or asymptotic)
semi-supervised risk with the true (supervised) one. Mathematically speaking, enforcing ρλ (φ) for
φ = φγ (·; θ) to remain non-negative guarantees that ED∼P0

{
R̂SSAR (θ;D)

}
≥ EP0 {φγ (·; θ)}

for any θ ∈ Θ. This allows us to upper-bound the true risk with the value of R̂SSAR computed for
that particular θ. Surprisingly, this condition can always be satisfied by choosing λ = +∞ (extreme
pessimism). This configuration, in the special non-robust case, coincides with the framework
presented in [7].
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Lemma C.1. For any function set Φ ⊆ R(X×Y) and distribution P0 ∈ M (X × Y), we have
ρ∞ (φ) ≥ 0 for all φ ∈ Φ.

Proof. P0|X is a distribution over Y , thus can be considered as a vector in a simplex, i.e. all
components are non-negative and sum up to one. Then, the lemma’s argument can be justified by the
fact that 〈

φX
∣∣P0|X

〉
≤ max

y∈Y
φX , while

(∞)

softmin
y∈Y

{φX} = max
y∈Y

φX , (C.7)

where 〈·|·〉 denotes the inner product. More precisely, one can write:

ρ∞ (φ) = EP0X

{
(∞)

softmin
y∈Y

{φX}

}
− EP0

{φ}

= EP0X

{
(∞)

softmin
y∈Y

{φX} −
〈
φX
∣∣P0|X

〉}
≥ 0.

The last inequality is a direct result of the fact that inside of the expectation operator is non-negative.
This completes the proof.

However, we are more interested in those cases where λ can be bounded, or even negative, while
ρλ is still non-negative in some regions of Φ. The main problem is that the minimizer of (3) (semi-
supervised empirical risk) must fall in those regions, as well. Otherwise one cannot upper-bound the
true risk by minimizing (3). Mathematically speaking, assume Φ , {φγ (·; θ) : Z → R| θ ∈ Θ} as
described in (3). Then, we are interested to see if there exists a non-empty subset of Φ, say ψ, such
that:

∃ψ ⊆ Φ

∣∣∣∣ argmin
φ∈Φ

R̂SSAR (φ;D) ∈ ψ and ρλ (φ) ≥ 0, ∀φ ∈ ψ. (C.8)

We give a theoretical solution for the non-trivial case of the above-mentioned problem (λ < +∞).
This way, one can still choose small (or generally negative) values of λ, which substantially lower the
empirical loss and improve the generalization bound. The following definitions provide us with more
generalized means to achieve this goal.

Definition C.3. Assume the function set Φ ⊆ R(X×Y), probability distribution P0 ∈ M (X × Y),
and let us define φ∗ = argminφ∈Φ EP0 {φ (X, y)}. Let ψ ⊆ Φ to denote a subset of functions in Φ.
Then, the loss gap functional GAP (ψ), and Γ (ψ;λ) for λ ∈ R ∪ {±∞} w.r.t. P0 and Φ are defined
as

GAP (ψ) , inf
φ∈Φ−ψ

EP0
{φ− φ∗} ≥ 0 , Γ (ψ;λ) , inf

φ∈Φ−ψ
ρλ (φ)− ρλ (φ∗) . (C.9)

For the special case of ψ = Φ, we define GAP (Φ) =∞ and Γ (Φ;λ) = 0, respectively. Also, let us
define Λ : 2Φ → R ∪ {±∞} as

Λ (ψ) , inf
λ∈R∪{±∞}

λ

subject to ρλ (φ) ≥ 0, ∀φ ∈ ψ. (C.10)

All the functionals GAP, Γ and Λ are defined to enable us to capture the properties of a hypothesis
set Φ and a corresponding data distribution P0, inside arbitrary subsets of Φ. Another interesting
attribute is that GAP and Λ are not functions of λ, and correspond to the fundamental features of the
pair (Φ, P0) in a fully-supervised sense. Note that due to Lemma C.1, Λ (ψ) is always well-defined,
since its corresponding feasible set cannot be empty. This way, we can present the most important
definition in this section, which is the key to provide the generalization bounds derived in Theorem 3
for general semi-supervised learning via self-learning.

Definition C.4 (Minimum Supervision Ratio). Assume function set Φ ⊆ R(X×Y) and distribution
P0 ∈M (X × Y) for a feature space X and finite label set Y . Then, the minimum supervision ratio
function, MSR(Φ,P0) : R ∪ {±∞} × R≥0 → [0, 1], is defined as

MSR(Φ,P0) (λ, ζ) , inf
ψ⊆Φ|Λ(ψ)≤λ

h

(
1− GAP (ψ)− ζ

u (−Γ (ψ;λ))

)
, (C.11)
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for λ ∈ R ∪ {±∞} and ζ ≥ 0, where u : R→ R denotes the ramp function, i.e. u (x) = x, x ≥ 0

and 0 otherwise, and h (·) , min {1, u (·)}. Also, let MSR(Φ,P0) (λ, ζ) = 1, in case the feasible set
Λ (ψ) ≤ λ is empty for an input λ.

MSR(Φ,P0) is a learning-theoretic attribute of the pair (Φ, P0), and also a central ingredient of
Theorem 3. It has the following properties: First, MSR(Φ,P0) (λ, ζ) is an increasing function w.r.t. ζ,
and decreasing w.r.t. λ, for all Φ and P0. Second, for all Φ and P0, there exist λ ∈ R ∪ {±∞} and
ζ ≥ 0 such that MSR(Φ,P0) (λ, ζ) = 0 (see Lemma C.2 below).

Lemma C.2 (Compatibility Guarantee). For any function set Φ and a corresponding probability
distribution P0, there exist λ ∈ R ∪ {±∞} and ζ ≥ 0 such that MSR(Φ,P0) (λ, ζ) = 0.

Proof. By simple mathematical manipulations, it can be easily verified that

MSR(Φ,P0) (λ, ζ) = inf
ψ⊆Φ| Λ(ψ)≤λ

h

(
1− GAP (ψ)− ζ

u (−Γ (ψ;λ))

)
= 0,

⇒ ∃λ ∈ R ∪ {±∞}
∣∣∣∣ sup
ψ⊆Φ| Λ(ψ)≤λ

GAP (ψ) + Γ (ψ;λ) ≥ ζ. (C.12)

In this regard, in order to prove the lemma one can alternatively try to show that there exists ζ ≥ 0,
such that

sup
λ∈R∪{±∞}

sup
ψ⊂Φ| Λ(ψ)≤λ

GAP (ψ) + Γ (ψ;λ) ≥ ζ. (C.13)

Note that GAP (ψ) ≥ 0 based on the definition, and for all ψ ⊆ Φ. Moreover, according to
assumption there exist ψ∗ ⊂ Φ, such that GAP (ψ∗) > 0. Let us define Γ∗ as

Γ∗ , sup
λ∈R∪{±∞}

sup
ψ⊆Φ| Λ(ψ)≤λ

Γ (ψ;λ) . (C.14)

It is easy to see that Γ∗ ≥ 0, since ψ = Φ− φ∗ and λ ≥ Λ (Φ− φ∗) lead to Γ (ψ, λ) = 0. The rest
of the proof can be divided into two separate parts, based on the assumptions on the value of Γ∗ w.r.t.
function set Φ, and probability distribution P0. First, assume Γ∗ > 0. Then, it can be easily checked
that there exists ζ > 0, λ ∈ R and ψ ⊂ Φ such that for any η ∈ [0, 1]:

GAP (ψ) + (1− η) Γ (ψ;λ)− ζ ≥ 0. (C.15)

In the second regime, we assume Γ∗ = 0. This very special case indicates a highly incompatible
pair of hypothesis set Φ and distribution P0. In simple words, it means there are functions such
as φinc ∈ Φ, so φinc is highly correlated with label-conditional distribution P0|X , in an expected
sense. Therefore, it produces large expected loss values, while it can easily fool the learner during
the pseudo-labeling procedure (for example, by assigning very small loss values for some irrelevant
labels). In this case, λ = +∞ (which means ψ = Φ) gives us the desired result and completes the
proof.

Based on Definition C.4 and previous discussions, the following theorem bounds the true ex-
pected adversarial risk, i.e. EP0 {φγ (Z; θ)} based on the expected value of the proposed risk

EP0

{
R̂SSAR (θ;D)

}
, for all θ that happen to be in a neighborhood of its minimizer.

Theorem C.1 (Statistical Consistency). Assume the function set Φ , {φγ (·; θ) | θ ∈ Θ} of adver-
sarial loss functions φγ : Z × Θ → R defined in (4), for a feature-label space Z , X × Y , a
parameter space Θ and dual parameter γ ≥ 0. Let P0 ∈ M (X × Y) to be any distribution. Also,
assume θ∗ to be the minimizer of the actual adversarial loss, i.e. θ∗ = argminθ∈Θ EP0 {φγ (Z; θ)}.
Let η ∈ [0, 1] to denote a supervision ratio, and assume ζ ≥ 0 and λ ∈ R ∪ {±∞} such that the
following condition holds:

η ≥ MSR(Φ,P0) (λ, ζ) . (C.16)

Consider a partially labeled datasetD , {(Xi, yi)}ni=1 consisting of n i.i.d. samples drawn from
P0, where labels can be observed with probability of η, independently from each other. Then, there
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exists a neighborhood Θlocal, such that θ∗ ∈ Θlocal ⊆ Θ and all the following relations hold:

argmin
θ∈Θ

EP0

{
R̂SSAR (θ;D)

}
∈ Θlocal,

EP0

{
R̂SSAR (θ;D)− R̂SSAR (θ∗;D)

}
≥ ζ, ∀θ /∈ Θlocal,

and EP0
{φγ (Z; θ)}+ γε ≤ EP0

{
R̂SSAR (θ;D)

}
, ∀θ ∈ Θlocal, (C.17)

where the term γε appears due to the definition of R̂SSAR in Theorem 1.

Proof. Based on the proof of Lemma C.2 and definition of MSR(Φ,P0), it can be easily checked that
the condition η ≥ MSR(Φ,P0) (λ, ζ) implies that:

∃ψ ⊆ Φ

∣∣∣∣ GAP (ψ)− ζ
1− η

+ Γ (ψ;λ) ≥ 0 and ρλ (φ) ≥ 0, ∀φ ∈ ψ. (C.18)

Let φ∗ , φγ (·; θ∗). According to the definition of GAP and Γ in Definition C.3, the first condition
in the above results in the following chain of relations:

ζ ≤ min
φ∈Φ−ψ

EP0
{φ− φ∗}+ (1− η) min

φ∈Φ−ψ
EP0X

{ρλ (φ)− ρλ (φ∗)}

≤ min
φ∈Φ−ψ

{EP0
{φ}+ (1− η) ρλ (φ)} − {EP0

{φ∗} − (1− η) ρλ (φ∗)}

= min
φ∈Φ−ψ

EP0

{
ηφ+ (1− η)

(λ)

softmin
y∈Y

{φX}

}
− EP0

{
ηφ∗ + (1− η)

(λ)

softmin
y∈Y

{φ∗X}

}
= min
θ∈Θ−Θlocal

EP0

{
R̂SSAR (θ;D)

}
− EP0

{
R̂SSAR (θ∗;D)

}
, (C.19)

where Θlocal denotes the subset of parameter space Θ that corresponds to function subset ψ. This
proves the first two arguments of the Theorem. Note that the first argument can be directly deduced
from the second one, and we have only written it separately for the sake of emphasis and clarity.
The third argument can also be directly deduced from the fact that Λ (ψ) ≤ λ. Note that based on
Definition C.3 and for all φ ∈ ψ (or equivalently θ ∈ Θlocal), we have ρΛ(ψ) (φ) ≥ 0. Therefore:

(1− η) ρΛ(ψ) (φ) = (1− η)EP0X

{
(Λ(ψ))

softmin
y∈Y

{φX} − EP0|X
{φX}

}

= (1− η)EP0X

{
(Λ(ψ))

softmin
y∈Y

{φX}

}
− (1− η)EP0 {φ}

= ηEP0 {φ}+ (1− η)EP0X

{
(Λ(ψ))

softmin
y∈Y

{φX}

}
− EP0 {φ}

= EP0

{
R̂SSAR (θ;D)

}
− EP0

{φγ (Z; θ)} − γε ≥ 0. (C.20)

Taking into account the fact that softmin
(λ)
y∈Y (·) is an increasing function w.r.t. λ leads to the third

argument, and thus completes the proof.

Theorem C.1 provides a mathematical foundation for establishing a general learning-theoretic bound
on the generalization aspect of self-learning paradigm, that can be applied to our distributionally
robust setting as well. Intuitively, it states that for good choices of the pair (η, λ), one can guarantee
the following two outcomes:

First, the minimizer of the expected proposed loss happens to be in a neighborhood of the true
minimizer, i.e. argminθ∈Θ supP∈Bε(P0) EP {` (Z; θ)}. Also, a positive margin ζ > 0 can be
considered which puts a gap between the minimum value of the proposed expected loss and those
that fall outside of this neighborhood. This margin will be extremely helpful when we are dealing
with empirical risks instead of the statistical ones (see the proof of Theorem 3).
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Second, all over the above-mentioned neighborhood, RSSAR provides an upper-bound on the true
expected loss. In this regard, as long as a minimum level of pessimism is considered with respect to
the compatibility of the hypothesis set and distribution duo, i.e. λ ≥ Λ (ψ), it can be guaranteed that
the self-learning module does not overfit and assigns meaningful labels to the unlabeled data.

From a more practical perspective, the mathematical formulation of MSR function in Definition
C.4 may seem too implicit to be applicable in real-world problems. To show the usefulness of
this measure, Lemma C.3 analytically computes MSR(Φ,P0) for any pair (Φ, P0) that satisfies a
strong cluster assumption. In particular, we show that by using Definition C.4 followed by some
simple algebra, one can reattain a previously established generalization bound for the case of cluster
assumption.

Lemma C.3. Assume Φ ⊆ RX and data distribution P0 ∈ M (X × Y) that satisfies a strong
cluster assumption. Therefore, P0 is a mixture of two distributions with non-overlapping supports
over X , where mixture components only correspond to y = −1 and y = +1, respectively. Let
Φ be associated to a family of binary classifiers, where for each φ ∈ Φ we have φ (X, y) =
∞·φacc (X, y) +φmar (X). In this regard, φacc ∈ {0, 1} checks if the label y matches withX w.r.t.
φ, and φmar (X) ∈ R penalizes the margin ofX , i.e. distance ofX from the classifier’s boundary.
Then, for a sufficiently small ζ > 0, we have MSR(Φ,P0) (λ, ζ) = 0 for any λ ∈ R ∪ ±∞.

Proof. Let ψ ⊆ Φ be a subset of classifiers that classify all the data samples correctly, i.e.

∀φ ∈ ψ ⇒ EP0
{φacc} = 0.

However, classifiers in ψ may have different expected margins. Also, assume the optimal classifier or
equivalently the minimizer of empirical risk minimization, denoted by φ∗, is also inside ψ. Then,
some simple calculations reveal that for every φ ∈ ψ and any λ we have ρλ (φ) = 0 which means
Λ (ψ) = −∞. Also, we have Γ (ψ;λ) ≥ 0, again for any λ, while GAP (ψ) is strictly positive for
any non-trivial choice of Φ. The latter is due to the fact that φ∗ ∈ ψ.

As long as Φ is assumed to be a learnable family of binary classifiers with a bounded VC-dimension,
we have R(SSM)

n,(ε,η) (Φ) = O
(
n−1/2

)
due to Lemma E.3. Recalling the generalization bound of

Theorem 3, this alternatively means that we can have ζ = O
(
n−1/2

)
. Then, for a sufficiently large n,

MSRΦ,P0

(
λ,O

(
n−1/2

))
becomes zero for any λ ∈ R ∪ ±∞. This result is in full agreement with

the previous bounds that are specifically derived for generic learnability of statistical models when
the strong (non-overlapping) form of cluster assumption holds. Note that for absolute learnability, at
least one data point with a label is needed to decide which cluster is which.

This result indicates that for a fairly large n, the generalization bound of Theorem 3 holds for any
supervision ratio, as long as there exists only one labeled sample. As it is evident from the proof of
Lemma C.3, this generalization bound has been achieved with far less effort compared to the previous
studies on this particular problem. This also suggests that many existing theoretical frameworks in
semi-supervised learning can be potentially considered as special cases of the proposed setting.

D Auxiliary Theorems and Proofs

Proof of Theorem 1. The proof proceeds by the substitution of original proposed semi-supervised
problem in (2) by its dual form. This way, we can take advantage of the good mathematical properties
that this dual form can provide, specially w.r.t. maximization over P ∈ Bε (S). The following lemma
(see Theorem 1 and Remark 1 of [8]), formulates the dual form:

Lemma D.1 (Lagrangian Relaxation and Duality). Assume Z to be a sample space and let Θ to
denote the space of parameters. Let loss function ` : Z ×Θ→ R≥0 and function c : Z ×Z → R≥0

to be continuous, and further assume c is lower semi-continuous and c (z, z) = 0, ∀z ∈ Z . Then,
for any ε ≥ 0 and any distribution Q ∈M (Z), the following equality holds for all θ ∈ Θ:

sup
P∈Bε(Q)

EP {` (Z; θ)} = inf
γ≥0

{
γε+ EQ

{
sup
z′∈Z

` (z′; θ)− γc (z′,Z)

}}
. (D.1)
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Proof is explained in details in the original reference. Based on the duality equation in Lemma D.1,
the following chain of relations hold:

inf
S∈P̂(D)

(
sup

P∈Bε(S)

EP {` (X, y; θ)}+
1

λ

(nul

n

)
ÊDul

{
H
(
S|X

)})
(D.2)

= inf
S∈P̂(D)

[
inf
γ≥0

(
γε+ ES

{
sup
z′∈Z

` (z′; θ)− γc (z′,Z)

})
+

1

λ

(nul

n

)
ÊDul

{
H
(
S|X

)}]
= inf

γ≥0

[
γε+ inf

S∈P̂(D)

(
ES
{

sup
z′∈Z

` (z′; θ)− γc (z′, (X, y))

}
+

1

λ

(nul

n

)
ÊDul

{
H
(
S|X

)})]

= inf
γ≥0

[
γε+

(nl

n

) 1

nl

∑
i∈Il

(
sup
z′∈Z

` (z′; θ)− γc (z′, (Xi, yi))

)

+
(nul

n

) 1

nul

∑
i∈Iul

inf
Ω∈M(Y)

(
EΩ

{
sup
z′∈Z

` (z′; θ)− γc (z′, (Xi, y))

}
+

1

λ
H (Ω)

)]
,

where the last inequality is a direct result of defining P̂ (D) in Definition 1. Therefore, each
S ∈ P̂ (D) can be regarded as a weighted (with weights nl/n and nul/n, respectively) mixture
of PDl

, i.e. delta-spikes over the labeled samples, and PDul
Ω̃, i.e. the same for unlabeled feature

vectors which are multiplied by arbitrary conditional distributions of the form Ω ∈ MX (Y). The
two summations above which are over labeled and unlabeled samples, respectively, correspond to
this bi-mixture formalism. Thus, the chain of relations in (D.2) can be continued as

= inf
γ≥0

γε+
1

n

∑
i∈Il

φγ (Xi, yi|θ) +
1

n

∑
i∈Iul

 inf
Ω∈M(Y)

∑
y∈Y

Ωyφγ (Xi, y; θ) +
1

λ
H (Ω)


= inf

γ≥0

[
γε+

1

n

∑
i∈Il

φγ (Xi, yi; θ) +
1

n

∑
i∈Iul

(λ)

softmin
y∈Y

{φγ (Xi, y; θ)}

]
+ const, (D.3)

where const deos not depend on γ or θ, and the last equality is due to the following lemma:

Lemma D.2. Assume an arbitrary vector b ∈ Rd for d ∈ N, and also let F , {1, . . . , d}. Then the
following relation holds for all λ ∈ R ∪ {±∞}:

(λ)

softmin
i∈F

(b1, . . . , bd) = inf
q∈M(F)

qT b+
1

λ
H (q)− 1

λ
log d, (D.4)

where H (·) denotes the Shannon entropy of distribution q over F .

Proof. The main idea is to replace the term qT b with

qT b =
∑
i∈F

qibi =
1

λ

∑
i∈F

qi log eλbi . (D.5)

Also, note that 1
λH (q)− 1

λ log d = −1
λ DKL (q‖U), where DKL is the Kullback–Leibler divergence

between two probability measures and U ∈M (F) denotes the uniform measure on F . As a result,
the overall objective function can be rewritten as

qT b− 1

λ
DKL (q‖U)

= − 1

λ
DKL (q‖U) +

1

λ

∑
i∈F

qi log eλbi

= − 1

λ

∑
i∈F

qi log (dqi) +
1

λ

∑
i∈F

qi log eλbi

= − 1

λ

∑
i∈F

qi log

(
qi

1
de
λbi

)
= − 1

λ

∑
i∈F

qi log

(
qi

α
d e
λbi

)
− 1

λ
logα,
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for all α > 0. Then, it can be readily verified that by setting α−1 , 1
d

∑
i∈F e

λbi , the optimization
problem in lemma becomes

inf
q∈M(F)

− 1

λ
DKL

(
qi
∥∥α
d
eλbi

)
+

1

λ
log

(
1

d

∑
i∈F

eλbi

)
, (D.6)

whose solution always happens to be q∗i = α
d e
−bi/λ, regardless of the sign of λ. Therefore, the

solution of the primary optimization problem in lemma would be

1

λ
log

(
1

d

∑
i∈F

eλbi

)
=

(λ)

softmin
i∈F

(b1, . . . , bd) , (D.7)

which completes the proof.

According to the duality relation between γ and ε, the minimization over γ is not necessary in almost
all practical situations, where the same methodologies for evaluating a practically good value for ε,
such as cross-validation, can be used for γ as well.

Proof of Theorem 2. The proof is based on a number of techniques used in [9], and can be considered
as a generalization of Theorem 2 of [1] for the semi-supervised settings. Similarly, let us define the
following set of Lipschitz constants, based on the smoothness constraints assumed in Theorem 2:
‖∇θ` (z; θ)−∇θ` (z; θ′)‖∗ ≤ Lθθ ‖θ − θ

′‖ , ‖∇θ` (z; θ)−∇θ` (z′; θ)‖∗ ≤ Lθz ‖z − z
′‖ ,

‖∇z` (z; θ)−∇z` (z; θ′)‖∗ ≤ Lzθ ‖θ − θ
′‖ , ‖∇z` (z; θ)−∇z` (z′; θ)‖∗ ≤ Lzz ‖z − z

′‖ ,
where {Lθθ, Lθz, Lzθ, Lzz} are a set of Lipschitz constants, ‖·‖ can be any valid norm (generally
different norms should be used for Z and Θ) and ‖·‖∗ denotes the corresponding dual norm(s). Also,
the inequalities should hold for all z, z′ ∈ Z and all θ, θ′ ∈ Θ.

In our case, i.e. a semi-supervised setting, one also needs to show that ∇θ softmin
(λ)
y∈Y {φγ (z; ·)}

is Lipschitz with respect to θ, for all z ∈ Z . Before that, Lemma D.3 shows that under the above-
mentioned constraints on the Lipschitz-ness of gradients of `, φγ (z; θ) also has Lipschitz gradients.

Lemma D.3. Assume ` : Z × Θ → R≥0 is smooth and universally differentiable w.r.t. its input
arguments. Also assume ` has Lipschitz gradients with constants {Lθθ, Lθz, Lzθ, Lzz}, for any fixed
norm ‖·‖. Also, assume a transportation cost c, which has the properties of Lemma E.1. Then, the
following Lipschit-ness property holds for gradients of φγ (z; θ) = supz′∈Z ` (z′; θ)− γc (z′, z):

‖∇θφγ (z; θ)−∇θφγ (z; θ′)‖∗ ≤
(
Lθθ +

LzθLθz
γ − Lzz

)
‖θ − θ′‖ , ∀θ, θ′ ∈ Θ, (D.8)

for all γ > Lzz .

For proof of Lemma D.3, see Lemma 1 of [1]. Based on this result, the following lemma provides
Lipschitz constants for the softmin operator over a finite number of φγ (·; ·) functions, for any λ ∈ R.

Lemma D.4. For a feature-label space Z = X × Y , assume loss function ` : Z × Θ → R≥0,
transportation cost c and the resulting adversarial loss φγ (·; ·) : Z × Θ → R with γ > Lzz ,
such that all satisfy the constraints of Lemma D.3. Also, assume there exists σ ≥ 0 such that
‖∇θ` (z; θ)‖ ≤ σ for all θ ∈ Θ. Then, for all λ ∈ R, the following Lipschitz-ness property holds:∥∥∥∥∥∇θ (λ)

softmin
y∈Y

{φγ (Z; θ)} − ∇θ
(λ)

softmin
y∈Y

{φγ (Z; θ′)}

∥∥∥∥∥
∗

≤
(
Lθθ +

LzθLθz
γ − Lzz

+ 2σ2|λ| |Y|
)
‖θ − θ′‖ ,

(D.9)
for all Z ∈ Z and θ, θ′ ∈ Θ.

In order to avoid discontinuity in the proof, the proof of Lemma D.4 is presented in Appendix
E instead of here. Also, let B , 1

2

(
Lθθ + LzθLθz

γ−Lzz

)
, where B represents one of the constants

mentioned in Theorem 2.

The last lemma which is needed to finalize the proof of Theorem 2 aims to bound the maximum
discrepancy that one might observe, given that the inner maximization in (E.2) (corresponds to line 6
of Algorithm 1) is solved up to an approximation error of δ > 0.
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Lemma D.5. Assume ẑ∗ ∈ Z to be a δ-approximate maximizer of (E.2) for the input z0 ∈ Z , loss
function `, and transportation cost c. Let the consequent adversarial loss function φγ to satisfy all
the constraints mentioned in Lemma D.3 in addition to γ > Lzz . Then, the following upper-bound
holds for all z0 ∈ Z:

‖∇θφγ (z0; θ)−∇θ` (ẑ∗; θ)‖2∗ ≤
LzθLθz
γ − Lzz

δ. (D.10)

Proof of Lemma D.5 is given in Appendix E. Also, Let C , LzθLθz
γ−Lzz , recalling C as another constant

mentioned in Theorem 2.

Algorithm 1 for a mini-batch size of k = 1 picks one data-point randomly fromD at each iteration.
Also, data points atD are assumed to be drawn independently from an unknown but fixed distribution
P0. Therefore, one can consider a two-step data generation model in order to analyze the semi-
supervised stochastic gradient descent as follows:

• O (Observation step): Draw a bi-categorical random variable (denoted as observation
variable) h ∈ H , {l,ul}, with probabilities nl/n and nul/n for labeled and unlabeled
categories, respectively.

• G (Generation step): Conditioned on h, draw a sample from P0 if h = l, and from P0,X if
h = ul.

Consider a coupled first-order Markov stochastic process defined as (h0, θ0) , . . . , (hT , θT ), where
his denote the observation variables and θis are the consequent outputs of Algorithm 1 after T
iterations. Here, θ0 can have any initial distribution over Θ. Using the techniques reviewed in [9]
(also similar to Theorem 2 of [1]), the following result holds for for 1 < t ≤ T :

EG
{
R̂SSAR (θt+1;D)− R̂SSAR (θt;D)

∣∣θt, ht} ≤− α(1

2
− αLht

)∥∥∥∇θR̂SSAR

(
θt|D

)∥∥∥2

2

+
1

2

(
α+ 5α2Lht

)
Cδ +

1

2
α2σ2Lht ,

(D.11)

where EG refers to expectation w.r.t. the randomness of dataset D, and given that the information
about each sample is labeled or not is known. Also, Lh ∈ RH≥0 denotes the Lipschitz constants for
the gradients (w.r.t. θ ∈ Θ) of the loss summands in (3). Based on Lemma D.4, we have

Lh ≤
{

2
(
B + σ2|λ| |Y|

)
h = ul

2B h = l
. (D.12)

Now, it should be noted that Etotal {·} = EO {EG {·|h ∈ H}}, where Etotal denotes the total
expectation which is w.r.t. the dataset D whose samples are drawn i.i.d. from P0 and also the
randomness of SGD used in Algorithm 1. Also, due to the independence assumption on observing
each label with probability η, we have

EO {Lht} = 2
(
B + η̄σ2|λ| |Y|

)
,∀t. (D.13)

Combining the above arguments with (D.11) directly leads us to the claims in Theorem 2 and
completes the proof.

Theorem D.1 (Convergence of hard decisions, λ = ±∞). Consider the setting described in Theorem
2, where ` is twice differentiable w.r.t. θ all over Z×Θ. Assume one sets λ = +∞ or λ = −∞. Also,
assume step-size α and approximation interval δ in Algorithm 1 can change during the iterations.
Then, there exist a sequence of step-sizes α1, α2, . . . and a sequence of approximation intervals
δ1, δ2, . . . for which Algorithm 1 converges to a local minimizer of R̂SSAR (θ;D), as T →∞ where
T is the number of iterations.

Proof. Problem setting for λ = +∞ results into a minimax problem, i.e. minimizing over θ ∈ Θ
while maximizing over yi ∈ Y, i ∈ Iul for any given θ. Thus, the solution is a local saddle point
in Θ × Y |Iul|. Convergence of combinatoric optimization schemes for such problems are already
established (see [7] and [10]), and we avoid to repeat them here.
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For the case of λ = −∞, we show that by choosing sufficiently small values for αi and δi for
i = 1, 2, . . ., the objective of the optimization always decreases, and thus convergence to a stable
point is guaranteed. First, let us define

y∗i (θ) , argmin
y∈Y

φγ (Xi, y; θ) , (D.14)

for i ∈ Iul. Whenever there are more than one minimizers, one of them is chosen at random. Assume
iteration steps ts and tf (with ts ≤ tf ), such that y∗i (θt) for ts ≤ t ≤ tf does not change for any
i ∈ Iul. Then, Algorithm 1 for this period acts exactly like a fully-supervised Stochastic Gradient
Descent method on the dataset {(Xi, yi) , i ∈ Il} ∪ {(Xi, y

∗
i (θt)) , i ∈ Iul}. Consider the set of

Lipschitz constants from Theorem 2 (refer to its proof in Appendix D), i.e. {Lθθ, Lθz, Lzθ, Lzz}.
Let

δt ≤
γ − Lzz

2nLθzLzθ
min

i=1,2,...,n
‖∇θφγ (Zi; θt−1)‖2 , (D.15)

where Zi = (Xi, yi) , i ∈ Il and Zi = (Xi, y
∗
i (θt)) , i ∈ Iul. Also assume

αt ≤ min
i=1,2,...,n

inf
θ∈Θ

4

9

∣∣λ−1
max

{
∇2
θθφγ (Zi; θ)

}∣∣ , (D.16)

where ∇2
θθ indicates the Hessian matrix operator, and λmax {·} extracts the maximum eigenvalue.

Then, it can be easily checked that φγ (Zi; θt) ≤ φγ (Zi; θt−1) for all i = 1, 2, . . . , n. This result is
due to the fact that for any twice differentiable function f : Rd → R, with x,v ∈ Rd and d ∈ N, we
have

f (x+ v)− f (x) = vT∇f (x) +
1

2
vT∇2f (x̃)v, (D.17)

with x̃ ∈ {x+ µv| 0 ≤ µ ≤ 1}. Also, based on Lemma D.5 and given the condition on δt, we have

∆ ,

∥∥∥∂̂θR̂SSAR (θt−1;D)− ∂∗θ R̂SSAR (θt−1;D)
∥∥∥

2∥∥∥∂∗θ R̂SSAR (θt−1;D)
∥∥∥

2

≤ 1

2
, (D.18)

where ∂̂θR̂SSAR (θt−1;D) represents the sub-gradient of R̂SSAR (θt−1;D) with the inexact solution
of (E.2) (a δt-approximate solution), while ∂∗θ R̂SSAR (θt−1;D) denotes the exact sub-gradient
corresponding to the same data point chosen for iteration t. This result holds regardless of the
randomness of Algorithm 1 in choosing a sample for computing the sub-gradient. Using (D.17), it
can be easily checked that

R̂SSAR (θt;D)− R̂SSAR (θt−1;D) ≤∥∥∥∂∗θ R̂SSAR (θt−1;D)
∥∥∥2

2

(
−αt (1−∆) +

α2
t

2

∣∣∣λmax

{
∇2
θθφγ

(
Z

(t)
chosen; θ̃

)}∣∣∣ (1 + ∆)
2

)
,

(D.19)

where Z(t)
chosen represents that particular Zi, i = 1, 2, . . . , n that is chosen for computing the sub-

gradient at interation ts ≤ t ≤ tf . Also, we have θ̃ ∈ {µθt−1 + (1− µ) θt| 0 ≤ µ ≤ 1}. It is
straightforward to check that due to the mentioned condition on αt, we have

R̂SSAR

(
θtf ;D

)
≤ R̂SSAR (θts ;D) . (D.20)

On the other hand, while transitioning from the tf th to (tf + 1)th iteration, where at least one y∗i (θ)
changes by assumption, again we have

R̂SSAR

(
θtf+1;D

)
≤ R̂SSAR

(
θtf ;D

)
, (D.21)

due to the definition of y∗i
(
θtf+1

)
for i ∈ Iul. This way, Algorithm 1 never increases the optimization

objective and convergence to a stable point is guaranteed as T →∞.

Obviously, the arguments of Theorem D.1 still hold for δ = 0. However, it is not practical since
(E.2) cannot be solved with an infinitesimally small error in reality. On the other hand, giving a
convergence rate for the two scenarios considered in this theorem, i.e. λ = ±∞, falls out of the scope
of this paper. A trivial upper-bound on the number of iterations increases exponentially w.r.t. the
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number of unlabeled samples nul, which is based on the worst-case assumption that the combinatoric
part of the optimization walks through all the possible labels for the unlabeled data. However, [11]
has experimentally shown that the convergence rate (at least for a class of similar problems) is much
faster. It should be noted that solving for the exact convergence rate of Theorem D.1 is equivalent to
assessing the convergence rate of self-training, which (to the best of our knowledge) is still an open
area of research.

Theorem D.2 (Convexity). Assume the setting of Theorem 2 with Θ ⊆ Rd, for some d ∈ N. Let the
loss function ` : Z ×Θ→ R≥0 to be twice differentiable and strictly convex with respect to θ, for all
(z, θ) ∈ Z ×Θ. Also, assume λ satisfies the following property

λ ≥ − inf
(z,θ)∈Z×Θ

λmin

{
∇2
θθφγ (z; θ)

}
σ2
(

1− |Y|−1
) , (D.22)

where∇2
θθ is the Hessian matrix operator w.r.t. θ, and λmin {·} : Rd×d → R denotes the minimum

eigenvalue operator. Then, the optimization programs in (2) and (3) w.r.t. θ are convex.

Proof. For z0 ∈ Z , let us define the function fz0
(θ,z) : Θ×Z → R as

fz0
(θ,z) , ` (z; θ)− γc (z, z0) , (D.23)

then we have φγ (z0; θ) = maxz fz0
(θ,z). Since f is twice differentiable and convex w.r.t. θ, φγ

also shares these two properties based on Danskin’s theorem [12]. Thus, the d× d hessian matrix
∇2
θθφγ is well-defined and positive definite for all (z0, θ) ∈ Z ×Θ.

By looking at (3), the first summation over labeled samples, i.e. i ∈ Il, is again a convex function
w.r.t. θ. However, the second summand might not be convex due to the usage of softmin. Therefore,
it is sufficient to provide conditions under which softmin

(λ)
y∈Y {φγ} becomes convex for all θ ∈ Θ.

This will also prove the convexity of (3). Obviously, each softmin summand in the equation is twice
differentiable and hence, for anyX ∈ X , we have

∇2
θθ

(
(λ)

softmin
y∈Y

{φγ (X, y; θ)}

)
= ∇θ

∑
y∈Y

βy (θ)∇θφγ (X, y; θ)

 (D.24)

=
∑
y∈Y

(
βy (θ)∇2

θθφγ (X, y; θ) +∇θβy (θ)∇Tθ φγ (X, y; θ)
)
,

where βy (θ) (with 0 ≤ βy (θ) ≤ 1 for y ∈ Y and θ ∈ Θ) is defined as

βy (θ) ,
eλφγ(X,y;θ)∑

y′∈Y e
λφγ(X,y′;θ)

, and we have
∑
y∈Y

βy (θ) = 1. (D.25)

Some mathematical simplifications reveal that

∇θβy (θ) = λβy (θ) (1− βy (θ))∇θφγ (X, y; θ) , (D.26)

and as a result we have the following formula for the Hessian matrix of each softmin summand:

∇2
θθ

(
(λ)

softmin
y∈Y

{φγ (X, y; θ)}

)
=
∑
y∈Y

βy (θ)∇2
θθφγ (X, y; θ) (D.27)

+λ
∑
y∈Y

βy (θ) (1− βy (θ))∇θφγ (X, y; θ)∇Tθ φγ (X, y; θ) .

Note that for each y ∈ Y , the d × d matrix ∇θφγ (X, y; θ)∇Tθ φγ (X, y; θ) is rank-one, positive
semi-definite and its only non-zero eigenvalue equals to ‖∇θφγ (X, y; θ)‖22 ≤ σ2. Therefore, the
matrix corresponding to the second summand in the r.h.s. of (D.27) is negative semi-definite only if
λ < 0. In this case, i.e. having a negative λ, the following upper-bound holds for the magnitude of its
largest eigenvalue:

≤ σ2|λ| max
β∈M(Y)

βT (1− β) = σ2|λ|
(

1− |Y|−1
)
. (D.28)
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On the other hand, the first summand in the r.h.s. of (D.27) is always positive definite and (since
βy (θ)s sum up to 1) its smallest eigenvalue satisfies the following lower-bound:

≥ inf
(z,θ)∈Z×Θ

λmin

{
∇2
θθφγ (z|θ)

}
. (D.29)

Therefore, as long as i) λ is non-negative, or ii) the upper-bound in (D.28) is strictly smaller
than the lower-bound in (D.29), which is the condition of the Theorem on λ, the Hessian of
softmin

(λ)
y∈Y {φγ (X, y; θ)} remains positive definite for all z ∈ Z and θ ∈ Θ, and the proof is

complete.

Note that due to assuming strict convexity and twice differentiability for `, ∇2
θθφγ is universally

positive-definite and hence, the r.h.s. of (D.22) is negative. This argument is a direct consequence
of Danskin’s theorem. However, there are no general ways to directly relate eigenvalues of∇2

θθ` to
those of∇2

θθφγ , since such relations extremely depend on the properties of function `.

Proof of Theorem 3. We prove the Theorem in two steps. In the first step, we show that the empirical
value of the proposed semi-supervised adversarial risk, i.e. R̂SSAR (θ;D), uniformly converges to
its expected value all over Θ. In the second step, we use the asymptotic results of Theorem C.1 to
finalize the bounds. For the first step, a similar technique to the ones used in classical learning theory,
e.g. [13], is employed. In this regard, let the random variable J (D) to be defined as

J (D) , sup
θ∈Θ

∣∣∣R̂SSAR (θ;D)− EP0

{
R̂SSAR (θ;D)

}∣∣∣ . (D.30)

On the other hand, we have |φγ (z; θ)| ≤ B, for all z ∈ Z and θ ∈ Θ. This can be deduced from the
definition of adversarial loss φγ as follows:

φγ (z; θ) , sup
z′∈Z

` (z′; θ)− γc (z′, z) ≤ sup
z′∈Z

` (z′; θ) ≤ B,

φγ (z; θ) ≥ ` (z; θ)− γc (z, z) = ` (z; θ) ≥ −B. (D.31)

Also, note that ∣∣∣∣∣ (λ)

softmin
y∈Y

{φγ (X, y; θ)}

∣∣∣∣∣ ≤ B, ∀λ ∈ R ∪ {±∞} , (D.32)

for all X ∈ X and θ ∈ Θ. Now, assume the two partially observed data sets D and D′, both with
size n, where the only difference between them is a single data point. Then, it can be readily deduced
that ∣∣∣R̂SSAR (θ;D)− R̂SSAR

(
θ;D′

)∣∣∣ ≤ 2B

n
⇒

∣∣J (D)− J
(
D′
)∣∣ ≤ 2B

n
. (D.33)

In this regard, one can use the McDiarmid’s inequality and show that: For all 0 < δ ≤ 1, with
probability at least 1− δ, the following inequality holds:

J (D) ≤ EP0 {J (D)}+B

√
2

n
log

1

δ
, (D.34)

which also implies that the following uniform upper-bound exists for all θ ∈ Θ:∣∣∣R̂SSAR (θ;D)− EP0

{
R̂SSAR (θ;D)

}∣∣∣ ≤ EP0
{J (D)}+B

√
2

n
log

1

δ
. (D.35)

The term EP0
{J (D)} does not depend on the randomness of the chosen dataset and is a function

of the hypothesis set L (or more precisely, its adversarial counterpart Φ), and distribution P0. It
plays the role of Rademacher complexity in classical learning theory. In order to express this term
in a more intuitive formulation, first let us introduce the function f (z, h; θ) for z = (X, y) and
h ∈ H , {l,ul} as follows:

f (z, h; θ) ,

{
φγ (X, y; θ) h = l

softmin
(λ)
y∈Y {φγ (X, y; θ)} h = ul

, (D.36)
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where the rest of parameters are omitted from the input arguments of f for the sake of simplicity in
notation. It should be noted that we can write:
ED∼P0 {·} = Eh1,...,hn∈H {Ez1,...,zn∼P0 {·}} ⇒ EP0

{
R̂SSAR (θ;D)

}
= Eh {Ez {f (z, h; θ)}}

(D.37)
where h1, . . . , hn are i.i.d. bi-categorical random variables inH, with probabilities of η and 1− η
for h = l and h = ul, respectively. Then, Similar to [13], one can write the following set of relations:

EP0 {J (D)} = ED∼P0

{
sup
θ∈Θ

∣∣∣R̂SSAR (θ;D)− ED′∼P0

{
R̂SSAR

(
θ;D′

)}∣∣∣}
= ED∼P0

{
sup
θ∈Θ

∣∣∣ED′∼P0

{
R̂SSAR (θ;D)− R̂SSAR

(
θ;D′

)}∣∣∣}
≤ ED,D′∼P0

{
sup
θ∈Θ

∣∣∣R̂SSAR (θ;D)− R̂SSAR

(
θ;D′

)∣∣∣}
= Eh1:n,h′1:n∈H

{
Ez1:n,z′1:n∼P0

{
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

f (zi, hi; θ)− f (z′i, h
′
i; θ)

∣∣∣∣∣
}}

= Eh1:n,h′1:n∈H

{
Ez1:n,z′1:n∼P0, σ

{
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

σi (f (zi, hi; θ)− f (z′i, h
′
i; θ))

∣∣∣∣∣
}}

≤ 2Eh1:n∈H

{
Ez1:n∼P0, σ

{
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

σif (zi, hi; θ)

∣∣∣∣∣
}}

, (D.38)

where σ ∈ {−1,+1}n represents a vector of n i.i.d. Rademacher random variables. Based on this
result and its preceding discussions, one can write:

1

2
EP0
{J (D)} = ηEz1:nη∼P0, σ

{
sup
θ∈Θ

1

nη

nη∑
i=1

σiφγ (zi; θ)

}
(D.39)

+ (1− η)EX1:n(1−η)∼P0X
, σ

sup
θ∈Θ

1

n (1− η)

n(1−η)∑
i=1

σi
(λ)

softmin
y∈Y

{φγ (Xi, y; θ)}

 .

The first term in the r.h.s. of (D.39) can be more analytically investigated. In order to do so, let us
define the ε-neighborhood around z0 as Nε (z0) , {z ∈ Z|c (z, z0) ≤ ε}, for ε ≥ 0. Then, there
exists ε ≥ 0 such that

Ez1:n∼P0, σ

{
sup
θ∈Θ

1

n

n∑
i=1

σiφγ (zi; θ)

}
= Ez1:n∼P0, σ

{
sup
θ∈Θ

1

n

n∑
i=1

σi sup
z′i∈Z

` (z′i; θ)− γc (z′i, zi)

}

= Ez1:n∼P0, σ

{
sup
θ∈Θ

1

n

n∑
i=1

σi

[
sup

z′i∈Nε(zi)
` (z′i; θ)− γε

]}

= Ez1:n∼P0, σ

{
sup
θ∈Θ

1

n

n∑
i=1

σi sup
z′i∈Nε(zi)

` (z′i; θ)

}
= gl (n) , (D.40)

where gl (n) can be found in Definition 2, with the function set F representing the loss function set L
in the above relations. For the second term on the r.h.s. of (D.39), the following inequality holds for
all λ ∈ R ∪ {±∞}:

EX1:n,...,Xn∼P0X
, σ

{
sup
θ∈Θ

1

n

n∑
i=1

σi
(λ)

softmin
y∈Y

{φγ (Xi, y; θ)}

}

≤ EX1:n∼P0X
, σ

{(
Πy∈Y sup

θy∈Θ

)
1

n

n∑
i=1

σi
(λ)

softmin
y∈Y

{φγ (Xi, y; θy)}

}

≤
∑
y∈Y

Ez1:n∼(P0X
δy), σ

{
sup
θ∈Θ

1

n

n∑
i=1

σi sup
z′i∈Nε(zi)

` (z′i; θ)

}
= gul (n) . (D.41)
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The last two inequalities above are the results of Lemma D.6 (see below), and Definition 2, respec-
tively. The following lemma helps us to resolve the presence of softmin operator in the formulation
of EP0 {J (D)}.
Lemma D.6. Assume the function sets Fj ⊆ RZ , j = 1, . . . , d, where Z denotes a vector domain
and d ∈ N. Also, assume σ = (σ1, . . . , σd) to be a vector of i.i.d. Rademacher variables, and
Z = {z1, . . . ,zn} are i.i.d. generated data points in domain Z , according to some probability
measure. Then, the following upper-bound holds for all λ ∈ R ∪ {±∞}:

EZ,σ


 d∏
j=1

sup
fj∈Fj

 1

n

n∑
i=1

σi
(λ)

softmin
j=1,...,d

(fj (zi; θ))

 ≤
d∑
j=1

Rn (Fj) , (D.42)

where Rn (·) denotes the n-point expected Rademacher complexity w.r.t. to the same distribution
that generates the samples in Z.

Proof. Looking at the definition of softmin in (4), first let us consider the following function: For
a, b ∈ R and non-negative parameters α and β, with α+ β = 1, define

Hλ,α,β (a, b) ,
1

λ
log
(
αeλa + βeλb

)
. (D.43)

Then, the following relations hold:

Hλ,α,β (a, b) = a+
1

λ
log
(
α+ βeλ(b−a)

)
= b+

1

λ
log
(
β + αeλ(a−b)

)
(D.44)

and, as a result

Hλ,α,β (a, b) =
a

2
+
b

2
+

1

2λ

[
log
(
α+ βeλ(b−a)

)
+ log

(
β + αeλ(a−b)

)]
,
a+ b

2
+ hλ,α,β (b− a) , (D.45)

where the last equality is in fact the definition of hλ,α,β : R→ R. It should be noted that hλ,α,β (0) =
0. Also, the following holds for the derivative of hλ,α,β (·):

h′λ,α,β (u) =
β2eλu − α2e−λu

2αβ + β2eλu + α2e−λu
=
βe(λu)/2 − αe(−λu)/2

βe(λu)/2 + αe(−λu)/2
, (D.46)

which indicates
∣∣∣h′λ,α,β (u)

∣∣∣ ≤ 1, for all u ∈ R and the legitimate set of parameters (λ, α, β).
Therefore, h′λ,α,β is a 1-Lipschitz continuous function. In this regard, for any two real-valued
function sets A and B whose domain is Z , the following relation holds due to the sum inequality of
Rademacher complexity:

EZ,σ

{
sup

a∈A, b∈B

1

n

n∑
i=1

σiHλ,α,β (a (zi) , b (zi))

}
= Rn

({
a+ b

2
+

1

2
hλ,α,β (b− a)

∣∣∣∣ a ∈ A, b ∈ B})
≤ 1

2
[Rn (A) +Rn (B) +Rn (hλ,α,β ◦ C)] ,

(D.47)

where C , {a− b| a ∈ A, b ∈ B}. It can be readily verified thatRn (C) ≤ Rn (A) +Rn (B). Also,
Talagrand’s contraction lemma in statistical learning theory [13] states that given the above properties
for a 1-Lipschitz function hλ,α,β (·), we have Rn (hλ,α,β ◦ C) ≤ Rn (C). Therefore, the previous
chain of inequalities can be concluded as

Rn
(
Hλ,α,β (a, b)

∣∣ a ∈ A, b ∈ B) ≤ Rn (A) +Rn (B) . (D.48)

for all λ ∈ R ∪ {±∞}, and all α, β ≥ 0 with α+ β = 1. For the remainder of the proof, one should
consider the following recursive relation for all f1, . . . , fd:

(λ)

softmin
j=1,...,d

(fj) = Hλ, d−1
d , 1d

(
(λ)

softmin
j=1,...,d−1

(fj) , fd

)
, (D.49)
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which can be verified through a simple substitution of parameters. By using (D.48), we have

Rn

(
(λ)

softmin
j=1,...,d

(fj)

∣∣∣∣fj ∈ Fj
)
≤ Rn

(
(λ)

softmin
j=1,...,d−1

(fj)

∣∣∣∣fj ∈ Fj
)

+Rn (Fd) . (D.50)

Repeating the above inequality for d consecutive times gives us the desired result and completes the
proof.

According to Definition 2, the previous upper-bounds can be simplified into the following statement:
With probability at least 1− δ, and for all θ ∈ Θ, we have

∣∣∣R̂SSAR (θ;D)− EP0

{
R̂SSAR (θ;D)

}∣∣∣ ≤ 2

R(SSM)
n,(ε,η) (L) +B

√
log 1

δ

2n

 , (D.51)

where ε ≥ 0 is the dual counterpart of γ in (3). Therefore, the empirical values of RSSAR are always
close (and asymptotically convergent) to their corresponding expected values. Next, we have to show
that the expected value of RSSAR legitimately upper-bounds the true risk at the solution point, i.e.
θ∗ ∈ Θ.

Let θ∗true to represent the true minimizer of the expected adversarial risk, i.e. θ∗true ,
argminθ∈Θ EP0 {φγ (Z; θ)}. Then, based on Theorem C.1 and for any ζ ≥ 0, there exists a
neighborhood around θ∗true, denoted by Θlocal ⊂ Θ, such that the following gap is guaranteed to exist
for all θ /∈ Θlocal:

EP0

{
R̂SSAR (θ;D)− R̂SSAR (θ∗true;D)

}
≥ ζ, (D.52)

given that the condition η ≥ MSR(Φ,P0) (λ, ζ) is satisfied. According to the assumption on η in the
current theorem, it can be readily deduced that with probability at least 1− δ, the following relation
holds for all θ /∈ Θlocal:

R̂SSAR (θ;D)− R̂SSAR (θ∗true;D) > 0 ⇒ θ∗ , argmin
θ∈Θ

R̂SSAR (θ;D) ∈ Θlocal, (D.53)

i.e. the minimizer of R̂SSAR (θ;D) also falls in Θlocal. Also, for all θ ∈ Θlocal and any ε ≥ 0 we
have

EP0

{
R̂SSAR (θ;D)

}
≥ EP0

{φγ (Z; θ)}+ γε ≥ sup
P∈Bε(P0)

EP {` (Z; θ)} . (D.54)

Combining relations given in (D.51), (D.53) and (D.54) gives the desired result and completes the
proof.

E Auxiliary Lemmas and Proofs

Lemma E.1. Consider the setting described in Theorem 1. Assume ` (z; θ) is differentiable w.r.t. z,
and ∇z` (·; θ) is Lzz-Lipschitz all over Z ×Θ, for some Lzz ≥ 0. Also, assume transportation cost
c is 1-strongly convex in its first argument. Then, if γ > Lzz , the program

sup
z′∈Z

` (z′; θ)− γc (z′, (X, y)) (E.1)

becomes (γ − Lzz)-strongly concave for all (X, y) ∈ Z .

The proof is straightforward and uses Taylor’s expansion series. Actually, it directly results from the
definition of γ-concavity.

Lemma E.2. Assume loss function ` : Z × Θ → R, c : Z × Z → R≥0 and γ ≥ 0, such
that conditions in Lemma E.1 hold all over Z × Θ. Assume ` is differentiable w.r.t. θ, and let
gθ (z) , ∇θ` (z; θ). For a fixed θ ∈ Θ and i ∈ Il, define z∗i (θ) as the maximizer of (E.1) for
(Xi, yi). Similarly, let z∗i (y; θ) to represent the maximizer of

Ji (y; θ) , sup
z′∈Z

` (z′; θ)− γc (z′, (Xi, y)) , y ∈ Y, i ∈ Iul. (E.2)
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Then, the gradient of (3) w.r.t. θ ∈ Θ can be attained as

∇θR̂SSAR (θ;D) =
1

n

∑
i∈Il

gθ (z∗i (θ)) +
1

n

∑
i∈Iul

∑
y∈Y

q(y; θ)gθ (z∗i (y; θ)) , (E.3)

where q(y; θ) , exp(λJi (y; θ))/
(∑

y′∈Y exp(λJi (y′; θ))
)

.

Proof of Lemma E.2 is included in that of Theorem 2, which is in Appendix D.

Proof of Lemma D.4. For simplicity, let us consider the following change of notation: for a fixed
X ∈ X and λ ∈ R, define:

f (θ) ,
(λ)

softmin
y∈Y

{φγ (X, y; θ)} , (E.4)

whereX and λ are hidden from f . Then, based on the definition of softmin, it can be easily verified
that we have the following formulation for∇θf :

∇θf =
∑
y∈Y

βy (θ)∇θφγ (X, y; θ) with βy (θ) ,
eλφγ(X,y;θ)∑

y′∈Y e
λφγ(X,y′;θ)

, y ∈ Y, (E.5)

where
∑
y∈Y βy (θ) = 1, for all θ ∈ Θ. Hence, the following inequalities hold:

‖∇θf (θ)−∇θf (θ′)‖∗ =

∥∥∥∥∥∥
∑
y∈Y

βy (θ)∇θφγ (X, y; θ)−
∑
y∈Y

βy (θ′)∇θφγ (X, y; θ′)

∥∥∥∥∥∥
∗

≤
∑
y∈Y

βy (θ) ‖∇θφγ (X, y; θ)−∇θφγ (X, y; θ′)‖∗

+
∑
y∈Y
‖∇θφγ (X, y; θ′)‖∗ |βy (θ)− βy (θ′)|

≤
∑
y∈Y

βy (θ)

(
Lθθ +

LzθLθz
γ − Lzz

)
‖θ − θ′‖+ σω |Y| ‖θ − θ′‖

=

(
Lθθ +

LzθLθz
γ − Lzz

+ σω |Y|
)
‖θ − θ′‖ , (E.6)

where ω denotes the Lipschitz constant of βy (θ) w.r.t. θ, for all y ∈ Y . The last inequality is a direct
consequence of assuming ‖∇θφγ (X, y; θ)‖∗ ≤ σ, which can be validated through the following
mathematical argument: There exists ε ≥ 0, such that

‖∇θφγ (X, y; θ)‖∗ =

∥∥∥∥∇θ ( sup
z′∈Z

` (X, y; θ)− γc (z′, (X, y))

)∥∥∥∥
∗

=

∥∥∥∥∇θ`(argmax
z′∈Z

` (z′; θ)− γc (z′, (X, y)) ; θ

)∥∥∥∥
∗
≤ σ, (E.7)

where the last inequality is due to the assumption of Lemma D.3 under an appropriate choice of norm.
The middle equality in (E.7) is the result of the extended Danskin’s theorem which relaxes convexity
into inf-compactness of function `. For proof of inf-compactness of ` and the consequent properties,
see Section 4 of [12]. In order to assess ω, which is an indicator of smoothness for βy (θ), one can
take advantage of the Mean Value Theorem [14], as follows:

|βy (θ)− βy (θ′)| ≤ max
y∈Y

sup
θ∗∈T (θ→θ′)

‖∇θβy (θ∗)‖ ‖θ − θ′‖ , θ, θ′ ∈ Θ, (E.8)

where T (θ → θ′) is the set of all continuous paths from θ to θ′ that entirely lie in Θ. It is not hard to
verify that the gradient∇θβy (θ) has the following formulation:

∇θβy (θ) = λβy (θ)
∑
y′∈Y

βy′ (θ) (∇θφγ (X, y; θ)−∇θφγ (X, y′; θ)) , (y, θ) ∈ Y ×Θ, (E.9)
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and hence satisfies the subsequent inequalities:

‖∇θβy (θ)‖ ≤ 2|λ|
∑
y′∈Y

βy′ (θ) max
h∈{y,y′}

{‖∇θφγ (X, h|θ)‖} ≤ 2σ|λ|, ∀θ ∈ Θ. (E.10)

Combining (E.8) with (E.10) provides us with the safe choice of ω = 2σ |λ|. Therefore, ∇θf is(
Lθθ + LzθLθz

γ−Lzz
+ 2σ2|λ| |Y|

)
-Lipschitz w.r.t. θ, and the proof is complete.

Proof of Lemma D.5. The proof is simple and directly results from the assumptions. According to
the differentiablility of φγ w.r.t. θ which is a consequence of an extended version of Danskin’s
theorem (see Lemma D.4), the following relations hold:

‖∇θφγ (z0; θ)−∇θ` (ẑ∗; θ)‖∗ =

∥∥∥∥∇θ`(argmax
z′∈Z

` (z′; θ)− γc (z′, z0) ; θ

)
−∇θ` (ẑ∗; θ)

∥∥∥∥
∗

≤ Lθz

∥∥∥∥ẑ∗ − argmax
z′∈Z

(` (z′; θ)− γc (z′, z0))

∥∥∥∥ . (E.11)

On the other hand, due to (γ − Lzz)-strict-concavity of (E.2), a δ-approximation maximizer, i.e. ẑ∗,
satisfies ∥∥∥∥ẑ∗ − argmax

z′∈Z
(` (z′; θ)− γc (z′, z0))

∥∥∥∥2

≤ Lzθ
Lθz (γ − Lzz)

. (E.12)

Substituting the above into (E.11) completes the proof.

Lemma E.3. Assume a feature-label space Z = X × Y and a function class F ⊆ RZ , for a feature
space X and a finite label set Y . Also, assume there exists ∆ : N→ R, such thatRn (F) ≤ ∆ (n),
for all n ∈ N and any data distribution P0 ∈M (Z). Then, the following holds:

R(SSM)
n,(ε,η) (F) ≤ η∆ (dηne) + (1− η) |Y|∆ (d(1− η)ne) (E.13)

for all distributions in M (Z), any ε ≥ 0 and η ∈ [0, 1].

Proof. According to the assumption, ∆ (n) is an upper-bound for Rademacher complexity of F ,
regardless of the probability measure that generates the data samples. Therefore, one can write

sup
P0∈M(Z)

Ez1:n∼P0,σ

{
sup
f∈F

1

n

n∑
i=1

σif (zi)

}
= sup
z1:n∈Z

Eσ

{
sup
f∈F

1

n

n∑
i=1

σif (zi)

}
≤ ∆ (n) .

(E.14)
In this regard, the following relations hold for the function gl (n) of Definition 2:

gl (n) = Ez1:n∼P0,σ

{
sup
f∈F

1

n

n∑
i=1

σi

[
sup
a∈Aε

f (a (zi))

]}

≤ Ez1:n∼P0,σ

 sup
z′1:n∈Z| c(zi,z′i)≤ε

sup
f∈F

1

n

n∑
i=1

σi [f (z′i)]


≤ sup
z′1:n∈Z

Eσ

{
sup
f∈F

1

n

n∑
i=1

σif (z′i)

}
≤ ∆ (n) . (E.15)

With some very similar mathematical arguments, one can easily show that gul (n) ≤ |Y|∆ (n).
Therefore, for any distribution P0, any ε ≥ 0 and any η ∈ [0, 1], we always have

R(SSM)
n,(ε,η) , ηgl (dnηe) + (1− η) gul (dn (1− η)e)

≤ ∆ (dnηe) + (1− η) |Y|∆ (dn (1− η)e) . (E.16)

and the proof is complete.
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In particular, assume a 0-1 loss function set L = {` (·; θ) | θ ∈ Θ}, where Θ denotes the parameter
space of a classifier with a finite VC-dimension of dim (Θ). Then, due to Dudley’s entropy bound
and Haussler’s upper-bound [13], there exists constant C such that

∆ (n) = C

√
dim (Θ)

n
(E.17)

is a valid upper-bound on the Rademacher complexity of F regardless of P0. Then, one can write

R(SSM)
n,(ε,η) ≤ ∆ (dnηe) + (1− η) |Y|∆ (dn (1− η)e)

= C

[
η

√
dim (Θ)

dnηe
+ (1− η) |Y|

√
dim (Θ)

dn (1− η)e

]

≤ C

[
η

√
dim (Θ)

nη
+ (1− η) |Y|

√
dim (Θ)

n (1− η)

]

= C

√
dim (Θ)

n

[√
η + |Y|

√
1− η

]
. (E.18)

This will also prove the claim on SSM Rademacher complexity in Section 2.2.
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