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Abstract

Modern large-scale finite-sum optimization relies on two key aspects: distribu-
tion and stochastic updates. For smooth and strongly convex problems, existing
decentralized algorithms are slower than modern accelerated variance-reduced
stochastic algorithms when run on a single machine, and are therefore not efficient.
Centralized algorithms are fast, but their scaling is limited by global aggrega-
tion steps that result in communication bottlenecks. In this work, we propose an
efficient Accelerated Decentralized stochastic algorithm for Finite Sums named
ADFS, which uses local stochastic proximal updates and randomized pairwise
communications between nodes. On n machines, ADFS learns from nm samples
in the same time it takes optimal algorithms to learn from m samples on one ma-
chine. This scaling holds until a critical network size is reached, which depends on
communication delays, on the number of samples m, and on the network topology.
We provide a theoretical analysis based on a novel augmented graph approach
combined with a precise evaluation of synchronization times and an extension of
the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We
illustrate the improvement of ADFS over state-of-the-art decentralized approaches
with experiments.

1 Introduction
The success of machine learning models is mainly due to their capacity to train on huge amounts of
data. Distributed systems can be used to process more data than one computer can store or to increase
the pace at which models are trained by splitting the work among many computing nodes. In this
work, we focus on problems of the form:

min
θ∈Rd

n∑
i=1

fi(θ), where fi(θ) =

m∑
j=1

fi,j(θ) +
σi
2
‖θ‖2. (1)

This is the typical `2-regularized empirical risk minimization problem with n computing nodes that
have m local training examples each. The function fi,j represents the loss function for the j-th
training example of node i and is assumed to be convex and Li,j-smooth [Nesterov, 2013, Bubeck,
2015]. These problems are usually solved by first-order methods, and the basic distributed algorithms
compute gradients in parallel over several machines [Nedic and Ozdaglar, 2009]. Another way
to speed up training is to use stochastic algorithms [Bottou, 2010, Defazio et al., 2014, Johnson
and Zhang, 2013], that take advantage of the finite sum structure of the problem to use cheaper
iterations while preserving fast convergence. This paper aims at bridging the gap between stochastic
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ALGORITHM SYNCHRONY STOCHASTIC TIME

POINT-SAGA [DEFAZIO, 2016] N/A X nm+
√
nmκs

MSDA [SCAMAN ET AL., 2017] GLOBAL × √
κb
(
m+ τ√

γ

)
ESDACD [HENDRIKX ET AL., 2019] LOCAL × (m+ τ)

√
κb
γ

DSBA [SHEN ET AL., 2018] GLOBAL X
(
m+ κs + γ−1

)
(1 + τ)

ADFS (THIS PAPER) LOCAL X m+
√
mκs + (1 + τ)

√
κs
γ

Table 1: Comparison of various state-of-the-art decentralized algorithms to reach accuracy ε in
regular graphs. Constant factors are omitted, as well as the log

(
ε−1
)

factor in the TIME column.
Reported runtime for Point-SAGA corresponds to running it on a single machine with nm samples.
To allow for direct comparison, we assume that computing a dual gradient of a function fi as required
by MSDA and ESDACD takes time m, although it is generally more expensive than to compute m
separate proximal operators of single fi,j functions.

and decentralized algorithms when local functions are smooth and strongly convex. In the rest of
this paper, following Scaman et al. [2017], we assume that nodes are linked by a communication
network and can only exchange messages with their neighbours. We further assume that each
communication takes time τ and that processing one sample, i.e., computing the proximal operator
for a single function fi,j , takes time 1. The proximal operator of a function fi,j is defined by
proxηfi,j (x) = arg minv

1
2η‖v − x‖

2 + fi,j(v). The condition number of the Laplacian matrix of
the graph representing the communication network is denoted γ. This natural constant appears in the
running time of many decentralized algorithms and is for instance of order O(1) for the complete
graph and O(n−1) for the 2D grid. More generally, γ−1/2 is typically of the same order as the
diameter of the graph. Following notations from Xiao et al. [2019], we define the batch and stochastic
condition numbers κb and κs (which are classical quantities in the analysis of finite sum optimization)
such that for all i, κb ≥Mi/σi where Mi is the smoothness constant of the function fi and κs ≥ κi,
with κi = 1 +

∑m
j=1 Li,j/σi the stochastic condition number of node i. Although κs is always

bigger than κb, it is generally of the same order of magnitude, leading to the practical superiority of
stochastic algorithms. The next paragraphs discuss the relevant state of the art for both distributed and
stochastic methods, and Table 1 sums up the speeds of the main decentralized algorithms available
to solve Problem (1). Although it is not a distributed algorithm, Point-SAGA [Defazio, 2016], an
optimal single-machine algorithm, is also presented for comparison.

Centralized gradient methods. A simple way to split work between nodes is to distribute gradient
computations and to aggregate them on a parameter server. Provided the network is fast enough, this
allows the system to learn from the datasets of n workers in the same time one worker would need to
learn from its own dataset. Yet, these approaches are very sensitive to stochastic delays, slow nodes,
and communication bottlenecks. Asynchronous methods may be used [Recht et al., 2011, Leblond
et al., 2017, Xiao et al., 2019] to address the first two issues, but computing gradients on older (or
even inconsistent) versions of the parameter harms convergence [Chen et al., 2016]. Therefore, this
paper focuses on decentralized algorithms, which are generally less sensitive to communication
bottlenecks [Lian et al., 2017].

Decentralized gradient methods. In their synchronous versions, decentralized algorithms alternate
rounds of computations (in which all nodes compute gradients with respect to their local data) and
communications, in which nodes exchange information with their direct neighbors [Duchi et al.,
2012, Shi et al., 2015, Nedic et al., 2017, Tang et al., 2018, He et al., 2018]. Communication steps
often consist in averaging gradients or parameters with neighbours, and can thus be abstracted as
multiplication by a so-called gossip matrix. MSDA [Scaman et al., 2017] is a batch decentralized
synchronous algorithm, and it is optimal with respect to the constants γ and κb, among batch
algorithms that can only perform these two operations. Instead of performing global synchronous
updates, some approaches inspired from gossip algorithms [Boyd et al., 2006] use randomized
pairwise communications [Nedic and Ozdaglar, 2009, Johansson et al., 2009, Colin et al., 2016].
This for example allows fast nodes to perform more updates in order to benefit from their increased
computing power. These randomized algorithms do not suffer from the usual worst-case analyses of
bounded-delay asynchronous algorithms, and can thus have fast rates because the step-size does not
need to be reduced in the presence of delays. For example, ESDACD [Hendrikx et al., 2019] achieves
the same optimal speed as MSDA when batch computations are faster than communications (τ > m).
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However, both use gradients of the Fenchel conjugates of the full local functions, which are generally
much harder to get than regular gradients.

Stochastic algorithms for finite sums. All distributed methods presented earlier are batch methods
that rely on computing full gradient steps of each function fi. Stochastic methods perform updates
based on randomly chosen functions fi,j . In the smooth and strongly convex setting, they can be
coupled with variance reduction [Schmidt et al., 2017, Shalev-Shwartz and Zhang, 2013, Johnson and
Zhang, 2013, Defazio et al., 2014] and acceleration, to achieve the m+

√
mκs optimal finite-sum

rate, which greatly improves over the m
√
κb batch optimum when the dataset is large. Examples

of such methods include Accelerated-SDCA [Shalev-Shwartz and Zhang, 2014], APCG [Lin et al.,
2015], Point-SAGA [Defazio, 2016] or Katyusha [Allen-Zhu, 2017]

Decentralized stochastic methods. In the smooth and strongly convex setting, DSA [Mokhtari and
Ribeiro, 2016] and later DSBA [Shen et al., 2018] are two linearly converging stochastic decentralized
algorithms. DSBA uses the proximal operator of individual functions fi,j to significantly improve
over DSA in terms of rates. Yet, DSBA does not enjoy the

√
mκs accelerated rates and needs an

excellent network with very fast communications. Indeed, nodes need to communicate each time they
process a single sample, resulting in many communication steps. CHOCO-SGD [Koloskova et al.,
2019] is a simple decentralized stochastic algorithm with support for compressed communications.
Yet, it is not linearly convergent and it requires to communicate between each gradient step as
well. Therefore, to the best of our knowledge, there is no decentralized stochastic algorithm with
accelerated linear convergence rate or low communication complexity without sparsity assumptions
(i.e., sparse features in linear supervised learning).

ADFS. The main contribution of this paper is a locally synchronous Accelerated Decentralized
stochastic algorithm for Finite Sums, named ADFS. It is very similar to APCG for empirical risk
minimization in the limit case n = 1 (single machine), for which it gets the same m+

√
mκs rate.

Besides, this rate stays unchanged when the number of machines grows, meaning that ADFS can
process n times more data in the same amount of time on a network of size n. This scaling lasts as
long as (1+τ)

√
κsγ
− 1

2 < m+
√
mκs. This means that ADFS is at least as fast as MSDA unless both

the network is extremely fast (communications are faster than evaluating a single proximal operator)
and the diameter of the graph is very large compared to the size of the local finite sums. Therefore,
ADFS outperforms MSDA and DSBA in most standard machine learning settings, combining optimal
network scaling with the efficient distribution of optimal sequential finite-sum algorithms. Note
however that, similarly to DSBA and Point-SAGA, ADFS requires evaluating proxfi,j , which requires
solving a local optimization problem. Yet, in the case of linear models such as logistic regression, it is
only a constant factor slower than computing ∇fi,j , and it is especially much faster than computing
the gradient of the conjugate of the full dual functions∇f∗i required by ESDACD and MSDA, which
were not designed for finite sums on each node in the first place.
ADFS is based on three novel technical contributions: (i) a novel augmented graph approach which
yields the dual formulation of Section 2, (ii) an extension of the APCG algorithm to arbitrary sampling
that is applied to the dual problem in order to get the generic algorithm of Section 3, and (iii) the
analysis of local synchrony, which is performed in Section 4. Finally, Section 5 presents a relevant
choice of parameters leading to the rates shown in Table 1, and an experimental comparison is done
in Section 6. A Python implementation of ADFS is also provided in supplementary material.

2 Model and Derivations
We now specify our approach to solve the problem in Equation (1). The first (classical) step consists
in considering that all nodes have a local parameter, but that all local parameters should be equal
because the goal is to have the global minimizer of the sum. Therefore, the problem writes:

min
θ∈Rn×d

n∑
i=1

fi(θ
(i)) such that θ(i) = θ(j) if j ∈ N(i), (2)

where N(i) represents the neighbors of node i in the communication graph. Then, ESDACD and
MSDA are obtained by applying accelerated (coordinate) gradient descent to an appropriate dual
formulation of Problem (2). In the dual formulation, constraints become variables and so updating
a dual coordinate consists in performing an update along an edge of the network. In this work, we
consider a new virtual graph in order to get a stochastic algorithm for finite sums. The transformation
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Figure 1: Illustration of the augmented graph for n = 3 and m = 3.

is sketched in Figure 1, and consists in replacing each node of the initial network by a star network.
The centers of the stars are connected by the actual communication network, and the center of the
star network replacing node i has the local function f comm

i : x 7→ σi

2 ‖x‖
2. The center of node i is

then connected with m nodes whose local functions are the functions fi,j for j ∈ {1, ...,m}. If we
denote E the number of edges of the initial graph, then the augmented graph has n(1 +m) nodes
and E + nm edges.
Then, we consider one parameter vector θ(i,j) for each function fi,j and one vector θ(i) for each
function f comm

i . Therefore, there is one parameter vector for each node in the augmented graph.
We impose the standard constraint that the parameter of each node must be equal to the parameters
of its neighbors, but neighbors are now taken in the augmented graph. This yields the following
minimization problem:

min
θ∈Rn(1+m)×d

n∑
i=1

[ m∑
j=1

fi,j(θ
(i,j)) +

σi
2
‖θ(i)‖2

]
such that θ(i) = θ(j) if j ∈ N(i), and θ(i,j) = θ(i) ∀j ∈ {1, ..,m}.

(3)

In the rest of the paper, we use letters k, ` to refer to any nodes in the augmented graph, and letters
i, j to specifically refer to a communication node and one of its virtual nodes. More precisely, we
denote (k, `) the edge between the nodes k and ` in the augmented graph. Note that k and ` can be
virtual or communication nodes. We denote e(k) the unit vector of Rn(1+m) corresponding to node
k, and ek` the unit vector of RE+nm corresponding to edge (k, `). To clearly make the distinction
between node variables and edge variables, for any matrix on the set of nodes of the augmented graph
x ∈ Rn(1+m)×d we write that x(k) = xT e(k) for k ∈ {1, ..., n(1+m)} (superscript notation) and for
any matrix on the set of edges of the augmented graph λ ∈ R(E+nm)×d we write that λk` = λT ek`
(subscript notation) for any edge (k, `). For node variables, we use the subscript notation with a
t to denote time, for instance in Algorithm 1. By a slight abuse of notations, we use indices (i, j)
instead of (k, `) when specifically refering to virtual edges (or virtual nodes) and denote λij instead
of λi,(i,j) the virtual edge between node i and node (i, j) in the augmented graph. The constraints
of Problem (3) can be rewritten AT θ = 0 in matrix form, where A ∈ Rn(1+m)×(nm+E) is such that
Aek` = µk`(e

(k) − e(`)) for some µk` > 0. Then, the dual formulation of this problem writes:

max
λ∈R(nm+E)×d

−
n∑
i=1

[ m∑
j=1

f∗i,j

(
(Aλ)(i,j)

)
+

1

2σi
‖(Aλ)(i)‖2

]
, (4)

where the parameter λ is the Lagrange multiplier associated with the constraints of Problem (3)—
more precisely, for an edge (k, `), λk` ∈ Rd is the Lagrange multiplier associated with the constraint
µk`(e

(k) − e(`))T θ = 0. At this point, the functions fi,j are only assumed to be convex (and not
necessarily strongly convex) meaning that the functions f∗i,j are potentially non-smooth. This problem
could be bypassed by transferring some of the quadratic penalty from the communication nodes to the
virtual nodes before going to the dual formulation. Yet, this approach fails when m is large because
the smoothness parameter of f∗i,j would scale as m/σi at best, whereas a smoothness of order 1/σi
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is required to match optimal finite-sum methods. A better option is to consider the f∗i,j terms as
non-smooth and perform proximal updates on them. The rate of proximal gradient methods such
as APCG [Lin et al., 2015] does not depend on the strong convexity parameter of the non-smooth
functions f∗i,j . Each f∗i,j is (1/Li,j)-strongly convex (because fi,j was (Li,j)-smooth), so we can
rewrite the previous equation in order to transfer all the strong convexity to the communication node.
Noting that (Aλ)(i,j) = −µijλij when node (i, j) is a virtual node associated with node i, we rewrite
the dual problem as:

min
λ∈R(E+nm)×d

qA(λ) +

n∑
i=1

m∑
j=1

˜f∗i,j(λij), (5)

with ˜f∗i,j : x 7→ f∗i,j(−µijx) − µ2
ij

2Li,j
‖x‖2 and qA : x 7→ Trace

(
1
2x

TATΣ−1Ax
)
, where Σ is the

diagonal matrix such that e(i)TΣe(i) = σi if i is a center node and e(i,j)TΣe(i,j) = Li,j if it is
the virtual node (i, j). Since dual variables are associated with edges, using coordinate descent
algorithms on dual formulations from a well-chosen augmented graph of constraints allows us to
handle both computations and communications in the same framework. Indeed, choosing a variable
corresponding to an actual edge of the network results in a communication along this edge, whereas
choosing a virtual edge results in a local computation step. Then, we balance the ratio between
communications and computations by adjusting the probability of picking a given kind of edges.

3 The Algorithm: ADFS Iterations and Expected Error

In this section, we detail our new ADFS algorithm. In order to obtain it, we introduce a generalized
version of the APCG algorithm [Lin et al., 2015], which we detail in Appendix A. More specifically,
this generalized version allows for arbitrary sampling of coordinates, which is required to use different
probabilities for communications and computations. It also includes corrections for functions that
are strongly convex on a subspace only, which is the case of our augmented dual problem since
the Laplacian of a graph is not full rank. Then we apply it to Problem (5) to get Algorithm 1. Due
to lack of space, we only present the smooth version of ADFS here, but a non-smooth version is
presented in Appendix B, along with the derivations required to obtain Algorithm 1 and Theorem 1.
We denote A† the pseudo inverse of A and Wk` ∈ Rn(1+m)×n(1+m) the matrix such that Wk` =
(e(k)− e(`))(e(k)− e(`))T for any edge (k, `). Note that variables xt, yt and vt from Algorithm 1 are
variables associated with the nodes of the augmented graph and are therefore matrices in Rn(1+m)×d

(one row for each node). They are obtained by multiplying the dual variables of the proximal
coordinate gradient algorithm applied to the dual problem of Equation (5) by A on the left. We denote
σA = λ+

min(ATΣ−1A) the smallest non-zero eigenvalue of the matrix ATΣ−1A.

Algorithm 1 ADFS(A, (σi), (Li,j), (µk`), (pk`), ρ)

1: σA = λ+
min(ATΣ−1A), η̃k` =

ρµ2
k`

σApk`
, Rk` = eTk`A

†Aek` // Initialization
2: x0 = y0 = v0 = z0 = 0(n+nm)×d

3: for t = 0 to K − 1 do // Run for K iterations
4: yt = 1

1+ρ (xt + ρvt)

5: Sample edge (k, `) with probability pk` // Edge sampled from the augmented graph
6: zt+1 = vt+1 = (1− ρ)vt + ρyt − η̃k`Wk`Σ

−1yt // Nodes k and ` communicate yt
7: if (k, `) is the virtual edge between node i and virtual node (i, j) then
8: v

(i,j)
t+1 = proxη̃ij f̃∗i,j

(
z

(i,j)
t+1

)
// Virtual node update using fi,j

9: v
(i)
t+1 = z

(i)
t+1 + z

(i,j)
t+1 − v

(i,j)
t+1 // Center node update

10: end if
11: xt+1 = yt + ρRk`

pk`
(vt+1 − (1− ρ)vt − ρyt)

12: end for
13: return θK = Σ−1vK // Return primal parameter
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Theorem 1. We denote θ? the minimizer of the primal function F : x 7→
∑n
i=1 fi(x) and θ?A a

minimizer of the dual function F ∗A = qA + ψ. Then θt as output by Algorithm 1 verifies:

E
[
‖θt − θ?‖2

]
≤ C0(1− ρ)t, if ρ2 ≤ min

k`

λ+
min(ATΣ−1A)

Σ−1
kk + Σ−1

``

p2
k`

µ2
k`Rk`

, (6)

with C0 = λmax(ATΣ−2A)
[
‖A†Aθ?A‖2 + 2σ−1

A (F ∗A(0)− F ∗A(θ?A))
]
.

We discuss several aspects related to the implementation of Algorithm 1 below, and provide its Python
implementation in supplementary material.

Convergence rate. The parameter ρ controls the convergence rate of ADFS. It is defined by the
minimum of the individual rates for each edge, which explicitly depend on parameters related to the
functions themselves (1/(Σ−1

kk + Σ−1
`` )), to the graph topology (Rk` = eTk`A

†Aek`), to a mix of both
(λ+

min(ATΣ−1A)/µ2
k`) and to the sampling probabilities of the edges (p2

k`). Note that these quantities
are very different depending on whether edges are virtual or not. For example, the parameters µk` for
communication edges are related to the communication matrix by the fact that the Laplacian of the
communication network writes L =

∑
communication (k,`) µ

2
k`Wk`. In Section 5, we carefully choose

the parameters µk` and pk` based on the graph and the local functions to get the best convergence
speed. Note that once µk` and pk` are fixed, the choice of the other parameters (such as Rk`, ρ, η and
σA) is fixed as well (no extra tuning is required).

Obtaining Line 6. The form of the communication update (virtual or not) comes from the fact that
the update in direction (k, `) writes A∇k`qA(yt) = Aek`e

T
k`AΣ−1yt = µ2

k`Wk`Σ
−1yt.

Sparse updates. Although the updates of Algorithm 1 involve all nodes of the network, it is actually
possible to implement them efficiently so that only two nodes are actually involved in each update, as
described below. Indeed, Wk` is a very sparse matrix so

(
Wk`Σ

−1yt
)(k)

= (Σ−1
k y

(k)
t −Σ−1

` y
(`)
t ) =

−
(
Wk`Σ

−1yt
)(`)

and
(
Wk`Σ

−1yt
)(h)

= 0 for h 6= k, `. Therefore, only the following situations
can happen:

1. Communication updates: If (k, `) is a communication edge, the update only requires
nodes k and ` to exchange parameters and perform a weighted difference between them.
Note that the Laplacian of the communication graph is

∑
k`

2. Local updates: If (k, `) is the virtual edge between node i and its j-th virtual node,
parameters exchange of line 4 is local, and the proximal term involves function fi,j only.

3. Convex combinations: If we choose h 6= k, ` then v(h)
t+1 and y(h)

t+1 are obtained by convex
combinations of y(h)

t and v(h)
t so the update is cheap and local. Besides, nodes actually need

the value of their parameters only when they perform updates of type 1 or 2. Therefore, they
can simply store how many updates of this type they should have done and perform them all
at once before each communication or local update.

Primal proximal step. Algorithm 1 uses proximal steps performed on f̃∗i,j : x→ f∗i,j(−µi,jx)−
µ2
ij

2Li,j
‖x‖2 instead of fi,j . Yet, it is possible to use Moreau identity to express proxηf̃∗i,j

using only
the proximal operator of fi,j , which can easily be evaluated for many objective functions. The exact
derivations are presented in Appendix B.3.

Linear case. For many standard machine learning problems, fi,j(θ) = `(XT
i,jθ) with Xi,j ∈ Rd.

This implies that f∗i,j(θ) = +∞ whenever θ /∈ Vec (Xi,j). Therefore, the proximal steps on the
Fenchel conjugate only have support on Xi,j , meaning that they are one-dimensional problems that
can be solved in constant time using for example the Newton method when no analytical solution is
available. Warm starts (initializing on the previous solution) can also be used for solving the local
problems even faster so that in the end, a one-dimensional proximal update is only a constant time
slower than a gradient update. Note that this also allows to store parameters vt and yt as scalar
coefficients for virtual nodes, thus greatly reducing the memory footprint of ADFS.

Unbalanced local datasets. We assume that all local datasets are of fixed size m in order to ease
reading. Yet, the impact of the value of m on Algorithm 1 is indirect, and unbalanced datasets can be
handled without any change. Yet, this may affect waiting time since nodes with large local datasets
will generally be more busy than nodes with smaller ones.
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4 Distributed Execution and Synchronization Time
Theorem 1 gives bounds on the expected error after a given number of iterations. To assess the
actual speed of the algorithm, it is still required to know how long executing a given number of
iterations takes. This is easy with synchronous algorithms such as MSDA or DSBA, in which all
nodes iteratively perform local updates or communication rounds. In this case, executing ncomp

computing rounds and ncomm communication rounds simply takes time ncomp + τncomm. ADFS
relies on randomized pairwise communications, so it is necessary to sample a schedule, i.e., a random
sequence of edges from the augmented graph, and evaluate how fast this schedule can be executed.
Note that the execution time crucially depends on how many edges can be updated in parallel, which
itself depends on the graph and on the random schedule sampled.

Figure 2: Illustration of parallel execution and local synchrony. Nodes from a toy graph execute
the schedule [(A,C), (B,D), (A,B), (D), (C,D)], where (D) means that node D performs a local
update. Each node needs to execute its updates in the partial order defined by the schedule. In
particular, node C has to perform update (A,C) and then update (C,D), so it is idle between times
τ and τ + 1 because it needs to wait for node D to finish its local update before the communication
update (C,D) can start. We assume τ > 1 since the local update terminates before the communication
update (A,B). Contrary to synchronous algorithms, no global notion of rounds exist and some nodes
(such as node D) perform more updates than others.

Shared schedule. Even though they only actively take part in a small fraction of the updates, all
nodes need to execute the same schedule to correctly implement Algorithm 1. To generate this shared
schedule, all nodes are given a seed and the sampling probabilities of all edges. This allows them to
avoid deadlocks and to precisely know how many convex combinations to perform between vt and yt.

Execution time. The problem of bounding the probability that a random schedule of fixed length
exceeds a given execution time can be cast in the framework of fork-join queuing networks with
blocking [Zeng et al., 2018]. In particular, queuing theory [Baccelli et al., 1992] tells us that the
average time per iteration exists for any fixed probability distribution over a given augmented graph.
Unfortunately, existing quantitative results are not precise enough for our purpose so we generalize
the method introduced by Hendrikx et al. [2019] to get a finer bound. While their result is valid when
the only possible operation is communicating with a neighbor, we extend it to the case in which nodes
can also perform local computations. For the rest of this paper, we denote pcomm the probability of
performing a communication update and pcomp the probability of performing a local update. They are
such that pcomp + pcomm = 1. We also define pmax

comm = nmaxk
∑
`∈N(k) pk`/2, where neighbors

are in the communication network only. When all nodes have the same probability to participate in
an update, pmax

comm = pcomm. Then, the following theorem holds (see proof in Appendix C):
Theorem 2. Let T (t) be the time needed for the system to execute a schedule of size t, i.e., t
iterations of Algorithm 1. If all nodes perform local computations with probability pcomp/n with
pcomp > pmax

comm or if τ > 1 then there exists C < 24 such that:

P
(

1

t
T (t) ≤ C

n

(
pcomp + 2τpmax

comm

))
→ 1 as t→∞ (7)

Note that the constant C is a worst-case estimate and that it is much smaller for homogeneous
communication probabilities. This novel result states that the number of iterations that Algorithm 1
can perform per unit of time increases linearly with the size of the network. This is possible because
each iteration only involves two nodes so many iterations can be done in parallel. The assumption
pcomp > pcomm is responsible for the 1 + τ factor instead of τ in Table 1, which prevents ADFS from
benefiting from network acceleration when communications are cheap (τ < 1). Note that this is
an actual restriction of following a schedule, as detailed in Appendix C. Yet, network operations
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generally suffer from communication protocols overhead whereas computing a single proximal
update often either has a closed-form solution or is a simple one-dimensional problem in the linear
case. Therefore, assuming τ > 1 is not very restrictive in the finite-sum setting.

5 Performances and Parameters Choice in the Homogeneous Setting
We now prove the time to convergence of ADFS presented in Table 1, and detail the conditions under
which it holds. Indeed, Section 3 presents ADFS in full generality but the different parameters have
to be chosen carefully to reach optimal speed. In particular, we have to choose the coefficients µ
to make sure that the graph augmentation trick does not cause the smallest positive eigenvalue of
ATΣ−1A to shrink too much. Similarly, ρ is defined in Equation (6) by a minimum over all edges of
a given quantity. This quantity heavily depends on whether the edge is an actual communication edge
or a virtual edge. One can trade pcomp for pcomm so that the minimum is the same for both kind of
edges, but Theorem 2 tells us that this is only possible as long as pcomp > pcomm.

Parameters choice. We define L = AcommA
T
comm ∈ Rn×n the Laplacian of the communication

graph, with Acomm ∈ Rn×E such that Acommek` = µk`(e
(k) − e(`)) for all edge (k, `) ∈ Ecomm,

the set of communication edges. Then, we define γ̃ = min(k,`)∈Ecomm λ+
min(L)n2/(µ2

k`Rk`E
2).

As shown in Appendix D.2, γ̃ ≈ γ for regular graphs such as the complete graph or the grid,
justifying the use of γ instead of γ̃ in Table 1. We assume for simplicity that σi = σ and that κi = 1+
σ−1
i

∑m
j=1 Li,j = κs for all nodes. For virtual edges, we choose µ2

ij = λ+
min(L)Li,j/(σκi) and pij =

pcomp(1 +Li,jσ
−1
i )

1
2 /(nScomp) with Scomp = n−1

∑n
i=1

∑m
j=1(1 +Li,jσ

−1
i )

1
2 . This corresponds

to using a standard importance sampling scheme for selecting samples. For communications edges
(k, `) ∈ Ecomm, we choose uniform pk` = pcomm/E and µ2

k` = 1/2.

Parameters tuning. The previous paragraph specifies relevant choices of parameters µk` and
pk`. Therefore, ADFS can be run without manual tuning. Extra tuning (such as communication
probabilities) could be performed to adapt to specific heterogeneous situations. Yet, this should
be considered as an extra degree of freedom that other algorithms may not have access to rather
than an extra parameter to tune. For example, the choice of uniform communication probabilities
is automatically enforced by synchronous gossip-based algorithms such as MSDA or DSBA (all
edges are activated at each step). Note that choosing different values of µk` for communication
edges amounts to tuning the gossip matrix, which is generally considered as an input of the problem.
Our specific choice of µij for virtual edges allows to precisely bound the strong convexity of the
augmented problem σA, as shown in Appendix D.1.

Influence of the network topology. The topology of the network only impacts the convergence
rate through the constant γ̃, which is almost equal to the eigengap of the Laplacian of the graph for
regular networks. This dependence is standard, as it can be seen in Table 1. The topology can also
influence the synchronization time since the presence of hubs generally increases waiting time.

Theorem 3. If we choose pcomm = min
(

1/2,
(

1 +Scomp

√
γ̃/κs

)−1)
. Then, running Algorithm 1

for Kε = ρ−1 log(ε−1) iterations guarantees E
[
‖θKε

− θ?‖2
]
≤ C0ε, and takes time T (Kε), with:

T (Kε) ≤
√

2C

(
m+

√
mκs +

√
2

(
1 + 4τ

)√
κs
γ̃

)
log
(
1/ε
)

with probability tending to 1 as ρ−1 log(ε−1)→∞, with C0 and C as in Theorems 1 and 2.

Theorem 3 assumes that all communication probabilities and condition numbers are exactly equal
in order to ease reading. A more detailed version with rates for more heterogeneous settings can be
found in Appendix D. Note that while algorithms such as MSDA required to use polynomials of the
initial gossip matrix to model several consecutive communication steps, we can more directly tune
the amount of communication and computation steps simply by adjusting pcomp and pcomm.

6 Experiments
In this section, we illustrate the theoretical results by showing how ADFS compares with MSDA [Sca-
man et al., 2017], ESDACD [Hendrikx et al., 2019], Point-SAGA [Defazio, 2016], and DSBA [Shen
et al., 2018]. All algorithms (except for DSBA, for which we fine-tuned the step-size) were run
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(a) Higgs, n = 4,
m = 104, σ = 1

(b) Higgs, n = 100,
m = 104, σ = 1

(c) Covtype, n = 100,
m = 104, σ = 1

(d) RCV1, n = 100,
m = 103, σ = 10−4

Figure 3: Performances of various decentralized algorithms on the logistic regression task with
m = 104 points per node, regularization parameter σ = 1 and communication delays τ = 5 on 2D
grid networks of different sizes.

with out-of-the-box hyperparameters given by theory on data extracted from the standard Higgs,
Covtype and RCV1 datasets from LibSVM. The underlying graph is assumed to be a 2D grid network.
Experiments were run in a distributed manner on an actual computing cluster. Yet, plots are shown for
idealized times in order to abstract implementation details as well as ensure that reported timings were
not impacted by the cluster status or implementation details. All the details of the experimental setup
as well as a comparison with centralized algorithms can be found in Appendix E. An implementation
of ADFS is also available in supplementary material.
Figure 3a shows that, as predicted by theory, ADFS and Point-SAGA have similar rates on small
networks whereas all other algorithms are significantly slower. Figures 3b, 3c and 3d use a much
larger grid to evaluate how these algorithms scale. In this setting, Point-SAGA is the slowest algorithm
since it has 100 times less computing power available. MSDA performs quite well on the Covtype
dataset thanks to its very good network scaling (dependent on κb rather than κs). Yet, the m

√
κb

factor dominates on the Higgs dataset, making it significantly slower. DSBA has to communicate after
each proximal step, thus having to wait for a time τ = 5 at each step. ESDACD does not perform
well either because m > τ and it has to perform as many batch computing steps as communication
steps. ADFS does not suffer from any of these drawbacks and therefore outperforms other approaches
by a large margin on these experiments. This illustrates the fact that ADFS combines the strengths
of accelerated stochastic algorithms, such as Point-SAGA, and fast decentralized algorithms, such
as MSDA. We see that DSBA initially outperforms ADFS on the RCV1 dataset. This may be due
to statistical reasons, since there is more overlap of the local datasets of the different nodes in this
experiment than in the others. Yet, we see that ADFS has a better rate in the steady state and quickly
catches up. Besides, we still used a value τ = 5 but a much higher value of τ would be more realistic
in this high dimensional setting since local computations are sparse whereas communications are
fully dimensional. We only compare DSBA and ADFS in this setting since the high-dimensionality
of the dataset made the computation of dual gradients expensive, and Point-SAGA is much slower
when using 100 nodes since it is a single-machine algorithm, as shown on the Higgs and Covtype
datasets.

7 Conclusion

In this paper, we provided a novel accelerated stochastic algorithm for decentralized optimization. To
the best of our knowledge, it is the first decentralized algorithm that successfully leverages the finite-
sum structure of the objective functions to match the rates of the best known sequential algorithms
while having the network scaling of optimal batch algorithms. The analysis in this paper could be
extended to better handle heterogeneous settings, both in terms of hardware (computing times, delays)
and local functions (different regularities). Finally, finding a locally synchronous algorithm that can
take advantage of arbitrarily low communication delays (beyond the τ > 1 limit) to scale to large
graphs is still an open problem.
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algorithms for smooth and strongly convex distributed optimization in networks. In International
Conference on Machine Learning, pages 3027–3036, 2017.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In International Conference on Machine Learning, pages 64–72,
2014.

Zebang Shen, Aryan Mokhtari, Tengfei Zhou, Peilin Zhao, and Hui Qian. Towards more efficient
stochastic decentralized learning: Faster convergence and sparse communication. In International
Conference on Machine Learning, pages 4631–4640, 2018.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training over
decentralized data. In International Conference on Machine Learning, pages 4855–4863, 2018.

Lin Xiao, Adams Wei Yu, Qihang Lin, and Weizhu Chen. DSCOVR: Randomized primal-dual block
coordinate algorithms for asynchronous distributed optimization. Journal of Machine Learning
Research, 20(43):1–58, 2019.

Yun Zeng, Augustin Chaintreau, Don Towsley, and Cathy H Xia. Throughput scalability analysis of
fork-join queueing networks. Operations Research, 66(6):1728–1743, 2018.

11



Section A is a self-contained section with the statement and proofs of the extended APCG algorithm.
Then, Section B presents the derivations required to obtain ADFS from the extended APCG algorithm.
Section C is dedicated to the study of waiting time in the locally synchronous model, and the analysis
of the speed of ADFS for a specific choice of parameters is then given in Section D. Finally, Section E
details the experimental setting and gives additional experiments involving centralized algorithms.

A Generalized APCG
In this section, we study the generic problem of accelerated proximal coordinate descent. We give an
algorithm that works with arbitrary sampling of the coordinates, thus yielding a stronger result than
state-of-the-art approaches [Lin et al., 2015, Fercoq and Richtárik, 2015]. This is a key contribution
that allows to obtain fast rates when sampling probabilities are heterogeneous and determined by
the problem. It is especially useful in our case to pick different probabilities for computing and for
communicating. We also extend the result to the case in which the function is strongly convex only
on a subspace. Since this section of the Appendix is intended to detail the extended APCG general
algorithm for a generic problem, it is mostly self-contained, and notations are in particular different
from the rest of the paper. More specifically, we study the following generic problem:

min
x∈Rd

fA(x) +
d∑
i=1

ψi(x
(i)), (8)

where all the functions ψi are convex and fA is such that there exists a matrix A such that fA is
(σA)-strongly convex on Ker(A)⊥, the orthogonal of the kernel of A. Since, A†A is the projector on
Ker(A)⊥, (recall that A† is the pseudo-inverse of A), the strong convexity on this subspace can be
written as the fact that for all x, y ∈ Rd:

fA(x)− fA(y)≥∇fA(y)TA†A(x− y) + σA

2 (x− y)TA†A(x− y). (9)

Note that this implies that fA is constant on Ker(A), so in particular there exists a function f such
that for any x ∈ Rd, fA(x) = f(Ax). In this case, σA is such that xTAT∇2f(y)Ax ≥ σA‖x‖2 for
any x ∈ Ker(A)⊥ and y ∈ Rd. Besides, fA is assumed to be (Mi)-smooth in direction i meaning
that its gradient in the direction i (noted∇ifA) is (Mi)-Lipschitz. This is the general setting of the
problem of Equation (5), that can be recovered by taking fA = qA and ψi = f̃∗i . Proximal coordinate
gradient algorithms are known to work well for these problems, which is why we would like to
use APCG [Lin et al., 2014]. Yet, we would like to pick different probabilities for computing and
communication edges, whereas APCG only handles uniform coordinates sampling. Furthermore, the
first term is strongly-convex only on the orthogonal of the kernel of the matrix A, so APCG cannot
be applied straightforwardly. Therefore, we introduce an extended version of APCG, presented in
Algorithm 2, and we explicit its rate in Theorem 4. This extended APCG can then directly be applied
to solve the problem of Equation (5).

A.1 Algorithm and results
In this appendix, since there is no need to distinguish between primal and dual variables variables as
in the main text, we denote ei ∈ Rd the unit vector corresponding to coordinate i, and x(i) = eTi x for
any x ∈ Rd. Let Ri = eTi A

†Aei and pi be the probability that coordinate i is picked to be updated.
Constant S is such that S2 ≥ MiRi

p2i
for all i. Then, following the approaches of Nesterov and Stich

[2017] and Lin et al. [2015], we fix A0, B0 ∈ R and recursively define sequences αt, βt, at, At and
Bt such that:

a2
t+1S

2 = At+1Bt+1, Bt+1 = Bt + σAat+1, At+1 = At + at+1,

αt =
at+1

At+1
, βt =

σAat+1

Bt+1
.

Finally, we introduce the sequences (yt), (vt) and (xt), that are all initialized at 0, and (wt) such that
for all t, wt = (1− βt)vt + βtyt. We define ηi,t = at+1

Bt+1pi
and the proximal operator:

proxηi,tψi
: x 7→ arg min

v

1

2ηi,t
‖v − x‖2 + ψi(v).

We denote ∇ifA = eie
T
i ∇fA the coordinate gradient of fA along direction i. For generalized
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Algorithm 2 Generalized APCG(A0, B0, S, σA)

y0 = 0, v0 = 0, t = 0
while t < T do
yt = (1−αt)xt+αt(1−βt)vt

1−αtβt

Sample i with probability pi
vt+1 = zt+1 = (1− βt)vt + βtyt − ηi,t∇ifA(yt)

v
(i)
t+1 = proxηiψi

(
z

(i)
t+1

)
xt+1 = yt + αtRi

pi
(vt+1 − (1− βt)vt − βtyt)

end while

APCG to work well, the proximal operator needs to be taken in the subspace defined by the projector
A†A, and so the non-smooth ψi terms have to be separable after composition with A†A. Since A†A
is a projector, this constraint is equivalent to stating that either Ri = 1 (projection does not affect the
coordinate i), or ψi = 0 (no proximal update to make).

Assumption 1. The functions fA and ψ are such that equation Equation (9) holds for some σA ≥ 0
and for all i ∈ Rd, fA is (Mi)-smooth in direction i and ψ and A are such that either Ri = 1 or
ψi = 0.

This natural assumption allows us to formulate the proximal update in standard squared norm since
the proximal operator is only used for coordinates i for which A†Aei = ei. Then, we formulate
Algorithm 2 and analyze its rate in Theorem 4.

Theorem 4. Let F : x 7→ fA(x) +
∑d
i=1 ψi

(
x(i)
)

such that Assumption 1 holds. If S is such that
S2 ≥ MiRi

p2i
and 1− βt − αtRi

pi
≥ 0, the sequences vt and xt generated by APCG verify:

BtE
[
‖vt − θ?‖2A†A

]
+ 2At [E [F (xt)]− F (θ?)] ≤ C0,

where C0 = B0‖v0 − θ?‖2 + 2A0 [F (x0)− F (θ?)] and θ? is a minimizer of F . The rate of APCG
depends on S through the sequences αt and βt.

Our extended APCG algorithm is also closely related with an arbitrary sampling version of AP-
PROX [Fercoq and Richtárik, 2015]. Yet, APPROX has an explicit formulation with a more flexible
block selection rule than choosing only one coordinate at a time. Similarly to Lee and Sidford [2013],
it also uses iterations that can be more efficient, especially in the linear case. These extensions can
also be applied to APCG under the same assumptions, but this is beyond the scope of this paper.
Theorem 4 is a general method that in particular requires to set values for A0, B0, α0 and β0. The
two following corollaries give choices of parameters depending on whether σA > 0 or σA = 0, along
with the rate of APCG in these cases.

Corollary 1 (Strongly Convex case). Let F be such that it verifies the assumptions of Theorem 4. If
σA > 0, we can choose for all t ∈ N αt = βt = ρ andAt = σ−1

A Bt = (1−ρ)−t with ρ =
√
σAS

−1.
In this case, the condition 1−βt− αtRi

pi
≥ 0 can be weakened to 1− αtRi

pi
≥ 0 and it is automatically

satisfied by our choice of S, αt and βt. In this case, APCG converges linearly with rate ρ, as shown
by the following result:

σAE
[
‖vt − θ?‖2A†A

]
+ 2 [E [F (xt)]− F (θ?)] ≤ C0(1− ρ)t

Corollary 2 (Convex case). Let F be such that it verifies the assumptions of Theorem 4. If σA = 0,
we can choose βt = 0 and α0 = pmin = mini pi. In this case, the condition 1− βt − αtRi

pi
≥ 0 is

always satisfied for our choice of S and the error verifies:

E [F (xt)]− F (θ?) ≤ 2

t2

[
S2r2

t +
2

p2
min

[F (x0)− F (θ?)]

]
,

with r2
t = ‖v0 − θ?‖2A†A − E[‖vt − θ?‖2A†A].

In the convex case, we only have control over the objective function F and not over the parameters.
This in particular means that it is only possible to have guarantees on the dual objective in the case of
non-smooth ADFS.
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A.2 Proof of Theorem 4
Before starting the proof, we define wt = (1− βt)vt + βtyt, and:

V ti (v) =
Bt+1pi
2at+1

‖v − w(i)
t + ηie

T
i ∇f(yt)‖2 + ψi(v).

Then, we give the following lemma, that we prove later:
Lemma 1. If either 1− βt− αt

pi
≥ 0 or αt = βt and 1− αt

pi
≥ 0 for any i such that ψi 6= 0, then for

any t and i such that ψi 6= 0, we can write x(i)
t =

∑t
l=0 δ

(i)
t (l)v

(i)
l such that

∑t
l=0 δ

(i)
t (l) = 1 and

for any l, δ(i)
t (l) ≥ 0. We define ψ̂(i)

t =
∑t
l=0 δ

(i)
t (l)ψi(v

(i)
l ) and ψ̂t =

∑d
i=1 ψ̂

(i)
t . Then, if Ri = 1

whenever ψi 6= 0, ψ(xt) ≤ ψ̂t and:

Eit
[
ψ̂t+1

]
≤ αtψ(ṽt+1) + (1− αt)ψ̂t. (10)

where ṽ(i)
t+1 = arg minv V

t
i (v) for all i. In particular, v(it)

t+1 = ṽ
(it)
t+1 and v(j)

t+1 = w
(j)
t for j 6= it.

Note that Lemma 1 is a generalization to arbitrary sampling probabilities of the beginning of the
proof in Lin et al. [2015]. We can now prove the main theorem.

Proof of Theorem 4. This proof follows the same general structure as Nesterov and Stich [2017]. In
particular, it follows from expanding the ‖vt+1 − θ?‖2 term. In the original proof, vt+1 = wt − g
where g is a gradient term so the expansion is rather straightforward. In our case, vt+1 is defined by a
proximal mapping so a bit more work is required. Yet, similar terms will appear, plus the function
values of the non-smooth term that we control with Lemma 1. We start by showing the following
equality:

Bt+1pi
2at+1

[‖vt+1 − θ?‖2A†A+‖vt+1 − wt‖2A†A − ‖θ
? − wt‖2A†A]

≤ 〈∇ifA(yt), θ
? − vt+1〉A†A + ψi

(
θ?(i)

)
− ψi

(
v

(i)
t+1

)
.

(11)

When ψi = 0, it follows from using vt+1 = wt − at+1

Bt+1pi
∇ifA(yt) and basic algebra (expanding the

squared terms).
When ψi 6= 0, A†Aei = ei because eTi A

†Aei = 1 and A†A is a projector. Therefore, we obtain

‖vt+1 − θ?‖2A†A − ‖wt − θ
?‖2A†A = ‖v(i)

t+1 − θ?
(i)‖2 − ‖w(i)

t − θ?
(i)‖2, (12)

because vt+1 is equal to wt for coordinates other than i. We now use the strong convexity of V ti at
points v(i)

t+1 (its minimizer, by definition) and θ?(i) (i-th coordinate of a minimizer of F ) to write
that V ti (v

(i)
t+1) + Bt+1pi

2at+1
‖v(i)
t+1 − θ?

(i)‖2 ≤ V ti (θ?(i)). This is a key step from the proof of Lin et al.
[2015]. Then, expanding the V ti terms yields:

Bt+1pi
2at+1

[
‖v(i)
t+1 − θ?

(i)‖2 + ‖v(i)
t+1 − w

(i)
t +

at+1

Bt+1pi
∇ifA(yt)‖2 − ‖θ? − wt +

at+1

Bt+1pi
∇ifA(yt)‖2

]
≤ ψi

(
θ?(i)

)
− ψi

(
v

(i)
t+1

)
.

We can now retrieve Equation (11) by pulling gradient terms out of the squares and using Equa-
tion (12). We now evaluate each term of Equation (11). First of all, we use the form of xt+1 and the
fact that wt − vt+1 = eTi (wt − vt+1) (only one coordinate is updated) to show:

E
[
at+1

pi
〈∇ifA(yt), θ

? − vt+1〉A†A
]

= at+1E
[
〈 1

pi
∇ifA(yt), θ

? − wt〉A†A
]

+At+1E
[
〈∇ifA(yt),

αt
pi

(wt − vt+1)〉A†A
]

= at+1〈∇fA(yt), θ
? − wt〉A†A +At+1E [〈∇ifA(yt), yt − xt+1〉] ,

where we used that Ri = eTi A
†Aei and yt − xt+1 = αtRi

pi
(wt − vt+1).
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The rest of this proof closely follows the analysis from Hendrikx et al. [2019], which is an adaptation
of Nesterov and Stich [2017] to strong convexity only on a subspace. The main difference is that it is
also necessary to control the function values of ψ, which is done using Lemma 1. For the first term,
we use the strong convexity of f as well as the fact that wt = yt − 1−αt

αt
(xt − yt) to obtain:

at+1∇fA(yt)
TA†A(θ? − wt) = at+1∇fA(yt)

TA†A

(
θ? − yt +

1− αt
αt

(xt − yt)
)

≤ at+1

(
fA(θ?)− fA(yt)−

1

2
σA‖yt − θ?‖2A†A +

1− αt
αt

(fA(xt)− fA(yt))

)
≤ at+1fA(θ?)−At+1fA(yt) +AtfA(xt)−

1

2
at+1σA‖yt − θ?‖2A†A.

For the second term, we use the fact that xt+1 − yt has support on ei only (just like vt+1 − wt) and
the directional smoothness of fA to obtain:

At+1〈∇ifA(yt), yt − xt+1〉 ≤ At+1

[
fA(yt)− fA(xt+1) +

Mi

2
‖xt+1 − yt‖2

]
≤ At+1 (fA(yt)− fA(xt+1)) +

Bt+1

2

MiRi
p2
i

a2
t+1

At+1Bt+1
Ri‖eTi (vt+1 − wt)‖2

≤ At+1 (fA(yt)− fA(xt+1)) +
Bt+1

2
‖vt+1 − wt‖2A†A.

Noting ∆fA(xt) = E [f(xt)]− fA(θ?) and remarking that at+1 = At+1−At, we obtain, using that
αt = at+1

At+1
:

E
[
at+1

pi
〈∇ifA(yt), θ

? − vt+1〉A†A
]
≤ At∆fA(xt)−At+1∆fA(xt+1) +

Bt+1

2
E
[
‖wt − vt+1‖2A†A

]
− at+1σA

2
‖yt − θ?‖2A†A.

Using Lemma 1, we derive in the same way:

E
[
at+1

pi

[
ψi

(
θ?(i)

)
− ψi

(
v

(i)
t+1

)]]
= at+1ψ(θ?)−At+1αtψ(ṽt+1)

≤ At
(
ψ̂t − ψ(θ?)

)
−At+1

(
ψ̂t+1 − ψ(θ?)

)
.

Now, we can multiply Equation (11) by at+1

pi
and take the expectation over i. The ‖vt+1 − wt‖2A†A

terms cancel and we obtain:
Bt+1

2
E
[
‖vt+1 − θ?‖2A†A

]
+At+1∆F̂A(xt+1) ≤

At∆F̂A(xt) +
Bt+1

2
‖wt − θ?‖2A†A −

at+1σA
2
‖yt − θ?‖2A†A,

where ∆F̂A(xt) = ∆fA(xt) + E
[
ψ̂t

]
− ψ(θ?). Convexity of the squared norm yields ‖wt −

θ?‖2A†A ≤ (1− βt)‖vt − θ?‖2A†A + βt‖yt − θ?‖2A†A. Now remarking that Bt+1(1− βt) = Bt and
at+1σA = Bt+1βt, and summing the inequalities until t = 0, we obtain:

BtE
[
‖vt − θ?‖2A†A

]
+ 2At∆F̂A(xt) ≤ 2A0∆FA(x0) +B0‖v0 − θ?‖2A†A.

We finish the proof by using the fact that ψ(xt) ≤ ψ̂t and ψ(x0) = ψ̂0 since x0 = v0.

Now that we have proven Theorem 4, we can proceed to the proof of Lemma 1.

Proof of Lemma 1. This lemma is a generalization of the lemma from APCG with arbitrary probabil-
ities (instead of uniform ones). It still uses the fact that xt can be written as a convex combination
of (vl)l≤t, but it requires to use a different convex combination for each coordinate of xt, thus
crucially exploiting the separability of the proximal term. If coordinate i is such that ψi = 0, then
ψ̂

(i)
t+1 ≤ αtψi(ṽ

(i)
t+1) + (1−αt)ψ̂(i)

t is automatically satisfied for any δ(i)
t . For coordinates i such that
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ψi 6= 0 (and so Ri = 1), we start by expressing xt+1 in terms of xt, vt+1 and vt . More precisely, we
write that for any t > 0:

x
(i)
t+1 = y

(i)
t +

αt
pi

(v
(i)
t+1 − w

(i)
t ).

Indeed, either coordinate i is updated at time t or v(i)
t+1 = w

(i)
t so the previous equation always holds.

We can then develop the wt and yt terms to obtain x(i)
t+1 only in function of x(i)

t , v(i)
t and v(i)

t+1:

x
(i)
t+1 =

αt
pi
v

(i)
t+1 +

(
1− αtβt

pi

)
y

(i)
t −

αt(1− βt)
pi

v
(i)
t

=
αt
pi
v

(i)
t+1 +

(
1− αtβt

pi

)
(1− αt)x(i)

t + αt(1− βt)v(i)
t

1− αtβt
− αt(1− βt)

pi
v

(i)
t

=
αt
pi
v

(i)
t+1 + αt(1− βt)

[
1− αtβt

pi

1− αtβt
− 1

pi

]
v

(i)
t +

(
1− αtβt

pi

)
(1− αt)
1− αtβt

x
(i)
t

=
αt
pi
v

(i)
t+1 +

αt(1− βt)
1− αtβt

(
1− 1

pi

)
v

(i)
t +

(
1− αtβt

pi

)
(1− αt)
1− αtβt

x
(i)
t .

At this point, all coefficients sum to 1. Indeed, they all sum to 1 at the first line and we have
expressed w(i)

t and then y(i)
t as convex combinations of other terms, thus keeping the value of the

sum unchanged. Yet, pi < 1 so the coefficient on the second term is negative. Fortunately, it is
possible to show that the v(i)

t term in the decomposition of x(i)
t is large enough so that the v(i)

t term
in the decomposition of x(i)

t+1 is positive. More precisely, we now show by recursion that for t ≥ 0:

x
(i)
t+1 =

αt
pi
v

(i)
t+1 +

t∑
l=0

δ
(i)
t+1(l)v

(i)
l , (13)

with δ(i)
t+1(l) ≥ 0 for l ≤ t. For t = 0, x0 = v0 and x(i)

1 = α0

pi
v

(i)
1 +

(
1− α0

pi

)
v

(i)
0 . We now assume

that Equation (13) holds for a given t > 0, and expand δ(i)
t+1(t) to show that it is positive. Using that

δ
(i)
t (t) = αt

pi
, we write:

δ
(i)
t+1(t) =

αt(1− βt)
1− αtβt

(
1− 1

pi

)
+
αt
pi

(
1− αtβt

pi

)
(1− αt)
1− αtβt

=
αt

1− αtβt

[
(1− βt)

(
1− 1

pi

)
+

(1− αt)
pi

(
1− αtβt

pi

)]
=

αt
1− αtβt

[
1− βt −

1

pi
+
βt
pi

+
1

pi
− αt
pi
− (1− αt)

αtβt
p2
i

]
=

αt
1− αtβt

[(
1− βt −

αt
pi

)
+
βt
pi

(
1− (1− αt)

αt
pi

)]
.

We conclude that δ(i)
t+1(t) ≥ 0 since 1− βt − αt

pi
≥ 0. Note that this condition can be weakened to

1− α2
t

p2i
≥ 0 when βt = αt or when βt = 0. We also deduce from the form of x(i)

t+1 that for l < t, the

only coefficients on v(i)
l in the development of x(i)

t+1 come from the x(i)
t term and so:

δ
(i)
t+1(l) =

(
1− αtβt

pi

)
(1− αt)
1− αtβt

δ
(i)
t (l), (14)

so these coefficients are positive as well. Since they also sum to 1, it implies that x(i)
t is a convex

combination of the v(i)
l for l ≤ t, and we use the convexity of ψi to write:

ψi(x
(i)
t ) = ψi

(
t∑
l=0

δ
(i)
t (l)v

(i)
l

)
≤

t∑
l=0

δ
(i)
t (l)ψi(v

(i)
l ) = ψ̂

(i)
t .
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Now, we can properly express ψ̂(i)
t+1 using the decomposition of x(i)

t+1 in terms of δ(i)
t+1:

E
[
ψ̂

(i)
t+1

]
= E

[
αt
pi
ψi(v

(i)
t+1)

]
+
αt(1− βt)
1− αtβt

(
1− 1

pi

)
ψi(v

(i)
t ) +

(
1− αtβt

pi

)
1− αt

1− αtβt

t∑
l=0

δ
(i)
t (l)ψi(v

(i)
l )

= αtψi(ṽ
(i)
t+1) + (1− pi)

αt
pi
ψi(w

(i)
t ) +

αt(1− βt)
1− αtβt

(
1− 1

pi

)
ψi(v

(i)
t ) +

(
1− αtβt

pi

)
1− αt

1− αtβt
ψ̂

(i)
t

At this point, we use the convexity of ψi to develop ψi(w
(i)
t ) and then ψi(y

(i)
t ) in the following way:

ψi(w
(i)
t ) ≤ (1− βt)ψi(v(i)

t ) + βtψi(y
(i)
t )

≤ (1− βt)ψi(v(i)
t ) +

βt
1− αtβt

[
(1− αt)ψi(x(i)

t ) + αt(1− βt)ψi(v(i)
t )
]

=
1− βt

1− αtβt
ψi(v

(i)
t ) +

βt(1− αt)
1− αtβt

ψi(x
(i)
t ).

If we plug these expressions into the development of E
[
ψ̂

(i)
t+1

]
, the ψi(v

(i)
t ) terms cancel and we

obtain:

E
[
ψ̂

(i)
t+1

]
≤ αtψi(ṽ(i)

t+1) + αt

(
1

pi
− 1

)
βt(1− αt)
1− αtβt

ψi(x
(i)
t ) +

(
1− αtβt

pi

)
1− αt

1− αtβt
ψ̂

(i)
t

We now use the fact that ψi(x
(i)
t ) ≤ ψ̂(i)

t (by convexity of ψi) to get:

E
[
ψ̂

(i)
t+1

]
≤ αtψi(ṽ(i)

t+1) +
1− αt

1− αtβt

[
αtβt

(
1

pi
− 1

)
+

(
1− αtβt

pi

)]
ψ̂

(i)
t

≤ αtψi(ṽ(i)
t+1) + (1− αt)ψ̂(i)

t

This holds for any coordinate i and so E
[
ψ̂t+1

]
≤ αtψ(ṽt+1 + (1 − αt)ψ̂t for all t ≥ 0, which

finishes the proof of the lemma.

A.3 Proof of the corollaries
Now that that we have proven the main result, we show how specific choices of parameters lead to
fast algorithms.

Proof of Corollary 1. If σA > 0, then the parameters can be chosen as αt = βt = ρ =
√
σA

S , with
At = (1− ρ)−t and Bt = σAAt. These expressions can then be plugged into the recursion to verify
that they do satisfy it. This choice is classic and slightly suboptimal for small values of t compared
with the choice made by Nesterov and Stich [2017].
Yet, it remains to prove that αtRi ≤ pi to verify the assumptions of Theorem 4. This assumption
was directly verified in the case of APCG thanks to the uniform probabilities. We show that this
also holds in the arbitrary-sampling formulation with strong convexity on a subspace, and this result
validates our choice of parameters. In particular, we write:

αtRi = ρRi ≤
√
σA
S

Ri ≤
√
σARi
Mi

pi.

Then, we take x? such that∇fA(x?) = 0 and use the smoothness and (A†A)-strong convexity of fA
to write that for any coordinate i and h > 0:

Mi

2
‖hei‖2 ≥ f(x? + hei)− f(x?) ≥ σA

2
‖hei‖A†A.

In particular, this means that Mi ≥ σARi, which means that αtRi ≤ pi for all i.
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Proof of Corollary 2. We first prove that αt can actually be obtained by a simple recursion. This
comes from the fact that the recursions in Lin et al. [2015] and Nesterov and Stich [2017] are actually
the same. If σA = 0 then we have to choose βt = 0 for all t. Then, we can choose Bt = B0 for any
B0 > 0. This allows to write (At+1−At)2S2 = AtB0 for all t, which is a second degree polynomial
in the variable At+1. We choose the positive root in order to have at+1 ≥ 0, which yields:

At+1 = At +
B0

2S2

(
1 +

√
1 + 4S2B−1

0 At

)
.

Coefficients (at) can be computed using

at+1 = At+1 −At =
B0

2S2

(
1 +

√
1 + 4S2B−1

0 At

)
,

and so we use the fact that at+1S
2 = At+1Bt+1, which can be rewritten as αt = B0

at+1S2 . to obtain
the sequence (αt) as:

αt =
2

1 +
√

1 + 4S2B−1
0 At

.

In particular,

At =

[(
2

αt
− 1

)2

− 1

]
B0

4S2
.

This expression for At and At+1 can be substituted in the relation At+1 = At+ B0

at+1S2 , which yields
after some simplifications:

α−2
t+1 − α

−1
t+1 − α

−2
t = 0,

which is a second degree polynomial in the variable α−1
t+1. This can be solved, leading to

αt+1 =
2

1 +
√

1 + 4α−2
t

.

Multiplying and dividing by 1−
√

1 + 4α−2
t leads to:

αt+1 =

√
α4
t + 4α2

t − α2
t

2
,

which is the exact same recursion as in Lin et al. [2015] and Fercoq and Richtárik [2015]. In particular,
only the value of α0 matters and only the sequence αt actually needs to be computed, since the only
coefficients needed are the αt and at+1

Bt+1
= 1

αtS2 .
We would like to choose the smallest possible α0, se we take α0 = pmin where pmin = mini pi
where the minimum is over all coordinates such that ψi 6= 0. This is enough to respect the condition
αt ≤ pmin since (αt) is a decreasing sequence. This leads to

A0 =

[(
2

pmin
− 1

)2

− 1

]
B0

4S2
≤ B0

p2
minS

2
.

Since A0 ≥ 0, a direct recursion yields At ≥ B0t
2

4S2 . We call r2
t = ‖v0− θ?A‖2A†A−E[‖vt− θ?A‖2A†A],

and ∆Ft = E[F (xt)]− F (θ?A), then:

∆Ft ≤
1

2At

(
B0r

2
t + 2A0F0

)
=

B0

2At

(
r2
t +

2

S2p2
min

∆F0

)
≤ 2S2

t2

(
r2
t +

2

S2p2
min

∆F0

)
,

which finishes the proof of the rate.
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B Algorithm Derivation
B.1 Projection of virtual edges
Theorem A requires that for any coordinate i, either the proximal part ψi = 0 or the coordinate is
such that eTi A

†Aei = 1, which is equivalent to having A†Aei = ei. In our case, ψk` = 0 when
(k, `) is a communication edge. Lemma 2 is a small result that shows that the projection condition is
satisfied by virtual edges.
Lemma 2. If (k, `) is a virtual edge then Rk` = 1.

Proof. Let x ∈ RE+nm such that Ax = 0. From the definition of A, either x = 0 or the support of x
is a cycle of the graph. Indeed, for any edge (k, `), Aek` has non-zero weights only on nodes k and `.
Virtual nodes have degree one, so virtual edges are parts of no cycles and therefore xT ek,` = 0 for
all virtual edges (k, `). Operator A†A is the projection operator on the orthogonal the kernel of A, so
it is the identity on virtual edges.

B.2 From edge variables to node variables
Taking the dual formulation implies that variables are associated with edges rather than nodes.
Although it could be possible to work with edge variables, it is generally inefficient. Indeed, the
algorithm needs variable Ayt instead of variable yt for the gradient computation so standard methods
work directly with Ayt [Scaman et al., 2017, Hendrikx et al., 2019].
In this section, we call ṽt, ỹt and z̃t the dual variable sequences in RE+nm obtained by applying
Algorithm 2 on the dual problem of Equation 5. The new update equations can be retrieved by
multiplying each line of Algorithm 2 by A on the left, so that for example vt = Aṽt. Yet, there is
still a z̃t+1 term because of the presence of the proximal update. More specifically, we write for the
virtual edge between node i and its j-th virtual node:

ṽTt+1eij = proxηijψi,j

(
z̃Tt+1eij

)
. (15)

Fortunately, this update only modifies ṽt+1 when ψi,j 6= 0. This means that zt+1 is only modified
for local computation edges. Since local computation nodes only have one neighbour, the form of A
ensures that for any z̃ ∈ Rn(1+m) and virtual edge (k, `) corresponding to node i and its j-th virtual
node, (Az̃)(i,j) = −µk`z̃k`. In particular, if node k is the center node i and node ` is the virtual node
(i, j), the proximal update can be rewritten:

(Aṽt+1)
(i,j)

= −µijproxηijψi,j

(
− 1

µij
(Az̃t+1)(i,j)

)
= −µij arg min

v

1

2ηij
‖v −

(
− 1

µij
(Az̃t+1)(i,j)

)
‖2 + ψi,j(v)

= −µij arg min
v

1

2ηijµ2
ij

‖ − µijv − (Az̃t+1)(i,j)‖2 + f∗i,j(−µijv)−
µ2
ij

2Li,j
‖v‖2

= arg min
ṽ

1

2ηijµ2
ij

‖ṽ − (Az̃t+1)(i,j)‖2 + f∗i,j(ṽ)− 1

2Li,j
‖ṽ‖2

= proxηijµ2
ij f̃
∗
i,j

(
(Az̃t+1)

(i,j)
)
,

where f̃∗i,j : x→ f∗i,j(x)− 1
2Li,j
‖x‖2. For the center node, the update can be written:

(Aṽt+1)
(i)

= (Az̃t+1)
(i) − µijeTij z̃t+1 + µijproxηijψi,j

(
− 1

µij
(Az̃t+1)

(i,j)

)
= (Az̃t+1)

(i)
+ (Az̃t+1)

(i,j) − proxηijµ2
k`f̃
∗
i,j

(
(Az̃t+1)

(i,j)
)
.

B.3 Primal proximal updates
Moreau identity [Parikh and Boyd, 2014] provides a way to retrieve the proximal operator of f∗

using the proximal operator of f , but this does not directly apply to f̃∗i,j , making its proximal update
hard to compute when no analytical formula is available to compute f̃∗i,j . Fortunately, the proximal
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operator of f̃∗i,j can be retrieved from the proximal operator of f∗i,j . More specifically, if we denote
η̃ij = ηijµ

2
ij (it is clear in this section that they refer to the edge between node i and its virtual node

j), then we can also express the update only in terms of f∗i,j :

proxη̃ij f̃∗i,j

(
(Az̃t+1)

(i,j)
)

= arg min
v

1

2η̃ij
‖v − (Az̃t+1)

(i,j) ‖2 + f∗i,j(v)− 1

2Li,j
‖v‖2

= arg min
v

1

2

(
η̃−1
ij − L

−1
i,j

)
‖v‖2 − η̃−1

ij v
T (Az̃t+1)

(i,j)
+ f∗i,j(v)

= arg min
v

1

2
(
η̃−1
ij − L

−1
i,j

)−1 ‖v −
(
1− η̃ijL−1

i,j

)−1
(Az̃t+1)

(i,j) ‖2 + f∗i,j(v)

= prox(η̃−1
ij −L

−1
i,j )
−1
f∗i,j

((
1− η̃ijL−1

i,j

)−1
(Az̃t+1)

(i,j)
)
.

Then, we use the identity:
prox(ηf)∗(x) = ηproxη−1f∗

(
η−1x

)
, (16)

and the Moreau identity to write that:
proxηf∗(x) = x− ηproxη−1f

(
η−1x

)
. (17)

This allows us to retrieve the proximal operator on f̃∗i,j using only the proximal operator on fi,j :(
1− η̃ijL−1

i,j

)
proxη̃ij f̃∗i,j

(
(Az̃t+1)

(i,j)
)

= (Az̃t+1)
(i,j)−η̃ijprox(η̃−1

ij −L
−1
i,j )f

(
η̃−1
ij (Az̃t+1)

(i,j)
)
.

(18)
Note that the previous calculations are valid as long as η̃ijL−1

i,j ≤ 1 for all virtual edges. A way to
bound this is to replace by the values of µ2

ij and σA to get:

ρ ≤ κi
2κ
pij .

The constraint ρ < minij pij was already enforced by APCG, so this simply gives another constraint
that is generally verified unless nodes have very different local objectives (which should not happen
if m is big enough).

B.4 Smooth case
If the functions fi,j are smooth then the functions f∗i,j are strongly convex and so function qA
is strongly convex. ADFS can then be obtained by applying Algorithm 2 to Problem (5). The
value of S is obtained by remarking that qA is µ2

ij

(
Σ−1
i + Σ−1

j

)
smooth in the direction (i, j) and

λ+
min

(
ATΣ−1A

)
strongly convex on the orthogonal of the kernel of A. Lemma 2 guarantees that

either Ri = 1 (virtual edges) or ψi = 0 (communication edges), so we can apply Corollary 1 to get:
BtE

[
‖ṽt − θ?A‖2A†A

]
+ 2At [E [F ∗A(Ax̃t)]− F ∗A(θ?A)] ≤ C0,

where ṽt and x̃t are the dual variables andC0 is the same as in Theorem 1. ADFS works with variables
vt = Aṽt and xt = Ax̃t instead. Then, we use the fact that for any x, F ∗A(x) = F ∗A(A†Ax) to write
that E [F ∗A(x̃t)] = E

[
F ∗A(A†xt)

]
. Following Lin et al. [2015], and noting q : x 7→ 1

2x
TΣ−1x the

primal optimal point θ? can be retrieved as θ? = ∇q(Aθ?A) = Σ−1Aθ?A, where θ?A is the optimal
dual parameter. Finally,

λmax(ATΣ−2A)−1‖θt − θ?‖2 ≤ λmax(ATΣ−2A)−1‖Σ−1A(ṽt − θ?A)‖2 ≤ ‖ṽt − θ?A‖2A†A,
which finishes the proof of Theorem 1. Note that APCG also gives a guarantee in terms of dual
function values at points xt but we drop it in order to have a simpler statement.

B.5 Non-smooth setting
Extended APCG can be applied to the problem of Equation (5) even if function qA is not strongly
convex on the orthogonal of the Kernel of A. This is for example the case when the functions fi,j are
not smooth so that Σ−1 has diagonal entries equal to 0 and therefore Ker(ATΣ−1A) 6⊂ Ker(A) so
σA = 0. In this case, the choice of coefficients from Corollary 2 leads to Algorithm 3, a formulation
of ADFS that provides error guarantees when primal functions fi,j are not smooth. More formally, if

we define F ∗ : x→
∑n
i=1

[∑m
j=1 f

∗
i,j

(
x(i,j)

)
+ 1

2σi
‖x(i)‖2

]
, then:
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Theorem 5. If the functions fi,j are non-smooth then NS-ADFS guarantees:

E [F ∗(xt)]− F ∗(θ?) ≤
2

t2

[
S2

λ+
min(ATA)

r2
t +

2

p2
min

[F ∗(x0)− F ∗(θ?)]
]
,

with r2
t = ‖v0 − θ?‖2 − ‖vt − θ?‖2.

The guarantees provided by Theorem 5 are weaker than in the smooth setting. In particular, we lose
linear convergence and get the classical accelerated sublinear O(1/t2) rate. We also lose the bound
on the primal parameters— recovering primal guarantees is beyond the scope of this work.

Algorithm 3 NS-ADFS

x0 = 0, v0 = 0, t = 0, α0 = minvirtual edges (i,j) pij , ηk` = 1
αtS2

while t < T do
yt = (1− αt)xt + αtvt
Sample (k, `) with probability pk`
vt+1 = zt+1 = vt − ηt µ

2
k`

pk`
Wk`Σ

−1yt
if (k, `) is a computation edge between node i and virtual node (i, j) then
v

(i,j)
t+1 = proxηtµ2

ijp
−1
ij f

∗
i,j

(
z

(i,j)
t+1

)
v

(i)
t+1 = z

(i)
t+1 + z

(i,j)
t+1 − v

(i,j)
t+1

end if
xt+1 = yt + αtRk`

pk`
(vt+1 − vt)

αt+1 =

√
α4

t+4α2
t−α

2
t

2
end while
return θt = Σ−1vt

Note that the extra λ+
min(ATA) term comes from the fact that Theorem 5 is formulated with primal

parameter sequences xt = Ax̃t. Also note that αt = O
(
t−1
)
, and at+1

Bt+1
= O (t). The leading

constant governing the convergence rate is
λ+
min(ATA)

S2 , which is very related to the constant for the
smooth case, simply that the Σ−1 factor is removed. Therefore, we can obtain in the same way that if

we choose µ2
ij =

λ+
min(L)

1+m when (i, j) is a computation edge then we get:

λ+
min(ATA) ≥ λ+

min(L)

2(m+ 1)
.

Optimizing parameter ρ in order to minimize time yields ρcomp = ρcomm again, now leading in the
homogeneous case to choosing:

p∗comm =

(
1 +

√
γ̃m2

2(1 +m)

)−1

.

C Average Time per Iteration
C.1 More communications implies more waiting
A fundamental assumption for Theorem 2 is to assume that pcomm < pcomp. In particular, it prevents
pcomm from being too high since pcomm + pcomp = 1. Although this assumption seems quite
restrictive in the first place, it is very intuitive to want to avoid pcomm from being too high, especially
in the limit of pcomm → 1 and τ arbitrarily small. Consider that one node (say node 0) starts a local
update at some point. Communications are very fast compared to computations so it is very likely
that the neighbors of node 0 will only perform communication updates, and they will do so until
they have to perform one with node 0. At this point, they will have to wait until node 0 finishes its
local computation, which can take a long time. Now that the neighbors of node 0 are also blocked
waiting for the computation to finish, their neighbors will start establishing a dependence on them
rather quickly. If the probability of computing is small enough and if the computing time is large
enough, all nodes will sooner or later need to wait for node 0 to finish its local update before they
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can continue with the execution of their part of the schedule. In the end, only node 0 will actually be
performing computations while all the others will be waiting.
This phenomenon is not restricted to the limit case presented above and the synchronization cost
blows up as soon as pcomm > pcomp and τ < 1. In the proof below, the goal is to bound the total
expected weight

∑n
i=1E [Xt(i, w)] for w higher than a given threshold. Local computing operations

will move mass from small values of w to higher values of w. On the other hand, communication
operations will introduce synchronization between two nodes, thus increasing the total available mass∑
w≥0

∑n
i=1E [Xt(i, w)] (and not just moving it to higher values of w) because it will duplicate

the mass for Xt(i, w) to Xt(j, w) if nodes i and j communicate. This is the technical reason why
pcomm < pcomp is needed for this proof.

C.2 Detailed average time per iteration proof
The goal of this section is to prove Theorem 2. The proof is an extension of the proof of Theorem 2
from Hendrikx et al. [2019]. Similarly, we denote t the number of iterations that the algorithm
performs and τ ijc the random variable denoting the time taken by a communication on edge (i, j).
Similarly, τ il denotes the time taken by a local computation at node i. Then, we introduce the random
variable Xt(i, w) such that if edge (i, j) is activated at time t+ 1 (with probability pij), then for all
w ∈ N∗:

Xt+1(i, w) = Xt(i, w − τ ijc (t)) +Xt(j, w − τ ijc (t)),

where τ ijc (t) is the realization of τ ijc corresponding to the time taken by activating edge (i, j) at
time t. If node i is chosen for a local computation, which happens with probability pcomp

i then
Xt+1(i, w + τ il (t)) = Xt(i, w) for all w. Otherwise, Xt+1(j, w) = Xt(j, w) for all w. At time
t = 0, X0(i, 0) = 1 and X0(i, w) = 0 for all w. Lemma 3 gives a bound on the probability that
the time taken by the algorithm to complete t iterations is greater than a given value, depending on
variables Xt. Note that a Lemma similar to the one by Hendrikx et al. [2019] holds although variable
X has been modified.
Lemma 3. We denote Tmax(t) the time at which the last node of the system finishes iteration t. Then
for all ν > 0:

P (Tmax(t) ≥ νt) ≤
∑
w≥νt

n∑
i=1

E
[
Xt(i, w)

]
.

Proof. We first prove by induction on t that for any i ∈ {1, .., n}:

Ti(t) = max
w∈N,Xt(i,w)>0

w. (19)

To ease notations, we write wmax(i, t) = maxw∈N,Xt(i,w)>0 w. The property is true for t = 0
because Ti(0) = 0 for all i.
We now assume that it is true for some fixed t > 0 and we assume that edge (k, l) has been activated
at time t. For all i /∈ {k, l}, Ti(t + 1) = Ti(t) and for all w ∈ N∗, Xt+1(i, w) = Xt(i, w) so the
property is true. Besides, if j 6= l,

wmax(k, t+ 1) = max
w∈N∗,Xt(k,w−τc(t))+Xt(l,w−τkl

c (t))>0
w

= max
w∈N,Xt(i,w)+Xt(i,w)>0

w + τklc (t)

= τc(t) + max (wmax(k, t), wmax(l, t))

= τklc (t) + max (Tk(t), Tl(t)) = Tk(t+ 1).

Similarly if k = l (a local computation is performed at iteration t), then wmax(k, t+ 1) = τkl (t) +
wmax(k, t) = Tk(t) + τkl (t) = Tk(t+ 1). Then, we use the union bound and the the fact that having
Xt(i, w) > 0 is equivalent to having Xt(i, w) ≥ 1 since Xt(i, w) is integer valued to show that:

P (Tmax(t) ≥ νt) = P
(

max
w,

∑n
i=1X

t
i (w)>0

w ≥ νt
)
≤ P

(
∪w≥νt

n∑
i=1

Xt
i (w) ≥ 1

)
≤
∑
w≥νt

P

(
n∑
i=1

Xt
i (w) ≥ 1

)
,
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so using Markov inequality yields:

P (Tmax(t) ≥ νt) ≤
∑
w≥νt

n∑
i=1

E
[
Xt
i (w)

]
. (20)

VariablesXt
i are obtained by linear recursions, so Lemma 3 allows us to bound the growth of variables

with a simple recursion formula instead of evaluating a maximum. We write pcomp
i and pcomm

i the
probability that node i performs a computation (respectively communication) update at a given time
step, and pi = pcomp

i + pcomm
i . We introduce pcomp = mini p

comp
i and p̄comp = maxi p

comp
i (and

the same for communication probabilities).

Lemma 4. For all i, and all ν > 0, if 1
2 ≥ pcomp = p̄comp ≥ p̄comm then:

∑
w≥(νc+νl)t

n∑
i=1

E
[
Xt(i, w)

]
→ 0 when t→∞, (21)

with νc = 6pcτc and νl = 9plτl where pc = 4p̄comm and pl = p̄comp.

Note that the constants in front of the ν parameters are very loose.

Proof. Taking the expectation over the edges that can be activated gives, with τ ijc (τ) the probability
that τ ijc takes value τ (and the same for τl):

E
[
Xt+1(i, w)

]
= (1− pi)E

[
Xt(i, w)

]
+pcomm

n∑
j=1

pij

∞∑
τ=0

τ ijc (τ)
(
E
[
Xt(i, w − τ)

]
+ E

[
Xt(j, w − τ)

])
+ pcomp

i

∞∑
τ=0

τ ijl (τ)E
[
Xt(i, w − τ)

]
.

In particular, for all i, E
[
Xt+1(i, w)

]
≤ X̄t(w) where X̄0(w) = 1 if w = 0 and:

X̄t+1(w) = (1− p) X̄t(w) + 2p̄comm

∞∑
τ=0

τmax
c (τ)X̄t(w − τ) + p̄comp

∞∑
τ=0

τmax
l (τ)X̄t(w − τ).

with τmax
c (τ) = maxij τ

ij
c (τ) (and the same for τl). We now introduce φt(z) =

∑
w∈N z

wX̄t(w).
We denote φc and φl the generating functions of τmax

c (τ) and τmax
l (τ). A direct recursion leads to:

φt(z) =
(
1− pcomm − pcomp + p̄compφl(z) + 2p̄commφc(z)

)t
=
(
φ1(z)

)t
.

We denote φbin(p, t) the generating function associated with the binomial law of parameters p and t.
With this definition, we have:

φbin(pc, t)(φc(z))φbin(pl, t)(φl(z)) =

[(1− pc)(1− pl) + (1− pc)plφl(z) + (1− pl)pcφc(z) + pcplφc(z)φl(z)]
t
,

so we can define:

φt+(z) = (1 + δ)tφbin(pc, t)(φc(z))φbin(pl, t)(φl(z)),

where pc, pl and δ are such that:

pc
1− pc

≥ 2
p̄comm

1− p
,

pl
1− pl

=
p̄comp

1− p
and δ ≥ 1− p

(1− pc)(1− pl)
− 1.

Since p̄comp = pcomp then p ≥ p̄comp. Therefore, these conditions are satisfied for pc and pl as given
by Lemma 4 and δ = (1−pc)−1−1. Then (1+δ)(1−pc)(1−pl) ≥ 1−p, (1+δ)(1−pc)pl ≥ p̄comp

and (1 + δ)(1− pl)pc ≥ 2p̄comm. This means that if we write φ1(z) = a0 + acφc(z) + alφl(z) and
φ1

+(z) = b0 + bcφc(z) + blφl(z) then b0 ≥ a0, bc ≥ ac and bl ≥ al. In particular, all the coefficients
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of φt are smaller than the coefficients of φt+ where both functions are integral series. Therefore, if we
call Zt the random variables associated with the generating function (1 + δ)−tφt+ then for all i, t, w:

E
[
Xt(i, w)

]
≤ (1 + δ)tP (Zt = w) , (22)

where Zt = Ztc +Ztl = Bin(pc, t)(Zc) +Bin(pl, Zl)(τl) where Zc and Zl are the random variables
modeling the time of one communication or computation update. We can then use the bound
p(Zt ≥ (νc + νl)t) ≤ p(Ztc ≥ νct) + p(Ztl ≥ νlt). This way, we can bound the communication and
computation costs independently. Then, we write a Chernoff bound, i.e. for any λ > 0:

P
(
Ztc ≥ νt

)
≤ e−λνtE

[
eλZ

t
c

]
= e−λνtE

[
eλZc

]t
= e−λνt

[
1− pc + pc

∞∑
τ=0

pc(τ)eλτ

]t
,

where Sc is the sum of t i.i.d. random variables drawn from τc. If Zc = τc with probability 1
(deterministic delays) then this reduces to:

P
(
Ztc ≥ νct

)
≤ e−λνct

[
1− pc + pce

λτc
]
.

Finally, we take νc = kpcτc, λ = 1
τc

ln(k) and we use the basic inequality ln(1 + x) ≥ x
1+x to show

that:
− ln

[
P
(
Ztc ≥ νct

)]
≥ t
[
λνc − pc

(
eλτc − 1

)]
≥ t(k(ln(k)− 1)− 1)pc.

Using the same log inequality and the fact that pc ≥ 1
2 yields:

ln (1 + δ) = − ln(1− pc) ≤
pc

1− pc
≤ 2pc.

Therefore, choosing k = 6 ensures that k(ln(k)− 1)− 1 ≥ 3 and so:

(1 + δ)tP
(
Ztc ≥ νct

)
≤ e−tpc .

We can apply the same reasoning to Ztl , and the bound is still valid with k = 9 because pl = p̄comp ≥
p̄comm = pc/4. We finish the proof by using Equation (22).

D Algorithm Performances

ADFS has a linear convergence rate because it results from using generalized APCG. Yet, it is
not straightforward to derive hyperparameters that lead to a rate that is fast and that can be easily
interpreted. The goal of this section is to choose such parameters when the functions fi,j are smooth.

D.1 Smallest eigenvalue of the Laplacian of the augmented graph

The strong convexity of qA on the orthogonal of the kernel of A is equal to σA = λ+
min

(
ATΣ−1A

)
,

the smallest non-zero eigenvalue of ATΣ−1A. Indeed, Σ−1 is a diagonal matrix with strictly positive
entries only so Ker(ATΣ−1A) = Ker(A). The goal of this section is to prove that for a meaningful
choice of µ, the smallest eigenvalue of the Laplacian of the augmented graph is not too small
compared to the Laplacian of the actual graph. More specifically, we prove the following result:

Lemma 5. If for all virtual edge between a node i and its virtual node j, µij is such that µ2
ij =

λ+
min(L)

σiκi
Li,j , then for any x ∈ RE+nm

‖x‖2AT Σ−1A ≥ min
i∈{1,...,n}

λ+
min(L)

2σiκi
‖x‖2A†A.

In particular, σA ≥ min
λ+
min(L)

2(σi+
∑m

j=1 Lij) .

We prove this Lemma in three steps. Lemma 6 gives a characterization of the eigenvalues ofATΣ−1A
in terms of a determinant equation. Then, Lemma 7 a condition on the coefficients of a matrix so that
solutions to the previous equations exist. Finally, Lemma 8 transforms this condition into the lower
bound of Lemma 5.
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Lemma 6. We denote L the Laplacian matrix of the communication graph and define αi =
µ2
ij

Lij
and

∆λ the diagonal matrix such that (∆λ)ii = λ
(
σi + αiSi

αi−λ

)
where Si =

∑m
j=1 Li,j .

and . Then, the eigenvalues of ATΣ−1A, noted eig(ATΣ−1A) are such that:

eig(ATΣ−1A) ⊂ {λ, det(L−∆λ) = 0} ∪ {α1, ..., αn}.

Proof. For any rectangular matrix Q, all non-zero singular values of the matrix QTQ are also
non-zero singular values of the matrix QQT , so we can analyze the spectrum of the matrix L̃ =
Σ−1/2AATΣ−1/2 instead of the spectrum of ATΣ−1A. Then, we denote µ2

ij the weight of the

virtual edge (i, j) and M the diagonal matrix of size nm which is such that e(i,j)TMe(i,j) = µ2
ij for

all virtual nodes. Mn,m is the matrix of size n × nm such that (Mn,meij)
(i) = µ2

ij for all virtual
edges (i, j) and all other entries are equal to 0. Finally, S̃ is the diagonal matrix of size n such that
(S̃)ii =

∑n
j=1 µ

2
ij . All communication nodes are linked by the true graph, whereas all virtual nodes

are linked to their corresponding communication node.Then, if we denote L the Laplacian matrix of
the original true graph, the rescaled Laplacian matrix of the augmented graph writes:

L̃ = Σ−1/2

(
L+ S̃ −Mn,m

−MT
n,m M

)
Σ−1/2. (23)

Therefore, if we split Σ into two diagonal blocks Σcomm (for the communication nodes) and Σcomp

(for the computation nodes) and apply the block determinant formula, we obtain:

det(L̃− λId) = det(Σ−1
compM − λId)

× det(Σ−1/2
commLΣ−1/2

comm + Σ−1
commS̃ − λId−

Σ
− 1

2
commMn,mΣ

− 1
2

comp

(
Σ−1

compM − λId
)−1

Σ
− 1

2
compM

T
n,mΣ

− 1
2

comm).

Then, we choose M such that Σ−1
compM = diag(α1, ..., αn), meaning that µ2

ij = αiLi,j . With this
choice, the eigenvalues of L̃ are either included in {α1, ..., αn} or the solutions of:

det(Σ−
1
2 (L−∆λ)Σ−

1
2 ) = det(Σ−

1
2 )2 det(L−∆λ) = 0, (24)

where ∆λ is the diagonal matrix such that:

(∆λ)ii = σiλ+

n∑
j=1

µ2
ij

(
µ2
ij

µ2
ij − Li,jλ

− 1

)
. (25)

We finish the proof of Lemma 6 by taking µ2
ij = αiLi,j and by remarking that det(Σ−

1
2 ) 6= 0.

We now need to understand Ker(L−∆λ) more in details in order to have a lower bound on λ. We
deduce bounds from the following lemma:
Lemma 7. The following relations hold:

• ‖x‖2AT Σ−1A ≥ λ
+
min(ATΣ−1A)‖x‖2A†A for any x ∈ RE .

• If λ > 0 is such that Ker(L−∆λ) 6= {0} then λ ≥ mini αi or maxi(∆λ)ii ≥ λ+
min(L).

Proof. We know that Ker(Σ−1) = {0} since all local functions are strongly convex and smooth.
Therefore, Ker(ATΣ−1A) = Ker(A) and the first point follows directly.

We now fix λ such that 0 < λ < mini αi, meaning that (∆λ)ii > 0 for all i. Let x ∈ Ker(L−∆λ).
We write x as x = x+ + x̄1, with x̄ = 1

n

∑n
i=1 xi and x+ such that 1Tx+ = 0 where 1 is the vector

with all entries equal to 1. Then the following relation holds:

0 = (L−∆λ)x = Lx+ −∆λx+ − x̄∆λ1.

Therefore,
1T (L−∆λ)x = 0 = −1T∆λx+ − x̄1T∆λ1,
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which can be rewritten

x̄ = −1
T∆λx+

Tr(∆λ)
. (26)

In the same way, we obtain:

xT+(L−∆λ)x = 0 = xT+Lx+ − xT+∆λx+ − x̄xT+∆λ1,

and replacing x̄ by its expression yields:

xT+Lx+ = xT+∆λx+ −
(xT+∆λ1)2

Tr(∆λ)
.

Using that Tr(∆λ) > 0, we deduce that:

λ+
min(L)‖x+‖2 ≤ xT+Lx+ = xT+∆λx+ −

(xT+∆λ1)2

Tr(∆λ)
≤ ‖x+‖2 max

i
(∆λ)ii. (27)

If we assume that maxi(∆λ)ii < λ+
min(L) then Equation (27) implies that x+ = 0 since all the entries

of ∆λ are positive. We then deduce from Equation (26) that x̄ = 0 as well in this case, which implies
that if x ∈ Ker(L −∆λ) then x = 0. Therefore, Ker(L −∆λ) = {0} if maxi(∆λ)ii < λ+

min(L)
and 0 < λ < mini αi, which finishes the proof.

Lemma 8. If we choose αi =
λ+
min(L)

σiκi
, and λ < mini

αi

2 then maxi(∆λ)ii < λ+
min(L)

Proof. The function λ 7→ maxi(∆λ)ii is strictly increasing in λ on the interval [0,mini αi[. There-
fore, we simply need to solve the following equation on this interval:

λ

(
σi +

αiSi
αi − λ

)
= λ+

min(L). (28)

This equation can be rewritten:

λ2 − λ
(
αiκi +

λ+
min(L)

σi

)
+
αi
σi
λ+

min(L) = 0.

We choose αi =
λ+
min(L)

σiκi
to get:

λ2 − 2λ
λ+

min(L)

σi
+

1

κi

(
λ+

min(L)

σi

)2

= 0.

This is a second degree equation and its smallest root is given by:

λ−i ≥
λ+

min(L)

σi

(
1−

√
1− 1

κi

)
.

In particular, all its roots are bigger than the smallest one, so using the inequality
√

1− x ≤ 1− x
2 ,

we obtain that all the solutions λi of Equation (28) must satisfy:

λi ≥
λ+

min(L)

2σiκi
=
αi
2
.

We finish the proof by using the monotonicity of the function λ 7→ maxi(∆λ)ii.

D.2 Eigengap of the augmented graph
This section aims as justifying the γ̃ notation. Recall that it is defined such that γ̃ =

min(k,`)∈Ecomm
λ+
min(L)n2

µ2
k`e

T
k`A
†Aek`E2 . We show in this section that for any given family of regular graphs,

there exists a constant Cγ independent of the size of the graph such that Cγ γ̃ ≥ γ. Matrix A depends
on µ, and we consider in this section that µ2

k` = µ0 for all communication edges (k, `). Similar
results can be obtained when µ is heterogeneous.
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Regular graphs. We say that a family of graph is regular if there exists Cγ > 0 such that
eTk`A

†Aek` ≤ Cγ nE for any n > 2.
Recall that E is the number of edges (usually constrained by the graph family and the number
of nodes), and eTk`A

†Aek` is the effective resistance of edge (k, `). This assumption seems a bit
technical but it simply requires that all edges contribute equally to the connectivity of the graph, and
therefore is related to how symmetric the graph is. In particular, it is verified with Cγ = 1 for any
completely symmetric graph, such as the complete graph or the ring. Since eTk`A

†Aek` ≤ 1, it is also
satisfied any time the ratio n/E is bounded below, and in particular for the grid, the hypercube, or
any graph with bounded degree. Under these assumptions, and for any communication edge (k, `):

λ+
min(L)n2

µ2
k`e

T
k`A
†Aek`E2

≥ γ

Cγ

λmax(L)n

µ2
k`E

≥ γ

Cγ

Trace(L)

µ2
0E

= 2
γ

Cγ
.

Here, we used the fact that Trace(L) = 2µ2
0E, which can be deduced directly from the form of A

(each edge has weight µ2
0 and contributes two times, one for each end). We conclude by using the

fact that since the previous inequalities are true for any (k, `) ∈ Ecomm, it is in particular true for γ̃.

D.3 Communication rate and local rate
We know that the rate of ADFS can be written as the minimum of a given quantity over all edges of
the graph. This quantity will be very different whether we consider communication edges or virtual
edges. In this section, we give lower bounds for each type of edge, and show that we can trade one
for the other by adjusting the probability of communication.

Lemma 9. With the choice of parameters of Theorem 3, parameter ρ satisfies:

ρ ≥ 1√
2n

min

(
pcomm∆p

√
γ̃

2κ
, pcomp

√
rκ

Scomp

)
. (29)

Proof. Recall that the rate ρ is defined as:

ρ2 = min
k`

p2
k`

µ2
k`e

T
k`A
†Aek`

λ+
min(L̃)

σ−1
k + σ−1

`

, (30)

and that Lemma 5 ensures that

λ+
min(L̃) ≥ λ+

min(L)

2σκ
.

Therefore, for communication edges the rate writes:

ρ2
comm ≥ min

(k,`)∈Ecomm

(
1

σk
+

1

σ`

)−1
p2
k`

µ2
k`e

T
k`A
†Aek`

λ+
min (L)

2σκ
. (31)

If we take σk = σ for all k and p2
k` ≥ ∆2

pp
2
comm/|E|2 (corresponding to a homogeneous case), then

we can make γ̃ appear to obtain:

ρ2
comm ≥ ∆2

p

γ̃

κ

p2
comm

4n2
. (32)

For “computation edges”, we can write:

ρ2
comp ≥ min

ij

p2
ij

2
(
σ−1
i + L−1

i,j

) σκi

λ+
min (L)Li,j

λ+
min (L)

σκ
, (33)

because eTijA
†Aeij = 1 when (i, j) is a virtual edge (because it is part of no cycle). Since Scomp =

1
n

∑n
i=1

∑m
j=1

√
1 + Li,jσ

−1
i , this can be rewritten:

ρ2
comp ≥

rκ
2

p2
comp

n2S2
comp

. (34)
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D.4 Execution time
Now that we have specified the rate of ADFS (improvement per iteration), we can bound the time
needed to reach precision ε by plugging in the expected time to execute the schedule. In particular,
we show in this section Theorem 6, which is a more precise version of Theorem 3.
We introduce ∆p, rκ and cτ to quantify how heterogeneous the system is. More specifically, we
can define σ = maxi σi, κi = 1 + σ−1

i

∑m
j=1 Li,j and κs = maxi κi. Since they are not all

equal, we introduce rκ = mini κi/κs. We choose the probabilities of virtual edges, such that∑m
j=1 pij is constant for all i and such that pij = pcomp(1 + Li,jσ

−1
i )

1
2 /(nScomp) for Scomp =

n−1
∑n
i=1

∑m
j=1(1 + Li,jσ

−1
i )

1
2 . When (k, `) is a communication edge, we further assume that

pk` ≥ ∆ppcomm/|E| for some constant ∆p ≤ 1 and pmax
comm ≤ cτpcomm for some cτ > 0.

Theorem 6. We choose µ2
k` = 1

2 for communication edges, µ2
ij =

λ+
min(L)

σκi
Li,j for compu-

tation edges and pcomm = min
(

1
2 ,
(

1 +
√

γ̃
κmin

Scomp

)−1 )
. Then, running Algorithm 1 for

K = ρ−1 log
(
ε−1
)

iterations guarantees E
[
‖θK − θ?‖2

]
≤ C0ε, and takes time T (K), with T (K)

bounded by:

T (K) ≤ 2C

(
m+

√
mκs√

2rκ
+

(1 + 4cττ)

∆p

√
κs
γ̃

)
log

(
1

ε

)
with probability tending to 1 as ρ−1 log

(
ε−1
)
→∞, where C is the same as in Theorem 2.

In heterogeneous settings, σi and sampling probabilities may be adapted to recover good guarantees,
but this is beyond the scope of this paper. Note that taking computing probabilities exactly equal for
all nodes is not necessary to ensure convergence, and only slightly slows down convergence. Indeed,
it is always possible to analyze a schedule for which all nodes have exactly the same probability of
local update by adding a probability of doing nothing for time 1 as a local update to the nodes that are
chosen less frequently. If we denote pwait the probability that we need to add so that all nodes have
the same probability of being selected, then pcomp + pcomm = 1 − pwait so θcomp will be slightly
smaller for a given pcomm. The actual algorithm can only be faster so this just gives a rough upper
bound on the time to convergence.

Proof. Using Theorem 2 on the average time per iteration, we know that as long as pcomp > pcomm,
the execution time of the algorithm verifies the following bound for someC > 0 with high probability:

T (K) ≤ C

n
(pcomp + 2τpmax

comm)K (35)

Algorithm 1 requires − log(1/ε)/ log(1− ρ) iterations to reach error ε. Using that log(1 + x) ≤ x
for any x > −1, we get that using Kε = log(1/ε)ρ−1 instead also guarantees to make error less than
ε. We now optimize the bound in ρ:

T (Kε)

log (ε−1)
≤ C

nρ
(pcomp + 2τpmax

comm) (36)

If we rewrite this in terms of ρcomm and ρcomp, we obtain:

T (Kε)

log (ε−1)
≤ C max (T1(pcomm), T2(pcomm)) (37)

with

T1(pcomm) =
1

nρcomm
(pcomp + 2cττpcomm) =

2

∆p

(
2cττ − 1 +

1

pcomm

)√
κ

γ̃
(38)

and

T2(pcomm) = Scomp

√
2

rκ

(
1 + (2cττ − 1)pcomm

1− pcomm

)
= Scomp

√
2

rκ

(
1 + 2τ

pcomm

1− pcomm

)
(39)

T1 is a continuous decreasing function of pcomm with T1 → ∞ when pcomm → 0. Similarly, T2

is a continuous increasing function of pcomm such that pcomm →∞ when pcomm → 1. Therefore,
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the best upper bound on the execution time is given by taking pcomm = p∗ where p∗ is such that
T1(p∗) = T2(p∗) and so ρcomm(p∗) = ρcomp(p∗).

T (Kε)

log (ε−1)
≤ CT1(p∗) (40)

Then, p∗ can be found by finding the root in ]0, 1[ of a second degree polynomial. In particular, p∗ is
the solution of:

p2
comp = p2

comm

γ̃∆2
p

2κrκ
S2

comp = (1− pcomm)2 (41)

which leads to p∗ =
(

1 +
√

γ̃
2κmin

∆pScomp

)−1

.

T (Kε)

log (ε−1)
≤ 2

C

∆p

(
2cττ − 1 +

1

p∗

)√
κ

γ̃

≤ 2C

(
2τ

cτ
∆p

√
κ

γ̃
+

1√
2rκ

Scomp

)
Finally, we use the concavity of the square root to show that:

Scomp =
1

n

n∑
i=1

m∑
j=1

√
1 + Li,jσ

−1
i

≤ 1

n

n∑
i=1

m

√√√√ m∑
j=1

1

m

(
1 + Li,jσ

−1
i

)
≤ 1

n

n∑
i=1

m

√
1 +

1

m
(κi − 1)

≤ m+
√
mκ

Yet, this analysis only works as long as p∗ ≤ 1/2. When this constraint is not respected, we know that:
γ̃S2

comp ≤ 2κrκ. In this case, we can simply choose pcomp = pcomm = 1
2 and then ρcomm ≤ ρcomp,

so

T (Kε)

log (ε−1)
≤ CT1

(
1

2

)
= 2

C

∆p
(1 + 2cττ)

√
κ

γ̃
(42)

The sum of the two bounds is a valid upper bound in all situations, which finishes the proof.

E Experimental setting
E.1 Experimental Setting
We detail in this section the exact experimental setting in which simulations were made. All al-
gorithms used out-of-the-box parameters given by theory. Batch algorithms as well as ESDACD
were given the exact κb. The datasets we used are the first million samples of the Higgs dataset (11
million samples and 28 attributes) and the Covtype.binary.scale dataset (581,012 samples and 54 at-
tributes). Both datasets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html. To obtain the local datasetXi ∈ Rm×d of each node, we drewm samples
at random from the base dataset, so that datasets of different nodes may overlap. We used the logistic
loss with quadratic regularization, meaning that the function at node i is:

fi : θi 7→
m∑
j=1

log
(
1 + exp(−li,jXT

i,jθi)
)

+
σi
2
‖θi‖2,

where li,j ∈ {−1, 1} is the label associated with Xi,j , the k-th sample of node i. We chose m = 104

and σ = 1 for all simulations. Note that local functions are not normalized (not divided by m) so this
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(a) Higgs, τ = 5 (b) Covtype, τ = 5 (c) Higgs, τ = 50

Figure 4: Simulations on the logistic regression task with m = 104 points per node, regularization
parameter σ = 1 on grid networks of size 100.

actually corresponds to a regularization value of σi = 10−4 with usual formulations. Computation
delays were chosen constant equal to 1 and communication delays constant equal to 5.
As said in the main text, plots are shown for idealized times in order to abstract implementation
details as well as ensure that reported timings were not impacted by the cluster status (available
bandwidth for example). Note that for ADFS, nodes perform the schedule described in Section 4
and are considered free to start the next iteration as soon as they send their a gradient as long as
they already received the neighbor’s gradient (non-blocking send). Note that although Algorithm 1
returns vector Σ−1vt to computeAn Accelerated Decentralized Stochastic Proximal Algorithm for
Finite Sums the error, we used the vector Σ−1yt instead. Both have similar asymptotic convergence
rates but the error was more stable using Σ−1yt. The error that we plot is the average error over all
nodes at a given time. More specifically, all nodes compute the error at specific iteration number as
F (Σ−1yt). Then, we average all these errors and the time reported is the time at which the last node
finishes this iteration. We set the parameters µ and and pij as described in Section 5. Yet, Taking
slightly lower values for θ (for example dividing it by 2) seems to help in some cases, pr
Similarly to Table 1, we assume that computing the dual gradient of a function fi is as long as
computing m proximal operators of fi,j functions. This greatly benefits to MSDA and ESDACD
since in the case of logistic regression, the proximal operator for one sample has no analytic solution
but can be efficiently computed as the result of a one-dimensional optimization problem [Shalev-
Shwartz and Zhang, 2013]. The inner problem corresponding to computing ∇f∗i was solved by
performing 500 steps of accelerated gradient descent. For Point-SAGA, ADFS and DSBA, 1D
prox were computed using 5 steps of Newton’s method (in one dimension). Both used warm-starts,
i.e. the initial parameter for these inner problems was the solution for the last time the problem
was solved. The step-size α of DSBA was chosen as 1/(4Lmax) instead of 1/(24Lmax) where
Lmax = maxi,j Li,j . DSBA was unstable for larger values of α.

E.2 Centralized Algorithms

In this section, we perform a quick comparison with the centralized algorithm Katyusha [Allen-Zhu,
2017]. We assume that the allreduce communication steps take time ∆ where ∆ is the diameter of
the graph. We implement the mini-batch version of this algorithm and set the mini-batch size so that
b = 1 + ∆τ , i.e., the algorithm spends as much time computing as communicating (not counting
the full gradient steps). Counting computation time in terms of effective passes over the dataset is
slightly unfair to Katyusha that has a cheaper per-example cost. Yet, this is only a (small) constant
factor in the case of logistic regression.
We observe on Figures 4a and 4b that Katyusha and ADFS have comparable rates when τ = 5. This
is mainly due to the fact that communications are quite fast so the effective mini-batch size is 9100 in
this case (diameter of the graph is 18 so 91 per node), which is quite small compared to the 106 total
samples. Figure 4c shows that ADFS can outperform Katyusha on the Higgs dataset (on which it
was slower when taking τ = 5) when delays are big (τ = 50). Indeed, the effective batch size in this
case is 91000, which is about 10% of the dataset and so Katyusha does not take full advantage of
the stochastic optimization speedup. Yet, it is still significantly faster than MSDA. Note that in the
case of τ = 50, we set pcomm such that τpcomm = pcomp. This choice slightly reduced the number
communications and led to a faster algorithm by reducing communication time and synchronization
barriers. Overall, we see that, contrary to existing decentralized methods, ADFS can be competitive
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with a distributed implementation of Katyusha, especially when delays are high. Yet, a more detailed
study reporting actual computing times with fully optimized implementations would be needed
to compare the algorithms further. Indeed, some simulation choices favored ADFS (normalized
time, neglecting overhead induced by the prox), whereas other favored Katyusha (constant delays,
homogeneous setting).
More fundamentally, Katyusha and ADFS are based on two distinct distribution paradigms. On the
one hand, centralized algorithms use less noisy gradients because they have an effective mini-batch
size of at least n. This grants them linear speedup given that the batch size is small enough. Yet, the
batch size usually has to be quite high because it needs to grow linearly with the communication time
and the diameter of the graph in order to avoid spending more time communicating than computing
so centralized approaches are not necessarily the best option on high-latency networks. On the other
hand, decentralized algorithms such as ADFS can work with very small batches but they do not get
the mini-batch noise reduction from computing on n nodes in parallel the way Katyusha does. Indeed,
similarly to “Local-SGD” [Lin et al., 2018, Patel and Dieuleveut, 2019] approaches, each node locally
runs an accelerated variance-reduced algorithm. This confirms that decentralized algorithms, and in
particular ADFS, can be well-suited for distributed stochastic optimization with delays.

E.3 Code
A Python implementation of ADFS can be found on GitHub (https://github.com/HadrienHx/
ADFS_NeurIPS). The goal of this code is to show how to implement ADFS and encourage its use as
a baseline. The code implements ADFS to solve the Logistic Regression problem on a 2D grid. It
generates a synthetic binary classification dataset. Our implementation leverages the fact that Logistic
Regression is a linear model to only store 2 scalars per virtual node instead of 2 full vectors, thus
showing how to use sparse updates. The code is not optimized and not intended to be particularly
fast, but rather to show how to go from the pseudo-code in Algorithm 1 to an actual implementation.
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