
Appendix

The appendix is organized as follows.

In Appendix A we introduce the key ideas and intuition behind the proof of Theorem 1.

In Appendix B we go deeper into technical details and prove the main propositions used to prove
Theorem 1.

In Appendix C we prove the lemmas stated in appendix A.

In Appendix D we prove Theorem 2.

In Appendix E we prove Theorem 3.

In Appendix F we derive the gradient descent updates used by our parametrization.

In Appendix G we compare our assumptions with the ones made in [30].

In Appendix H we compare our main result with a recent arXiv preprint [56], where Hadamard
product reparametrization was used to induce sparsity implicitly.

In Appendix I we expand on the potential improvements discussed in Section 6.

In Appendix J we provide a table of notation.

A Proof of Theorem 1

This section is dedicated to providing a high level proof for Theorem 1. In Section A.1 we set up the
notation and explain how we decompose our iterates into signal and error sequences. In Section A.2
we state and discuss the implications of the two key propositions allowing to prove our theorem. In
Section A.3 we state some technical lemmas used in the proofs of the main theorem and its corollaries.
In Section A.4 we prove Theorem 1. Finally in Section A.5 we prove the corollaries.

A.1 Set Up and Intuition

Let wt := w+
t −w−

t where w+
t := ut � ut and w−

t := vt � vt. The gradient descent updates on
ut and vt read as (see Appendix F for derivation)

ut+1 = ut �
�
1 − 4η

�
1

n
XT(X(wt −w�)− ξ)

��
,

vt+1 = vt �
�
1 + 4η

�
1

n
XT(X(wt −w�)− ξ)

��
.

Let S+ denote the coordinates of w� such that w�
i > 0 and let S− denote the coordinates of w� such

that w�
i < 0. So S = S+ ∪ S− and S+ ∩ S− = ∅. Then define the following sequences

st := 1S+ �w+
t − 1S− �w−

t ,

et := 1Sc �wt + 1S− �w+
t − 1S+ �w−

t ,

bt :=
1

n
XTXet −

1

n
XTξ,

pt :=

�
1

n
XTX− I

�
(st −w�) .

(3)

Having defined the sequences above we can now let α2 be the initialization size and rewrite the
updates on wt, w+

t and w−
t in a more succinct way

w+
0 = w−

0 = α2,

wt = w+
t −w−

t

w+
t+1 = w+

t � (1 − 4η (st −w� + pt + bt))
2
,

w−
t+1 = w−

t � (1 + 4η (st −w� + pt + bt))
2
.

(4)
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We will now explain the roles played by each sequence defined in equation (3).

1. The sequence (st)t≥0 represents the signal that we have fit by iteration t. In the noiseless
setting, st would converge to w�. We remark that w+

t is responsible for fitting the positive
components of w� while w−

t is responsible for fitting the negative components of w�. If
we had the knowledge of S+ and S− before starting our algorithm, we would set w0 to s0.

2. The sequence (et)t≥0 represents the error sequence. It has three components: 1Sc �wt,
1S− �w+

t and 1S+ �w−
t which represent the errors of our estimator arising due to not

having the knowledge of Sc, S+ and S− respectively. For example, if we knew that w� � 0
we could instead use the parametrization w0 = u0 � u0 = w+

0 while if we knew that
w� � 0 then we would use the parametrization w0 = −v0 � v0 = −w−

0 .
A key property of our main results is that we stop running gradient descent before �et�∞
exceeds some function of initialization size. This allows us to recover the coordinates from
the true support S that are sufficiently above the noise level while keeping the coordinates
outside the true support arbitrarily close to 0.

3. We will think of the sequence (bt)t≥0 as a sequence of bounded perturbations to our gradient
descent updates. These perturbations come from two different sources. The first one is
the term 1

nX
Tξ which arises due to the noise on the labels. Hence this part of error is

never greater than
�� 1
nX

Tξ
��
∞ and is hence bounded with high probability in the case of

subGaussian noise. The second source of error is 1
nX

TXet and it comes from the error
sequence (et)t≥0 being non-zero. Even though this term is in principle can be unbounded,
as remarked in the second point above, we will always stop running gradient descent while
�et�∞ remains close enough to 0. In particular, this allows to treat 1

nX
TXet as a bounded

error term .

4. We will refer to the final error sequence (pt)t≥0 as a sequence of errors proportional to
convergence distance. An intuitive explanation of the restricted isometry property is that
1
nX

TX ≈ I for sparse vectors. The extent to which this approximation is exact is controlled
by the RIP parameter δ. Hence the sequence (pt)t≥0 represents the error arising due to
1√
n
X not being an exact isometry for sparse vectors in a sense that δ �= 0. If we require that

δ ≤ γ/
√
k for some γ > 0 then as we shall see in section A.3 we can upper bound �pt�∞

as
�pt�∞ ≤ δ �st −w��2 ≤ γ �st −w��∞ .

Since this is the only worst-case control we have on (pt)t≥0 one may immediately see the
most challenging part of our analysis. For small t we have st ≈ 0 and hence in the worst case
�pt�∞ ≈ γ �w��∞. Since �w��∞ can be arbitrarily large, we can hence see that while t
is small it is possible for some elements of (et)t≥0 to grow at a very fast rate, while some of
the signal terms in the sequence st can actually shrink, for example, if γ �w��∞ > |w�

i | for
some i ∈ S. We address this difficulty in Section B.3.

One final thing to discuss regarding our iterates wt is how to initialize w0. Having the point two
above in mind, we will always want �et�∞ to be as small as possible. Hence we should initialize the
sequences (ut)t≥0 and (vt)t≥0 as close to 0 as possible. Note, however, that due to the multiplicative
nature of gradient descent updates using our parametrization, we cannot set u0 = v0 = 0 since this
is a saddle point for our optimization objective function. We will hence set u0 = v0 = α for some
small enough positive real number α.

Appendix B is dedicated to understanding the behavior of the updates given in equation (4). In
appendix B.1 we analyze behavior of (w+

t )t≥0 assuming that w−
t = 0, pt = 0 and bt = 0. In

appendix B.2 we show how to handle the bounded errors sequence (bt)t≥0 and in appendix B.3
we show how to deal with the errors proportional to convergence distance (pt)t≥0. Finally, in
appendix B.4 we show how to deal with sequences (w+

t )t≥0 and (w−
t )t≥0 simultaneously.

A.2 The Key Propositions

In this section we state the key propositions appearing in the proof of Theorem 1 and discuss their
implications.
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Proposition 1 is the core of our proofs. It allows to ignore the error sequence (pt)t≥0 as long as the
RIP constant δ is small enough. That is, suppose that �bt�∞ � ζ for some ζ > 0. Proposition 1
states that if δ � 1/

√
k(log

w�
max

ζ ∨ 1) then it is possible to fit the signal sequence (st)t≥0 to w�

up to precision proportional to ζ while keeping the error sequence (et)t≥0 arbitrarily small. See
appendix B.5 for proof.
Proposition 1. Consider the setting of updates given in equations (3) and (4). Fix any 0 < ζ ≤ w�

max

and let γ =
Cγ�

log2
w�

max
ζ

� where Cγ is some small enough absolute constant. Suppose the error

sequences (bt)t≥0 and (pt)t≥0 for any t ≥ 0 satisfy the following:

�bt�∞ ≤ Cbζ − α,

�pt�∞ ≤ γ �st −w��∞ ,

where Cb is some small enough absolute constant. If the step size satisfies η ≤ 5
96w�

max
and the

initialization satisfies α ≤ 1 ∧ ζ
3(w�

max)
2 ∧ 1

2

�
w�

min Then, for some T = O
�

1
ηζ log

1
α

�
and any

0 ≤ t ≤ T we have

�sT −w��∞ ≤ ζ,

�et�∞ ≤ α.

The proof of Theorem 1 in the hard regime when w�
min �

�� 1
nX

Tξ
��
∞ ∨ ε is then just a simple

application of the above theorem with ζ = 2
Cb

(
�� 1
nX

Tξ
��
∞ ∨ ε) where the absolute constant Cb needs

to satisfy the conditions of the above proposition.

On the other hand, if w�
min �

�� 1
nX

Tξ
��
∞ ∨ ε which happens as soon as we choose small enough

ε and when we get enough data points n, we can apply Proposition 1 with ζ = 1
5w

�
min. Then,

after O( 1
ηw�

min
log 1

α ) iterations we can keep �et�∞ below α while �st −w��∞ ≤ 1
5w

�
min. From

this point onward, the convergence of the signal sequence (st)t≥0 does not depend on α anymore
while the error term is smaller than α. We can hence fit the signal sequence to w� up to precision�� 1

nX
Tξ � 1S

��
∞ ∨ ε while keeping �et�∞ arbitrarily small. This idea is formalized in the following

proposition.
Proposition 2. Consider the setting of updates given in equations (3) and (4). Fix any ε > 0 and
suppose that the error sequences (bt)t≥0 and (pt)t≥0 for any t ≥ 0 satisfy

�bt � 1i�∞ ≤ Bi ≤
1

10
w�

min,

�pt�∞ ≤ 1

20
�st −w��∞ .

Suppose that

�s0 −w��∞ ≤ 1

5
w�

min.

Let the step size satisfy η ≤ 5
96w�

max
. Then for all t ≥ 0

�st −w��∞ ≤ 1

5
w�

min

and for any t ≥ 45
32ηw�

min
log

w�
min

ε and for any i ∈ S we have

|st,i − w�
i | � δ

√
kmax

j∈S
Bj ∨Bi ∨ ε.

A.3 Technical Lemmas

In this section we state some technical lemmas which will be used to prove Theorem 1 and its
corollaries. Proofs for all of the lemmas stated in this section can be found in Appendix C.

We begin with Lemma A.1 which allows to upper-bound the error sequence (et)t≥0 in terms of
sequences (bt)t≥0 and (pt)t≥0.
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Lemma A.1. Consider the setting of updates given in equations(3) and (4). Suppose that �e0�∞ ≤
1
4w

�
min and that there exists some B ∈ R such that for all t we have �bt�∞ + �pt�∞ ≤ B. Then, if

η ≤ 1
12(w�

max+B) for any t ≥ 0 we have

�et�∞ ≤ �e0�∞
t−1�

i=0

(1 + 4η(�bi�∞ + �pi�∞))2.

Once we have an upper-bound on �pt�∞ + �bt�∞ we can apply Lemma A.2 to control the size of
�et�∞. This happens, for example, in the easy setting when w�

min �
�� 1
nX

Tξ
��
∞ ∨ ε where after the

application of Proposition 1 we have �pt�∞ + �bt�∞ � w�
min.

Lemma A.2. Let (bt)t≥0 be a sequence such that for any t ≥ 0 we have |bt| ≤ B for some B > 0.
Let the step size η satisfy η ≤ 1

8B and consider a one-dimensional sequence (xt)t≥0 given by

0 < x0 < 1,

xt+1 = xt(1 + 4ηbt)
2.

Then for any t ≤ 1
32ηB log 1

x2
0

we have
xt ≤

√
x0.

We now introduce the following two lemmas related to the restricted isometry property. Lemma A.3
allows to control the �∞ norm of the sequence (pt)t≥0. Lemma A.4 allows to control the �∞ norm
of the term 1

nX
TXet arising in the bounded errors sequence (bt)t≥0.

Lemma A.3. Suppose that 1√
n
X is a n × d matrix satisfying the (k + 1, δ)-RIP. If z ∈ Rd is a

k-sparse vector then ����
�
1

n
XTX− I

�
z

����
∞

≤
√
kδ �z�∞ .

Lemma A.4. Suppose that 1√
n
X is a n× d matrix satisfying the (1, δ)-RIP with 0 ≤ δ ≤ 1 and let

Xi be the ith column of X. Then

max
i

����
1√
n
Xi

����
2

≤
√
2

and for any vector z ∈ Rd we have
����
1

n
XTXz

����
∞

≤ 2d �z�∞ .

Finally, we introduce a lemma upper-bounding the maximum noise term
�� 1
nX

Tξ
��
∞when ξ is

subGaussian with independent entries and the design matrix X is treated as fixed.
Lemma A.5. Let 1√

n
X be a n × d matrix such that the �2 norms of its columns are bounded by

some absolute constant C. Let ξ ∈ Rn be a vector of independent σ2-subGaussian random variables.
Then, with probability at least 1− 1

8d3

����
1

n
XTξ

����
∞

�
�

σ2 log d

n
.

A.4 Proof of Theorem 1

Let Cb and Cγ be small enough absolute positive constants that satisfy conditions of Proposition 1.

Let

ζ :=
1

5
w�

min ∨ 2

Cb

����
1

n
XTξ

����
∞

∨ 2

Cb
ε.

and suppose that

δ ≤ Cγ√
k
�
log2

w�
max

ζ + 1
� .
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Setting

α ≤ 1 ∧ ε2

(2d+ 1)2
∧ ε

w�
max

∧ ζ

3(w�
max)

2
∧ 1

2

�
w�

min

we satisfy pre-conditions of Proposition 1. Also, by Lemma A.4 as long as �et�∞ ≤ √
α we have

����
1

n
XTXet

����
∞

+ α ≤ (2d+ 1)
√
α ≤ ε.

It follows that as long as �et�∞ ≤ √
α we can upper bound �bt�∞ + α as follows:

�bt�∞ + α ≤
����
1

n
XTξ

����
∞

+ ε ≤ Cb ·
2

Cb

�����
1

n
XTξ

����
∞

∨ ε

�
≤ Cbζ.

By Lemma A.3 we also have

�pt�∞ ≤ Cγ�
log2

w�
max

ζ

� �st −w��∞ .

and so both sequences (bt)t≥0 and (pt)t≥0 satisfy the assumptions of Proposition 1 conditionally on
�et�∞ staying below

√
α. If ζ ≥ w�

max then the statement of our theorem already holds at t = 0 and
we are done. Otherwise, applying Proposition 1 we have after

T = O

�
1

ηζ
log

1

α

�

iterations

�sT −w��∞ ≤ ζ

�eT �∞ ≤ α.

If 1
5w

�
min ≤ 2

Cb

�� 1
nX

Tξ
��
∞ ∨ 2

Cb
ε then we are in what we refer to as the hard regime and we are

done.

On the other hand, suppose that 1
5w

�
min > 2

Cb

�� 1
nX

Tξ
��
∞ ∨ 2

Cb
ε so that we are working in the easy

regime and ζ = 1
5w

�
min.

Conditionally on �et�∞ ≤ √
α, �pt�∞ stays below Cγ · 1

5w
�
min by Proposition 2. Hence,

�bt�∞ + �pt�∞ ≤ (Cb + Cγ) ·
1

5
w�

min.

Applying Lemmas A.1 and A.2 we can maintain that �et�∞ ≤ √
α for at least another

5
16(Cb+Cγ)ηw�

min
log 1

α iterations after an application of Proposition 1. Crucially, with a small
enough α we can maintain the above property for as long as we want and in our case here we
need α ≤ ε/w�

max.

Choosing small enough Cb and Cγ so that Cb + Cγ ≤ 2
9 and Cγ ≤ 1

20 and applying Proposition 1
we have after

T � := T +
45

32ηw�
min

log
w�

min

ε
≤ T +

5

16(Cb + Cγ)ηw�
min

log
1

α

iterations
�eT ��∞ ≤ √

α

and for any i ∈ S

|sT �,i − w�
i | �

√
kδ

����
1

n
XTξ � 1S

����
∞

∨
����
�
1

n
XTξ

�

i

���� ∨ ε.

Finally, noting that for all t ≤ T � we have

|wt,i − w�| ≤ |st,i − w�
i |+ |et,i| ≤ |st,i − w�

i |+
√
α ≤ |st,i − w�

i |+ ε

our result follows.
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A.5 Proofs of Corollaries

Proof of Corollary 1. Since ξ = 0 the bound in Theorem 1 directly reduces to

�wt −w��22 �
�

i∈S

ε2 +
�

i/∈S

α ≤ kε2 + (d− k)
ε2

(2d+ 1)2
� kε2.

Proof of Corollary 2. By Lemma A.4 and the proof of Lemma A.5 with probability at least 1 −
1/(8d3) we have ����

1

n
XTξ

����
∞

≤ 4

�
2σ2 log(2d)√

n
.

Hence, letting ε = 4

√
2σ2 log(2d)√

n
, Theorem 1 implies with probability at least 1− 1/(8d3)

�wt −w��22 �
�

i∈S

ε2 +
�

i/∈S

α ≤ kε2 + (d− k)
ε2

(2d+ 1)2
� kσ2 log d

n
.

Proof of Corollary 3. We use the same argument as in proof of Corollary 3 with the term �XTξ�∞/n

replaced with
√
kδ�XTξ � 1S�∞/n. Since

√
kδ � 1 an identical result holds with d replaced with

k.

B Understanding Multiplicative Update Sequences

In this section of the appendix, we provide technical lemmas to understand the behavior of multi-
plicative updates sequences. We then prove Propositions 1 and 2.

B.1 Basic Lemmas

In this section we analyze one-dimensional sequences with positive target corresponding to gradient
descent updates without any perturbations. That is, this section corresponds to parametrization
wt = ut � ut and gradient descent updates under assumption that 1

nX
TX = I and ignoring

the error sequences (bt)t≥0 and (pt)t≥0 given in equation (3) completely. We will hence look at
one-dimensional sequences of the form

0 < x0 = α2 < x�

xt+1 = xt(1− 4η(xt − x�))2.
(5)

Recall the definition of gradient descent updates given in equations (3) and (4) and let vt = 0 for
all t. Ignoring the effects of the sequence (pt)t≥0 and the term 1

nX
TXet one can immediately

see that �1Sc �wt�∞ grows at most as fast as the sequence (xt)t≥0 given in equation (5) with
x� =

�� 1
nX

Tξ
��
∞. Surely, for any i ∈ S such that 0 < w�

i <
�� 1
nX

Tξ
��
∞ we cannot fit the i − th

component of w� without fitting any of the noise variables 1Sc � wt. On the other hand, for any
i ∈ S such that w�

i �
�� 1
nX

Tξ
��
∞ can fit the sequence (xt)t≥0 with x� = w�

i while keeping all of
the noise variables arbitrarily small, as we shall see in this section.

We can hence formulate a precise question that we answer in this section. Consider two sequences
(xt)t≥0 and (yt)t≥0 with updates as in equation (5) with targets x� and y� respectively. One should
think of the sequence (yt)t≥0 as a sequence fitting the noise, so that y� =

�� 1
nX

Tξ
��
∞. Let T y

α be
the smallest t ≥ 0 such that yt ≥ α. On the other hand, one should think of sequence (xt)t≥0 as a
sequence fitting the signal. Let T x

x�−ε be the smallest t such that xt ≥ x� − ε. Since we want to fit
the sequence (xt)t≥0 to x� within ε error before (yt)t≥0 exceeds α we want T x

x�−ε ≤ T y
α . This can

only hold if the variables x�, y�,α and ε satisfy certain conditions. For instance, decreasing ε will
increase T x

x�−ε without changing T y
α . Also, if x� < y� then satisfying T x

x�−ε ≤ T y
α is impossible

for sufficiently small ε. However, as we shall see in this section, if x� is sufficiently bigger than y�
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Figure 5: The blue and red lines represent the signal sequence (xt)t≥0 and the noise sequence (yt)t≥0

plotted on log scale. The vertical blue and red dashed lines show the hitting times T x
x�−ε and T y

α so
that we want the blue vertical line to appear on the left side of the red vertical line. Both plots use
the same values of x�, y� and ε. However, the plot on the left is plotted with α = 10−2 and the plot
on the right is plotted with α = 10−8. This shows the effect of decreasing initialization size; both
vertical lines are pushed to the right, but the red vertical line is pushed at a faster pace.

then for any ε > 0 one can choose a small enough α such that T x
x�−ε ≤ T y

α . To see this intuitively,
note that if we ignore what happens when xt gets close to x�, the sequence (xt)t≥0 behaves as an
exponential function t �→ α2(1 + 4ηx�)2t while the sequence y� behaves as t �→ α2(1 + 4ηy�)2t.
Since exponential function is very sensitive to its base, we can make the gap between α2(1+4ηx�)2t

and α2(1 + 4ηy�)2t as big as we want by decreasing α and increasing t. This intuition is depicted in
Figure 5.

With the above discussion in mind, in this section we will quantitatively formalize under what
conditions on x�, y�,α and ε the inequality T x

x�−ε ≤ T y
α hold. We begin by showing that for small

enough step sizes, multiplicative update sequences given in equation (5) behave monotonically.
Lemma B.6 (Iterates behave monotonically). Let η > 0 be the step size and suppose that updates
are given by

xt+1 = xt(1− 4η(xt − x�))2.

Then the following holds

1. If 0 < x0 ≤ x� and η ≤ 1
8x� then for any t > 0 we have x0 ≤ xt−1 ≤ xt ≤ x�.

2. If x� ≤ x0 ≤ 3
2x

� and η ≤ 1
12x� then for any t > 0 we have x� ≤ xt ≤ xt−1 ≤ x0.

Proof. Note that if x0 ≤ xt ≤ x� then xt − x� ≤ 0 and hence xt+1 ≥ xt. Thus for the first part it is
enough to show that for all t ≥ 0 we have xt ≤ x�.

Assume for a contradiction that exists t such that

x0 ≤ xt ≤ x�,

xt+1 > x�.

Plugging in the update rule for xt+1 we can rewrite the above as

xt ≤ x�

< xt(1− 4η(xt − x�))2

≤ xt

�
1 +

1

2
− xt

2x�

�2

Letting λ := xt

x� we then have by our assumption above 0 < λ ≤ 1. The above inequality then gives
us �

1

λ
< 3/2− 1

2
λ
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And hence for 0 < λ ≤ 1 we have f(λ) :=
�

1
λ + 1

2λ < 3/2. Since for 0 < λ < 1 we also have

f �(λ) = 1
2 (1− 1

λ3/2 ) < 0 and so f(λ) ≥ f(1) = 3/2. This gives us the desired contradiction and
concludes our proof for the first part.

We will now prove the send part. Similarly to the first part, we just need to show that for all t ≥ 0
we have xt ≥ x�. Suppose that 3

2x
� ≥ xt ≥ x� and hence we can write xt = x�(1 + γ) for some

γ ∈ [0, 1
2 ]. Then we have

xt+1 = (1 + γ)x�(1− 4ηγx�)2

≥ (1 + γ)x�(1− 1

3
γ)2.

One may verify that the polynomial (1 + γ)(1− 1
3γ)

2 is no smaller than one for 0 ≤ γ ≤ 1
2 which

finishes the second part of our proof.

While the above lemma tells us that for small enough step sizes the iterates are monotonic and
bounded, the following two lemmas tell us that we are converging to the target exponentially fast. We
first look at the behavior near convergence.

Lemma B.7 (Iterates behaviour near convergence). Consider the setting of Lemma B.6. Let x� > 0
and and suppose that |x0 − x�| ≤ 1

2x
�. Then the following holds.

1. If 0 < x0 ≤ x� and η ≤ 1
8x� then for any t ≥ 1

4ηx� we have

0 ≤ x� − xt ≤
1

2
|x0 − x�| .

2. If x� ≤ x0 ≤ 3
2x

� and η ≤ 1
12x� then for any t ≥ 1

8ηx� we have

0 ≤ xt − x� ≤ 1

2
|x0 − x�| .

Proof. Let us write |x0 − x�| = γx� where γ ∈ [0, 1
2 ].

For the first part we have x0 = (1 − γ)x�. Note that while xt ≤ (1 − γ
2 )x

� we have xt+1 ≥
xt(1 + 4η γ

2x
�). Recall that by the Lemma B.6 for all t ≥ 0 we have xt ≤ x�. Hence to find t such

that x� ≥ xt ≥ (1− γ
2 )x

� it is enough to find a big enough t satisfying the following inequality

x0(1 + 2ηγx�)2t ≥
�
1− γ

2

�
x�.

Noting that for x > 0 ant t ≥ 1 we have (1 + x)t ≥ 1 + tx we have

x0(1 + 2ηγx�)2t ≥ x0(1 + 4ηγx�t)

and hence it is enough to find a big enough t satisfying

x0(1 + 4ηγx�t) ≥
�
1− γ

2

�
x�

⇐⇒ 4ηγx�t ≥
�
1− γ

2

�
x� − x0

x0

⇐⇒ 4ηγx�t ≥ γ

2(1− γ)

⇐⇒ t ≥ 1

8ηx�

1

(1− γ)

and since γ ∈ [0, 1
2 ] choosing t ≥ 1

4ηx� is enough.

To deal with the second part, now let us write x0 = x�(1 + γ). We will use a similar approach to the
one used in the first part. If for some xt we have xt ≤ (1 + γ

2 )x
� by Lemma B.6 we would be done.
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If xt > x�(1 + γ
2 ) we have xt+1 ≤ xt(1− 4η γ

2x
�)2. This can happen for at most 1

8ηx� iterations,
since

x0(1− 2ηγx�)2t ≤ x�(1 +
γ

2
)

⇐⇒ 2t log(1− 2ηγx�) ≤ log
x�(1 + γ

2 )

x0

⇐⇒ t ≥ 1

2

log
x�(1+ γ

2 )

x0

log(1− 2ηγx�)
.

We can deal with the term on the right hand side by noting that

1

2

log
x�(1+ γ

2 )

x0

log(1− 2ηγx�)
=

1

2

log
1+ γ

2

1+γ

log(1− 2ηγx�)

≤ 1

2

�
1+ γ

2

1+γ − 1
�
/
�

1+ γ
2

1+γ

�

−2ηγx�

=
1

2

−γ
2 /

�
1 + γ

2

�

−2ηγx�

≤ 1

8ηx�
.

where in the second line we have used log x ≤ x− 1 and log x ≥ x−1
x . Note, however, that in the

above inequalities both logarithms are negative, which is why the inequality signs are reversed.

Lemma B.8 (Iterates approach target exponentially fast). Consider the setting of updates as in
Lemma B.6 and fix any ε > 0.

1. If ε < |x� − x0| ≤ 1
2x

� and η ≤ 1
12x� then for any t ≥ 3

8ηx� log |x�−x0|
ε we have

|x� − xt| ≤ ε.

2. If 0 < x0 ≤ 1
2x

� and η ≤ 1
8x� then for any t ≥ 3

8ηx� log (x�)2

4x0ε
we have

x� − ε ≤ xt ≤ x�.

Proof.

1. To prove the first part we simply need to apply Lemma B.7
�
log2

|x�−x0|
ε

�
times. Hence

after
log2 e

4ηx�
log

|x� − x0|
ε

≤ 3

8ηx�
log

|x� − x0|
ε

iterations we are done.

2. We first need to find a lower-bound on time t which ensures that xt ≥ x�

2 . Note that while
xt <

x�

2 we have xt+1 ≥ xt(1 + 2ηx�)2. Hence it is enough to choose a big enough t such
that

x0(1 + 2ηx�)2t ≥ x�

2

⇐⇒ t ≥ 1

2

log x�

2x0

log(1 + 2ηx�)
.

We can upper-bound the term on the right by using log x ≥ x−1
x as follows

1

2

log x�

2x�

log(1 + 2ηx�)
≤ 1

2

1 + 2ηx�

2ηx0
log

x�

2x0

≤ 5

16ηx�
log

x�

2x0
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and so after t ≥ 5
16ηx� log x�

2x0
we have xt ≥ x�

2 .

Now we can apply the first part to finish the proof. The total sufficient number of iterations
is then

5

16ηx�
log

x�

2x0
+

3

8ηx�
log

x�

2ε
≤ 3

8ηx�
log

x�

2x0
+

3

8ηx�
log

x�

2ε

=
3

8ηx�
log

(x�)2

4x0ε
.

We are now able to answer the question that we set out at the beginning of this section. That is, under
what conditions on x�, y�,α and ε does the inequality T x

x�−ε ≤ T y
α hold? Let η ≤ 1

8x� and suppose
that x� ≥ 12y� > 0. Lemmas B.6 and B.8 then tell us, that for any ε > 0 and any

t ≥ 12

32ηx�
log

(x�)2

α2ε

the sequence xt has converged up to precision ε. Hence

T x
x�−ε ≤

12

32ηx�
log

(x�)2

α2ε
(6)

On the other hand, we can now apply Lemma A.2 to see that for any

t ≤ 12

32ηx�
log

1

α4
≤ 1

32ηy�
log

1

α4

we have yt ≤ α and hence

T y
α ≥ 12

32ηx�
log

1

α4
(7)

We can now see from equations (6) and (7) that it is enough to set α ≤
√
ε

x� so that T x
x�−ε ≤ T y

α is
satisfied which answers our question.

B.2 Dealing With Bounded Errors

In Section B.1 we analyzed one dimensional multiplicative update sequences and proved that it is
possible to fit large enough signal while fitting a controlled amount of error. In this section we extend
the setting considered in Section B.1 to handle bounded error sequences (bt)t≥0 such that for any
t ≥ 0 we have �bt�∞ ≤ B for some B ∈ R. That is, we look at one-dimensional multiplicative
sequences with positive target x� with updates given by

xt+1 = xt(1− 4η(xt − x� + bt))
2. (8)

Surely, if B ≥ x� one could always set bt = x� so that the sequence given with the above updates
equation shrinks to 0 and convergence to x� is not possible. Hence for a given x� our lemmas below
will require B to be small enough, with a particular choice B ≤ 1

5x
�. For a given B one can only

expect the sequence (xt)t≥0 to converge to x� up to precision B. To see that, consider two extreme
scenarios, one where for all t ≥ 0 we have bt = B and another with bt = −B. This gives rise the
following two sequences with updates given by

x−
t+1 = x−

t (1− 4η(x−
t − (x� −B)))2,

x+
t+1 = x+

t (1− 4η(x−
t − (x� +B)))2.

(9)

We can think of sequences (x−
t )t≥0 and (x+

t )t≥0 as sequences with no errors and targets x� −B and
x� +B respectively. We already understand the behavior of such sequences with the lemmas derived
in Section B.1. The following lemma is the key result in this section. It tells us that the sequence
(xt)t≥0 is sandwiched between sequences (x−

t )t≥0 and (x+
t )t≥0 for all iterations t. See Figure 6 for

a graphical illustration.
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Figure 6: A graphical illustration of Lemmas B.9 and B.10. For a given error bound B we have
sampled error sequence (bt)t≥0 from Uniform[−B,B] distribution. Note that for B = 0 the above
plots illustrate Lemma B.6.

Lemma B.9 (Squeezing iterates with bounded errors). Let (bt)t≥0 be a sequence of errors such
that exists some B > 0 such that for all t ≥ 0 we have |bt| ≤ B. Consider the sequences (x−

t )t≥0,
(xt)t≥0 and (x+

t )t≥0 as defined in equations (8) and (9) with

0 < x−
0 = x+

0 = x0 ≤ x� +B

If η ≤ 1
16(x�+B) then for all t ≥ 0

0 ≤ x−
t ≤ xt ≤ x+

t ≤ x� +B.

Proof. We will prove the claim by induction. The claim holds trivially for t = 0. Then if x+
t ≥ xt,

denoting Δ := x+
t − xt ≥ 0 and mt := 1− 4η(xt − x� + bt) we have

x+
t+1 = x+

t (1− 4η(x+
t − x� −B))2

= (xt +Δ)(1− 4η(xt − x� + bt)− 4η(Δ−B − bt))
2

≥ (xt +Δ)(mt − 4ηΔ)2

= (xt +Δ)(m2
t − 8ηΔmt + 16η2Δ2)

≥ (xt +Δ)(m2
t − 8ηΔmt)

= xt+1 +Δm2
t − x+

t 8ηΔmt

= xt+1 +Δmt(mt − 8ηx+
t )

≥ xt+1,

where the last line is true since by lemma B.6 we have 0 < x+
t ≤ x� +B and so using η ≤ 1

16(x�+B)
we get

mt − 8ηx+
t ≥ mt −

1

2

=
1

2
− 4η(xt − x� + bt)

≥ 1

2
− 4η(x� +B − x� + bt)

≥ 1

2
− 8ηB

≥ 0.

Showing that xt+1 ≥ x−
t+1 follows a similar argument.

23



Finally, as we have already pointed out x+
t ≤ x�+B holds for all t by the choice of η and Lemma B.6.

By induction and the choice of the step size we then also have for all t ≥ 0

x−
t+1 = x−

t (1− 4η(x−
t − x� +B))2

≥ x−
t (1− 8ηB)2

≥ 0,

which completes our proof.

Using the above lemma we can show analogous results for iterates with bounded errors to the ones
shown in Lemmas B.6, B.7 and B.8.

We will first prove a counterpart to Lemma B.6, which is a crucial result in proving Proposition 1. As
illustrated in Figure 6, monotonicity will hold while |xt − x�| > B. On the other hand, once xt hits
the B-tube around x� it will always stay inside the tube. This is formalized in the next lemma.
Lemma B.10 (Iterates with bounded errors monotonic behaviour). Consider the setting of Lemma B.9
with B ≤ 1

5x
�, η ≤ 5

96x� and 0 < x0 ≤ 6
5x

�. Then the following holds:

1. If |xt − x�| > B then |xt+1 − x�| < |xt − x�|.
2. If |xt − x�| ≤ B then |xt+1 − x�| ≤ B.

Proof. First, note that our choice of step size, maximum error B and maximum value for x0 ensures
that we can apply the second part of Lemma B.6 to the sequence (x−

t )t≥0 and the first part of
Lemma B.6 to the sequence (x+

t )t≥0.

To prove the first part, note that if 0 < xt < x� −B then xt < xt+1 ≤ x+
t+1 ≤ x� +B and the result

follows. On the other hand, if x� +B < xt ≤ 6
5x

� then applying Lemma B.9 (with a slight abuse of
notation, setting x0 := xt) we get x� −B ≤ x−

t+1 ≤ xt+1 < xt which finishes the proof of the first
part.

The second part is immediate by Lemma B.9 applied again with a slight abuse of notation setting
x0 := xt and observing that by monotonicity Lemma B.6 the sequence (x−

t )t≥0 will monotonically
decrease to x� −B and the sequence (x+

t )t≥0 will monotonically increase to x� +B.

Lemma B.11 (Iterates with bounded errors behaviour near convergence). Consider the setting of
Lemma B.10. Then the following holds:

1. If 1
2 (x

� −B) ≤ x0 ≤ x� − 5B then for any t ≥ 5
8ηx� we have

|x� − xt| ≤
1

2
|x0 − x�| .

2. If x� + 4B < x0 < 6
5x

� then for any t ≥ 1
4ηx� we have

|x� − xt| ≤
1

2
|x0 − x�| .

Proof. Let the sequences (x+
t )t≥0 and (x−

t )t≥0 be given as in Lemma B.9. For the first part, we
apply Lemma B.7 to the sequence x−

t twice, to get that for all

t ≥ 5

8ηx�
≥ 2

1

4η(x� −B)

we have

0 ≤ (x� −B)− x−
t

≤ 1

4
|x0 − (x� −B)|

≤ 1

4
|x0 − x�|+ 1

4
B.
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Then, if xt ≤ x� we have by Lemma B.9 and the above inequality

0 ≤ x� − xt

≤ x� − x−
t

≤ 1

4
|x0 − x�|+ 5

4
B

≤ 1

2
|x0 − x�| .

If xt ≥ x� then by lemma B.9 we have

0 ≤ xt − x� ≤ B ≤ 1

5
|x0 − x�| ,

where the last inequality follows from x0 ≤ x∗ − 5B. This concludes the first part.

The second part can be shown similarly. We apply lemma B.7 to the sequence x+
t twice, to get that

for all
t ≥ 2

1

8ηx�
≥ 2

1

8η(x� +B)

we have

0 ≤ x+
t − (x� +B)

≤ 1

4
|x0 − (x� +B)|

≤ 1

4
|x0 − x�|+ 1

4
B.

Then again, if xt ≥ x� then

0 ≤ xt − x�

≤ x+
t − x�

≤ 1

4
|x0 − x�|+ 5

4
B

≤ 1

2
|x0 − x�|

and if xt ≤ x� then by lemma B.9 we have

0 ≤ x� − xt ≤ B ≤ 1

4
|x0 − x�|

which finishes our proof.

Lemma B.12 (Iterates with bounded errors approach target exponentially fast). Consider the setting
of Lemma B.10 and fix any ε > 0. Then the following holds:

1. If B + ε < |x� − x0| ≤ 1
5x

� then for any t ≥ 15
32ηx� log |x�−x0|

ε iterations we have
|x� − xt| ≤ B + ε.

2. If 0 < x0 ≤ x�−B−ε then for any t ≥ 15
32ηx� log (x�)2

x0ε
we have x�−B−ε ≤ xt ≤ x�+B.

Proof.

1. If x0 > x� + B then by Lemmas B.9 and B.10 we only need show that (x+
t )t≥0 hits

x�+B+ε within the desired number of iterations. By the first part of Lemma B.8 applied to
the sequence (x+

t )t≥0 we see that 3
8η(x�+B) log

|x0−(x�+B)|
ε ≤ 15

32ηx� log |x�−x0|
ε iterations

enough.

Similarly, if x0 < x� −B by the first part of Lemma B.8 applied to the sequence (x−
t )t≥0

we see that 3
8η(x�−B) log

|x0−(x�−B)|
ε ≤ 15

32ηx� log |x�−x0|
ε iterations enough.
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2. The upper-bound is immediate from lemma B.9. To get the lower-bound we simply apply
the second part of lemma B.8 to the sequence (x−

t )t≥0 given in lemma B.9 to get that for
any

t ≥ 3

8η 4
5x

�
log

(x�)2

x0ε
≥ 3

8η(x� −B)
log

(x� −B)2

x0ε

we have x� −B − ε ≤ x−
t ≤ xt which is what we wanted to show.

B.3 Dealing With Errors Proportional to Convergence Distance

In this section we derive lemmas helping to deal with errors proportional to convergence distance,
that is, the error sequence (pt)t≥0 given in equation (3) in Appendix A.1. Note that we cannot simply
upper-bound �bt�∞ + �pt�∞ by some large number independent of t and treat both errors together
as a bounded error sequence since �p0�∞ can be much larger than some of the coordinates of w�.
On the other hand, by Sections B.1 and B.2 we expect �st −w��∞ to decay exponentially fast and
hence the error �pt�∞ should also decay exponentially fast.

Let m and T0, . . . , Tm−1 be some integers and suppose that we run gradient descent for
�m−1

i=0 Ti

iterations. Suppose that for each time interval
�j−1

i=0 Ti ≤ t ≤ �j
i=0 Ti we can upper-bound

�bt�∞ + �pt�∞ by 2−jB for some B ∈ R. The following lemma then shows how to control errors
of such type and it is, in fact, the reason why in the main theorems a logarithmic term appears in
the upper-bounds for the RIP parameter δ. We once again restrict ourselves to one-dimensional
sequences.
Lemma B.13 (Halving errors over doubling time intervals). Let T > 0 be some fixed positive real
number, Ti := 2iT and T̄i :=

�i
j=0 Tj . Further, suppose (pt)t≥0 is a sequence of real numbers and

let B ∈ R. Suppose that for every integer i ≥ 0 and for any T̄i−1 ≤ t < T̄i we have |pt| ≤ 2−iB.
Then, for any integer i ≥ 0 and η ≤ 1

4B

T̄i−1�

i=0

(1 + 4ηpt)
2 ≤ (1 + 4η2−iB)2(i+1)Ti .

Proof. Note that for x, y ≥ 0 we have (1+x+y) ≤ (1+x)(1+y) and in particular, for any integers
i ≥ j ≥ 0

1 + 4η2−jB ≤ (1 + 4η2−j−1B)2 ≤ · · · ≤ (1 + 4η2−iB)2
i−j

.

It follows that
T̄i−1�

t=0

(1 + 4ηpt)
2 ≤

i�

j=0

(1 + 4η2−jB)2Tj

≤
i�

j=0

(1 + 4η2−iB)2
i−j2Tj

= (1 + 4η2−iB)2(i+1)Ti .

Sometimes �pt�∞ can be much larger than some coordinates of the true parameter vector w�. For
example, if w�

max � w�
min then �p0�∞ can be much larger than w�

min. In Section B.2 we have shown
how to deal with bounded errors that are much smaller than target. We now show how to deal with
errors much larger than the target.
Lemma B.14 (Handling large errors). Let (bt)t≥0 be a sequence of errors such that for some B ∈ R
and all t ≥ 0 we have |bt| ≤ B. Consider a sequence defined as

x� + 2B ≤ x0 ≤ x� + 4B,

xt+1 = xt(1− 4η(xt − x� + bt))
2.
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Then, for η ≤ 1
20B and any t ≥ 1

10ηB we have

0 ≤ xt ≤ x� + 2B.

Proof. Note that if xt ≥ x� + 2B then

xt+1 = xt(1− 4η(xt − x� + bt))
2

≤ xt(1− 4ηB)2.

Hence to find t such that xt ≤ x� + 2B it is enough to satisfy the following inequality

(x� + 4B)(1− 4ηB)2t ≤ x� + 2B

⇐⇒ t ≥ 1

2

1

log(1− 4ηB)
log

x� + 2B

x� + 4B

Since for any x ∈ (0, 1) we have log(1 − x) ≤ −x hence log(1 − 4ηB) ≤ −4ηB. Also, since
x�+2B
x�+4B ≥ 1

2 we have log x�+2B
x�+4B ≥ log 1

2 ≥ − 7
10 . Hence

1

2

1

log(1− 4ηB)
log

x� + 2B

x� + 4B
≤ 1

2
· 1

−4ηB
· −7

10
.

Setting t ≥ 1
10ηB is hence enough. To ensure non-negativity of the iterates, note that

|4η(xt − x� + bt)| ≤ 20ηB

and hence setting η ≤ 1
20B is enough.

The final challenge caused by the error sequence (pt)t≥0 is that some of the signal components
1S �wt can actually shrink initially instead of approaching the target. Hence for all t ≥ 0 we need
to control the maximum shrinkage by bounding the following term from below

α2
t−1�

i=0

(1− 4η(�bt�∞ + �pt�∞))2. (10)

Recall that we are handling maximum growth of the error sequence (et)t≥0 by Lemma A.1 which
requires upper-bounding the term

α2
t−1�

i=0

(1 + 4η(�bt�∞ + �pt�∞))2. (11)

If the term in equation (11) is not too large, then we can prove that the term in equation (10) cannot
be too small. This idea is exploited in the following lemma.
Lemma B.15 (Handling signal shrinkage). Consider a sequence

x0 = α2,

xt+1 = xt(1− 4η(x� + bt + pt))
2

where x� > 0 and exists some B > 0 such that for all t ≥ 0 we have |bt|+ |pt| ≤ B. If η ≤ 1
8B and

t−1�

i=0

(1 + 8η(|bt|+ |pt|))2 ≤ 1

α

then
t−1�

i=0

(1− 4η(|bt|+ |pt|))2 ≥ α.

Proof. By the choice of step size η we always have 0 ≤ 4η(|bt|+ |pt|) ≤ 1
2 . Since for x ∈ [0, 1

2 ] we
have (1 + 2x)(1− x) = 1 + x− 2x2 ≥ 1 it follows that

t−1�

i=0

(1 + 8η(|bt|+ |pt|))2
t−1�

i=0

(1− 4η(|bt|+ |pt|))2 ≥ 1

and we are done.
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B.4 Dealing With Negative Targets

So far we have only dealt with sequences converging to some positive target, i.e., the parametrization
wt = ut �ut. In this section we show that handling parametrization wt = ut �ut −vt �vt can be
done by noting that for any coordinate i, at least one of ut,i or vt,i has to be close to its initialization
value. Intuitively, this observation will allow us to treat parametrization wt = ut � ut − vt � vt as
if it was wt ≈ ut � ut and all coordinates of the target w� are replaced by its absolute values.

Consider two sequences given by

0 < x+
0 = α2 ≤ x�

+, x+
t+1 = x+

t (1− 4η(x+
t − x�

+ + bt))
2

0 < x−
0 = α2 ≤ −x�

−, x−
t+1 = x−

t (1 + 4η(−x−
t − x�

− + bt))
2

where (bt)t≥0 is some sequence of errors and the targets satisfy x�
+ > 0 and x�

− < 0. We already
know how to deal with the sequence (x+

t )t≥0. Note that we can rewrite the updates for the sequence
(x−

t )t≥0 as follows
x−
t+1 = x−

t (1− 4η(x−
t −

��x�
−
��− bt))

2.

and we know how to deal with sequences of this form. In particular, (x−
t )t≥0 will converge to

��x�
−
��

with error at most B equal to some bound on maximum error and hence the sequence (−x−
t )t≥0 will

converge to a B-tube around x�. Hence, our theory developed for sequences with positive targets
directly apply for sequences with negative targets of the form given above.

The following lemma is the key result allowing to treat wt = ut � ut − vt � vt almost as if it was
wt ≈ ut � ut as discussed at the beginning of this section.

Lemma B.16 (Handling positive and negative sequences simultaneously). Let xt = x+
t − x−

t and
x� ∈ R be the target such that |x�| > 0. Suppose the sequences (x+

t )t≥0 and (x−
t )t≥0 evolve as

follows

0 < x+
0 = α2 ≤ 1

4
|x�| , x+

t+1 = x+
t (1− 4η(xt − x� + bt))

2

0 < x−
0 = α2 ≤ 1

4
|x�| , x−

t+1 = x−
t (1 + 4η(xt − x� + bt))

2.

and that there exists B > 0 such that |bt| ≤ B and η ≤ 1
12(x�+B) . Then the following holds:

1. For any t ≥ 0 we have 0 ≤ x+
t ∧ x−

t ≤ α2.

2. For any t ≥ 0 we have

• If x� > 0 then x−
t ≤ α2

�t−1
i=0(1 + 4η |bt|).

• If x� < 0 then x+
t ≤ α2

�t−1
i=0(1 + 4η |bt|).

Proof. The choice of our step size ensures that |4η(xt − x� + bt)| ≤ 1
2 . For any 0 ≤ a ≤ 1

2 we have
0 ≤ (1− a)(1 + a) = 1− a2 ≤ 1. In particular, this yields for any t ≥ 0

x+
t x

−
t = α4

t−1�

i=0

(1− 4η(xt − x� + bt))
2(1 + 4η(xt − x� + bt))

2 ≤ α4

which concludes the first part.

To prove the second part assume x� > 0 and fix any t ≥ 0. Let 0 ≤ s ≤ t be the largest s such
that x+

s > x�. If no such s exists we are done immediately. If s = t then by the first part we have
x−
t ≤ α2 and we are done.

If s < t then we have by the first part and by the assumption α2 ≤ 1
4 |x�|, x−

s ≤ α4

x+
s
≤ 1

4α
2. Further,

by the choice of step size η we have x+
s ≤ 4x�. It then follows that

(1 + 4η(xs − x� + bt))
2 ≤ 4
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and hence

x−
t = x−

s

t−1�

i=s

(1 + 4η(x+
i − x−

i − x� + bi))
2

≤ 1

4
α2(1 + 4η(xs − x� + bt))

2
t−1�

i=s+1

(1 + 4η(x+
i − x−

i − x� + bi))
2

≤ α2
t−1�

i=s+1

(1 + 4η |bt|))2.

This completes our proof for the case x� > 0. For x� < 0 we are done by symmetry.

B.5 Proof of Proposition 1

In this section we will prove Proposition 1. We remind our readers, that the goal of this proposition
is showing that the error sequence (pt)t≥0 can be essentially ignored if the RIP constant δ is small
enough.

Recall that the error arising due to the bounded error sequence (bt)t≥0 is irreducible as discussed in
Section B.2. More formally, we will show that if for some 0 ≤ ζ ≤ w�

max we have �bt�∞ � ζ and if

�pt�∞ � 1

log2
w�

max
ζ

�st −w��∞ then after t = O
�

1
ηζ log

1
α

�
iterations we have �st −w��∞ ≤ ζ.

In particular, up to absolute multiplicative constants we perform as good as if the error sequence
(pt)t≥0 was equal to 0.

The proof idea is simple, but the details can complicated. We will first prove a counterpart to
Proposition 1 which will correspond to parametrization wt = ut � ut, that is, we will only try to fit
the positive coordinates of w�. We will later use Lemma B.16 to extend our result to the general case.
We now list the key ideas appearing in the proof below.

1. Initially we have �w0 −w��∞ ≤ w�
max. We will prove our claim by induction, reducing

the above distance by half during each induction hypothesis. We will hence need to apply
m :=

�
log2

w�
max

ζ

�
induction steps which we will enumerated from 0 to m− 1.

2. At the beginning of the ith induction step we will have �wt −w��∞ ≤ 2−iw�
max. Choosing

small enough absolute constants for upper-bounds on error sequences (bt)t≥0 and (pt)t≥0

we can show that
�bt�∞ + �pt�∞ ≤ 1

40
2−iw�

max =: Bi.

In particular, during the ith induction step we treat both types of errors simultaneously as a
bounded error sequence with bound Bi. Since at each induction step �wt −w��∞ decreases
by half, the error bound Bi also halves. This puts us in position to apply Lemma B.13 which
plays a key role in the proof below.

3. One technical difficulty is that in Section B.2 all lemmas require that iterates never exceed
the target by more than a factor 6

5 . We cannot ensure that since initially our errors can be
much larger than some of the true parameter w� coordinates. We instead use Lemma B.14
to show that for any coordinate j we have wt,j ≤ w�

j + 4Bi during ith induction step. Then
for any j such that w�

j ≥ 20Bi we can apply the results from Section B.2. On the other
hand, if w�

j ≤ 20Bi =
1
22

−iw�
max then we already have

��wt,j − w�
j

�� ≤ 2−i−1w�
max and the

above bound does not change during the ith induction step.
4. During the ith induction step, if

��wt,j − w�
j

�� > 2−i−1w�
max then w�

j ≥ 20Bi and we can
apply Lemma B.10 which says that all such coordinates will monotonically approach B-tube
around w�

j . Lemma B.12 then tells us how many iterations need to be taken for our iterates
to get close enough to this B-tube so that

��wt,j − w�
j

�� ≤ 2−i−1w�
max.

5. Finally, we control the total accumulation of errors
�t−1

i=0(1+ 4η(�bi�∞ + �pi�∞))2 using
Lemma B.13 and ensure that for any w�

j ≥ 0 the iterates never get below α3 by applying
Lemma B.15.
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Lemma B.17 (Dealing with errors proportional to convergence distance). Fix any 0 < ζ ≤ w�
max

and let γ =
Cγ

�log2
w�

max
ζ �

where Cγ is some small enough absolute constant. Let w� ∈ Rk be a target

vector which is now allowed to have negative components. Denote by w�
+ the positive part of w�,

that is, (w�
+)i = 1{w�

i ≥0}w�
i . Let (bt)t≥0 and (pt)t≥0 sequences of errors such that for all t ≥ 0

we have �bt�∞ ≤ Cbζ for some small enough absolute constant Cb and �pt�∞ ≤ γ
��wt −w�

+

��
∞.

Let the updates be given by

w0,j = α2, wt+1,j = wt,j(1− 4η(wt,j − w�
j + bt,j + pt,j))

2.

If the step size satisfies η ≤ 5
96w�

max
and the initialization satisfies α ≤ ζ

3(w�
max)

2 ∧
�
w�

min ∧ 1 then

for t = O
�

1
ηζ log

1
α

�
we have

��wt −w�
+

��
∞ ≤ ζ

α2
t−1�

i=0

(1 + 4η(�bt�∞ + �pt�∞))2 ≤ α.

Proof. Let T := 1
ηw�

max
log 1

α4 and for any integer i ≥ −1 let Ti := 2iT and T̄i :=
�i

j=0 Tj . We

also let T̄−1 = 0. Let Bi :=
1
402

−iw�
max. Let m =

�
log2

w�
max

ζ

�
so that γ =

Cγ

m . We will prove our
claim by induction on i = 0, 1, . . . ,m− 1.

Induction hypothesis for i ∈ {0, . . . ,m}

1. For any j < i and T̄j−1 ≤ t < T̄j we have
��wt −w�

+

��
∞ ≤ 2−jw�

max. In particular, this
induction hypothesis says that we halve the convergence distance during each induction
step.

2. We have
���wT̄i−1

−w�
+

���
∞

≤ 2−iw�
max. This hypothesis controls the convergence distance

at the beginning of the ith induction step.

3. For any j we have α3 ≤ wT̄i−1,j ≤ w�
j + 4Bi.

Base case
For i = 0 all conditions hold since for all j we have 0 ≤ α2 = w0,j < w�

j .

Induction step
Assume that the induction hypothesis holds for some 0 ≤ i < m. We will show that it holds for i+1.

1. We want to show that for all t ∈ {0, . . . , Ti−1}
���wT̄i−1+t −w�

+

���
∞

remains upper-bounded

by 2−iw�
max.

Note that 2−iw�
max ≥ 2−mw�

max ≥ 1
2ζ and hence requiring Cγ + 2Cb ≤ 1

40 we have
���bT̄i−1

���
∞

+
���pT̄i−1

���
∞

≤ Cbζ + γ2−iw�
max

≤ (Cγ + 2Cb)2
−iw�

max

≤ 1

40
2−iw�

max

= Bi.

For any j such that w�
j ≥ 20Bi the third induction hypothesis wT̄i−1,j ≤ w�

j + 4Bi ensures
that wT̄i−1,j ≤ 6

5w
�
j . Hence, it satisfies the pre-conditions of Lemma B.10 and as long as

���wT̄i−1+t −w�
+

���
∞

≤ 2−iw�
max
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any such j will monotonically approach the 1
40Bi-tube around w�

j maintaining
��wt − w�

j

�� ≤
2−iw�

max.

On the other hand, for any j such that w�
j ≤ 20Bi wt,j will stay in (0, w�

j +4Bi] maintaining��wt − w�
j

�� ≤ 20Bi ≤ 2−iw�
max as required.

By induction on t, we then have for any t ≥ 0

���wT̄i−1+t −w�
+

���
∞

≤ 2−iw�
max

which is what we wanted to show.

2. To prove the second part of the induction hypothesis, we need to show that after Ti iterations
the maximum convergence distance

��wT̄i
−w�

+

��
∞ decreases at least by half.

Take any j such that w�
j ≥ 0 and

���w�
T̄i−1,j

− w�
j

��� ≤ 2−i−1w�
max = 20Bi. Then by a

similar argument used in to prove the first induction hypothesis for any t ≥ 0 we have���w�
T̄i−1+t,j

− w�
j

��� ≤ 2−i−1w�
max and hence such coordinates can be ignored.

Now take any j such that w�
j ≥ 0 and

���w�
T̄i−1,j

− w�
j

��� > 2−i−1w�
max. Then, since 20Bi =

2−i−1w�
max and since by the third induction hypothesis wT̄i−1,j ≤ w�

j + 4Bi it follows that
0 ≤ wT̄i−1,j < w�

j − 20Bi. Applying the second part of Lemma B.12 with ε = 19Bi and
noting that

19Bi =
19

40
2−iw�

max ≥ 19

40
2−m+1w�

max ≥ 19

40
ζ ≥ 1

3
ζ

we have for any

t ≥ Ti

≥ 2i
1

ηw�
max

log
3(w�

max)
2

α3ζ

≥ 15

32ηw�
j

log
(w�

j )
2

wT̄i−1,j · 19Bi

iterations the following holds

���wT̄i−1+t,j − w�
j

��� ≤ 20Bi ≤ 2−i−1w�
max

which completes our proof.

3. The upper bound follows immediately from Lemma B.14 which tells that after

t ≥ Ti ≥ 2i
4

ηw�
max

=
1

10ηBi
.

iterations for any j we have wT̄i−1+t,j ≤ w�
j + 2Bi = w�

j + 4Bi+1.
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To prove the lower-bound, first note that
T̄i−1�

i=0

(1 + 8η(�bi�∞ + �pi�∞))2

≤
T̄i−1�

i=0

(1 + 8ηCbζ)
2(1 + 4η �pi�∞))4 (12)

≤ (1 + 8ηCbζ)
4Ti

�
1 + 4η · Cγ

m
2−iw�

max

�4(i+1)Ti

(13)

≤ (1 + 8ηCbζ)
4Tm−1

�
1 + 4η · Cγ

m
2−m+1w�

max

�4mTm−1

(14)

≤
�
1 + 4η · 1

m
2Cbζ

�4mTm−1
�
1 + 4η · Cγ

m
2−m+1w�

max

�4mTm−1

(15)

≤
�
1 + 4η · Cγ

m
2−m+1w�

max

�8mTm−1

(16)

≤ 1

α
(17)

where line 12 follows by noting that for any x, y ≥ 0 we have (1+x+ y) ≤ (1+x)(1+ y).
Line 13 follows by applying Lemma B.13 and noting that T̄i ≤ 2Ti. Line 14 follows by
noting that i ≤ m− 1. Line 15 follows by applying (1 +mx) ≤ (1 + x)m for x ≥ 0 and
m ≥ 1. Line 16 follows by noting that ζ ≤ 2−m+1w�

max and assuming that 2Cb ≤ Cγ .
Line 17 follows by applying Lemma A.2 which in particular says that

�
1 + 4η · Cγ

m
2−m+1w�

max

�2t

≤ 1

α

for any t ≤ m2m−1

32ηw�
maxCγ

log 1
α4 . Setting Cγ = 1

128 yields the desired result.

The lower-bound is then proved immediately by Lemma B.15.

By above, the induction hypothesis holds for i = m. We can still repeat the argument for the first
step of induction hypothesis to show that for any t ≥ T̄m−1��wt −w�

+

��
∞ ≤ 2−mw�

max ≤ ζ.

Also, the proof for the third induction hypothesis with i = m shows that for any t ≤ T̄m−1 we have

α2
t−1�

i=0

(1 + 4η(�bt�∞ + �pt�∞))2 ≤ α.

To simplify the presentation, note that w�
max

ζ ≤ 2m <
2w�

max

ζ and hence we will write

T̄m−1 = (2m − 1)
1

ηw�
max

log
1

α4
= O

�
1

ηζ
log

1

α

�
.

Finally, regarding the absolute constants we have required in our proofs above that Cγ + 2Cb ≤ 1
40 ,

Cb ≤ 1
2Cγ and Cγ ≤ 1

128 . Hence, for example, absolute constants Cb =
1

256 and Cγ = 1
128 satisfy

the requirements of this lemma.

Extending the above lemma to the general setting considered in Proposition 1 can now be done by a
simple application of Lemma B.16 as follows.

Proof of Proposition 1. Lemma B.16 allows us to reduce this proof to lemma B.17 directly. In
particular, using notation from Lemma B.17 and using Lemma B.16 we maintain that for all t ≤ T̄m−1

w�
j > 0 =⇒ 0 ≤ w−

t ≤ α

w�
j < 0 =⇒ 0 ≤ w+

t ≤ α.
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Consequently, for w�
j > 0 we can ignore sequence (w−

t,j)t≥0 by treating it as a part of bounded error
bt. The same holds for sequence (w+

t,j)t≥0 when w�
j < 0. Then, for w�

j > 0 the sequence (w+
t,j)

evolves as follows

w+
t+1,j = w+

t,j(1− 4η(w+
t,j − w�

j + (bt,j − w−
t,j) + pt,j))

2

which falls directly into the setting of lemma B.17. Similarly, if w�
j < 0 then

w−
t+1,j = w−

t,j(1 + 4η(−w−
t,j − w�

j + (bt,j + w+
t,j) + pt,j))

2

= w−
t,j(1− 4η(w−

t,j −
��w�

j

��+ (−bt,j − w+
t,j)− pt,j))

2

and hence this sequence also falls into the setting of lemma B.17.

Finally, �et�∞ ≤ α follows by Lemma A.1 and we are done.

B.6 Proof of Proposition 2

We split the proof of Proposition 2 in two phases. First, using Lemma B.18 we show that �st −w��∞
converges to 0 with error �bt � 1S�∞ up to some absolute multiplicative constant. From this point
onward, we can apply Lemma B.12 to handle convergence to each individual sequence i on the true
support S up to the error �bt � 1i�∞∨

√
kδ �bt � 1S�∞. This is exactly what allows us to approach

an oracle-like performance with the �2 parameter estimation error depending on log k instead of log d
in the case of sub-Gaussian noise.
Lemma B.18. Consider the setting of updates given in equations (3) and (4). Fix any ε > 0 and
suppose that the error sequences (bt)t≥0 and (pt)t≥0 satisfy the following for any t ≥ 0:

�bt � 1S�∞ ≤ B,

�pt�∞ ≤ 1

20
�st −w��∞ .

Suppose that

20B < �s0 −w��∞ ≤ 1

5
w�

min.

Then for η ≤ 5
96w�

max
and any t ≥ 5

8ηw�
min

we have

�st −w��∞ ≤ 1

2
�s0 −w��∞ .

Proof. Note that �b0�∞ + �p0�∞ ≤ 1
10 �s0 −w��∞. By Lemma B.10 for any t ≥ 0 we have

�bt�∞ + �pt�∞ ≤ 1
10 �s0 −w��∞. Hence, for any i such that |s0,i − w�

i | ≤ 1
2 �s0 −w��∞

Lemma B.10 guarantees that for any t ≥ 0 we have |st,i − w�
i | ≤ 1

2 �s0 −w��∞ On the other
hand, for any i such that |s0,i − w�

i | > 1
2 �s0 −w��∞ by Lemma B.11 we have |st,i − w�

i | ≤
1
2 �s0 −w��∞ for any t ≥ 5

8ηw�
min

which is what we wanted to prove.

Proof of Proposition 2.

Let B := maxj∈S Bj . To see that �st −w��∞ never exceeds 1
5w

�
min we use the B-tube argument

developed in Section B.2 and formalized in Lemma B.10.

We begin by applying the Lemma B.18 for log2
w�

min

5(B∨ε) times. Now we have �st −w��∞ < 20(B∨ε)
and so �pt�∞ < δ

√
k · 20(B ∨ ε) Hence, for any i ∈ S we have

�bt � 1i�∞ + �pt�∞ ≤ Bi +
√
kδ20(B ∨ ε).

Hence for each coordinate i ∈ S we can apply the first part of Lemma B.12 so that after another
t = 15

32ηw�
min

log
w�

min

5ε iterations we are done.

Hence the total number of required iterations is at most t ≤ 45
32ηw�

min
log

w�
min

ε .
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C Missing Proofs from Section A.3

This section provides proofs for the technical lemmas stated in section A.3.

C.1 Proof of Lemma A.1

Looking at the updates given by equation 4 in appendix A.1 we have

1Sc � et+1 = 1Sc �wt � (1 − 4η(st −w� + bt + pt))
2 (18)

= 1Sc � et � (1Sc − 1Sc � 4η(st −w� + bt + pt))
2 (19)

= 1Sc � et � (1 − 4η(bt + pt))
2 (20)

and hence

�1Sc � et+1�∞ ≤ �1Sc � et�∞ (1 + 4η(�bt�∞ + �pt�∞))2

which completes the proof for 1Sc � et.

On the other hand, Lemma B.16 deals with 1S � et immediately and we are done.

C.2 Proof of Lemma A.2

Note that

1 + 4ηbt ≤ 1 + 4ηB

and hence

xt ≤ x0(1 + 4ηB)2t.

To ensure that xt ≤
√
x0 it is enough to ensure that the right hand side of the above expression is not

greater than
√
x0. This is satisfied by all t such that

t ≤ 1

2

log 1√
x0

log (1 + 4ηB)

Now by using log x ≤ x− 1 we have

1

2

log 1√
x0

log (1 + 4ηB)
≥ 1

2

log 1√
x0

4ηB

=
1

32ηB
log

1

x2
0

which concludes our proof.

C.3 Proof of Lemma A.3

For any index set S of size k+1 let XS be the n×(k+1) sub-matrix of X containing columns indexed
by S. Let λmax

�
1
nX

T
SXS

�
and λmin

�
1
nX

T
SXS

�
denote the maximum and minimum eigenvalues of�

1
nX

T
SXS

�
respectively. It is then a standard consequence of the (k + 1, δ)-RIP that

1− δ ≤ λmin

�
1

n
XT

SXS

�
≤ λmax

�
1

n
XT

SXS

�
≤ 1 + δ.

Let z ∈ Rd be any k-sparse vector. Then, for any i ∈ {1, . . . , d} the joint support of 1i and z is of
size at most k + 1. We denote the joint support by S and we will also denote by zS and (1i)S the
restrictions of z and 1i on their support, i.e., vectors in Rk+1. Letting �·� be the spectral norm, we

34



have
����
�
1

n
XTXz

�

i

− zi

���� =
����
�
1

n
XTXz,1i

�
− �z,1i�

����

=

����
�

1√
n
Xz,

1√
n
X1i

�
− �z,1i�

����

=

����
�

1√
n
XSzS ,

1√
n
XS(1i)S

�
− �zS , (1i)S�

����

=

����
��

1

n
XT

SXS − I

�
zS , (1i)S

�����

≤
����
1

n
XT

SXS − I

���� �z�2 �1i�2
≤ δ �z�2

where the penultimate line follows by the Cauchy-Schwarz inequality and the last line follows by the
(k + 1, δ)-RIP. Since i was arbitrary it hence follows that

����
�
1

n
XTX− I

�
z

����
∞

≤ δ �z�2 ≤ δ
√
k �z�∞ .

C.4 Proof of Lemma A.4

For any i ∈ {1, . . . , d} we can write Xi = X1i. The result is then immediate by the (k + 1, δ)-RIP
since ����

1√
n
X1i

����
2

2

≤ (1 + δ) �1i�22 ≤ 2.

By the Cauchy-Schwarz inequality we then have, for any i, j ∈ {1, . . . , d},
�����

�
1

n
XTX

�

i,j

����� ≤
����

1√
n
Xi

����
2

����
1√
n
Xj

����
2

≤ 2

and for any z ∈ Rd it follows that
����
1

n
XTXz

����
∞

≤ 2d �z�∞ .

C.5 Proof of Lemma A.5

Since for any column Xi of the matrix X we have �Xi�2 /
√
n ≤ C and since the vector ξ con-

sists of independent σ2-subGaussian random variables, the random variable 1√
n

�
XTξ

�
i

is C2σ2-
subGaussian.

It is then a standard result that for any ε > 0

P

�����
1√
n
XTξ

����
∞

> ε

�
≤ 2de−

ε2

2C2σ2 .

Setting ε = 2
�
2C2σ2 log(2d) we have with probability at least 1− 1

8d3 we have
����

1√
n
XTξ

����
∞

≤ 4
�
C2σ2 log(2d)

�
�
σ2 log d.
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D Proof of Theorem 2

Recall the updates equations for our model parameters given in equations (3) and (4) as defined in
Appendix A.1.

Since w0 = 0 we can rewrite the first update written on u and v as

u1 = u0 �
�
1 − 4η

�
−w� +

�
I− 1

n
XTX

�
w� − 1

n
XTξ)

��
,

v1 = v0 �
�
1 + 4η

�
−w� +

�
I− 1

n
XTX

�
w� − 1

n
XTξ)

��
.

(21)

By Lemma A.3 we have
���I− 1

nX
TX

�
w�

��
∞ ≤ 1

20w
�
max. The term 1

nX
Tξ can be simply bounded

by
�� 1
nX

Tξ
��
∞. If w�

max ≥ 5
�� 1
nX

Tξ
��
∞ (note that otherwise returning a 0 vector is minimax-optimal)

then
1

20
w�

max +

����
1

n
XTξ

����
∞

≤ 1

4
w�

max.

We can hence bound the below term appearing in equation (21) as follows:

3

4
w�

max ≤
����−w� +

�
I− 1

n
XTX

�
w� − 1

n
XTξ)

����
∞

≤ 5

4
w�

max

The main idea here is that we can recover the above factor by computing one gradient descent iteration
and hence we can recover w�

max up to some multiplicative constants.

In fact, with 0 < η ≤ 1
5w�

max
so that the multiplicative factors are non-negative, the above inequality

implies that
1 + 3ηw�

max ≤ fmax ≤ 1 + 5ηw�
max

and so

w�
max ≤ fmax − 1

3η
≤ 5

3
w�

max

which is what we wanted to show.

Note that after an application of this theorem we can now reset the step size to

3η

20 (fmax − 1)
.

This new step size satisfies the conditions of Theorems 1 and 3 while being at most two times smaller
than required.

E Proof of Theorem 3

For proving Theorem 3 we first prove Propositions 3 and 4 which correspond to Propositions 1 and 2
but allows for different step sizes along each dimension. We present the proof of Proposition 3 in
Section E.1.

Proposition 3. Consider the setting of Proposition 1 and run Algorithm 2 with τ = 640.

Then, for some early stopping time T = O
�
log

w�
max

ζ log 1
α

�
and any 0 ≤ t ≤ T we have

�sT −w��∞ ≤ ζ,

�et�∞ ≤ α.

Further, let ηT,j be the step size for the jth coodinate at time T . Then, for all j such that |w�
j | > ζ

we have
1

16
· 1

20
��w�

j

�� ≤ ηT,j ≤
1

20
��w�

j

�� .
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Proposition 4. Consider the setting of updates given in equations (3) and (4). Fix any ε > 0 and
suppose that the error sequences (bt)t≥0 and (pt)t≥0 satisfy for any t ≥ 0:

�bt � 1i�∞ ≤ Bi ≤
1

10
w�

min,

�pt�∞ ≤ 1

20
�st −w��∞ .

Suppose that

�s0 −w��∞ ≤ 1

5
w�

min.

For each i ∈ S let the step size satisfy 1

ηi|w�
i | ≤ 320. Then for all t ≥ 0

�st −w��∞ ≤ 1

5
w�

min

and for any t ≥ 450 log
w�

min

ε we have for any i ∈ S.

|st,i − w�
i | � δ

√
kmax

j∈S
Bj ∨Bi ∨ ε

Proof. We follow the same strategy as in the proof of Proposition 2. The only difference here is
that the worst case convergence time 1

ηw�
min

is replaced by maxi∈S
1

ηi|w�
i | ≤ 320 and the result

follows.

Proof of Theorem 3. The proof is identical to the proof of Theorem 1 with application of Proposition 1
replaced with Proposition 3 and in the easy setting the application of Proposition 2 replaced with an
application of Proposition 4.

The only difference is that extra care must be taken when applying Proposition 4. First, note that the
pre-conditions on step sizes are satisfied by Proposition 3. Second, the number of iterations required
by Proposition 4 is fewer than step-size doubling intervals, and hence the step sizes will not change
after the application of Proposition 3. In particular, Proposition 3 requires 450 log w�

min

ε iterations and
we double the step sizes every 640 log 1

α iterations. This finishes our proof.

E.1 Proof of Proposition 3

Recall the proof of Proposition 1 that we have shown in Appendix B.5. We have used a constant step
size η ≤ 5

96w�
max

. With a constant step size this is in fact unavoidable up to multiplicative constants –
for larger step sizes the iterates can explode.

Looking at our proof by induction of Lemma B.17, the inefficiency of Algorithm 1 comes from
doubling the number of iterations during each induction step. This happens because during the ith

induction step the smallest coordinates of w� that we consider are of size 2−i−1w�
max. For such

coordinates, step size η ≤ 5
96w�

max
could be at least 2i times bigger and hence the convergence

would be 2i times faster. The lemmas derived in Appendix B.2 indicate that fitting signal of such
size will require number of iterations proportional to 1

η2−i−1w�
max

= 2i+1 1
ηw�

max
which is where the

exponential increase in the number of iterations for each induction step comes from.

We can get rid of this inefficiency if for each coordinate j we use a different step size, so that for
all j such that

��w�
j

�� � w�
max we set ηj � 5

96w�
max

. In fact, the only constraint we have is that ηj
never exceeds 5

96|w�|j
. To see that we can change the step sizes for small enough signal in practice,

note that after two induction steps in Proposition 1 we have �st −w��∞ ≤ 1
4w

�
max and �et�∞ ≤ α.

We can then show, that for each j such that |w�|j > 1
2w

�
max we have |wt,j | > 1

4w
�
max. On the other

hand, if |w�|j ≤ 1
8w

�
max then wt,j ≤ w�

j + 4B1 ≤ 1
4w

�
max, where B1 is given as in Lemma B.17. In

particular, after the second induction step one can take all j such that |wt,j | ≤ 1
4w

�
max and double its

associated step sizes.

We exploit the above idea in the following lemma, which is a counterpart to Lemma B.17. One final
thing to note is that we do not really know what w�

max is which is necessary in the argument sketched
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above. However, in Theorem 2 we showed that we can compute some ẑ such that w�
max ≤ ẑ ≤ 2w�

max
and as we shall see this is enough.
Lemma E.19 (Counterpart to Lemma B.17 with increasing step sizes). Consider the same setting of
Lemma B.17. Run Algorithm 2 with τ = 640 and parametrization wt = ut � ut.

Then, for t =
�
640 log2

w�
max

ζ log 1
α

�
and any j we have

��wt −w�
+

��
∞ ≤ ζ

α2
t−1�

i=0

(1 + 4ηt,j(�bt�∞ + �pt�∞))2 ≤ α.

Proof. Following the notation used in Lemma B.17 for any integer i ≥ −1 let Ti := T and
T̄i :=

�i
j=0 Tj = (i + 1)T . We remark now that we have the same T for each induction step in

contrast to exponentially increasing number of iterations in Lemma B.17. Let Bi :=
1
402

−iw�
max. Let

m =
�
log2

w�
max

ζ

�
so that γ =

Cγ

m . We will prove our claim by induction on i = 0, 1, . . . ,m− 1.

Induction hypothesis for i ∈ {0, . . . ,m}

1. For any j < i and T̄j−1 ≤ t < T̄j we have
��wt −w�

+

��
∞ ≤ 2−jw�

max. In particular, this
induction hypothesis says that we halve the convergence distance during each induction
step.

2. We have
���wT̄i−1

−w�
+

���
∞

≤ 2−iw�
max. This hypothesis controls the convergence distance

at the beginning of each induction step.

3. For any j such that w�
j ≤ 20Bi = 2−i−1w�

max we have α3 ≤ wT̄i−1,j ≤ w�
j + 4Bi. On the

other hand, for any j such that w�
j ≥ 20Bi we have α3 ≤ wT̄i−1,j ≤ 6

5w
�
j .

4. Let l be any integer such that 0 ≤ l ≤ i. Then for any j such that 2−l−1w�
max < w�

j ≤
2−lw�

max we have
2l−3η0,j ≤ ηT̄i−1,j ≤ 2lη0,j

For any j such that w�
j ≤ 2−i−1 we have

2i−2η0,j ≤ ηT̄i−1,j ≤ 2(i−1)∨0η0,j .

In particular, the above conditions ensure that we ηt,j never exceeds 1
20w�

j
so that the step-

size pre-conditions of all lemmas derived in previous appendix sections always hold during
each induction step. Further, it ensures that once we fit small coordinates, the step size is up
to absolute constants as big as possible.

We remark the that in addition to induction hypotheses used in Lemma B.17 the fourth induction
hypothesis allows to control what happens to the step sizes with our doubling step size scheme.
There is also a small modification to the third induction hypothesis, where right now we sometimes
allow wt,j > w�

j + 4Bi because due to increasing step sizes we have to deal iterates larger than
target slightly differently. In particular, we can only apply Lemma B.14 for coordinates j with
sufficiently small w�

j , because the step sizes of such coordinates will be larger which allows for faster
convergence.

Base case
For i = 0 all conditions hold since for all j we have 0 ≤ α2 = w0,j < w�

j and since all η0,j ≤
1

20w�
max

.

Induction step
Assume that the induction hypothesis holds for some 0 ≤ i < m. We will show that it also holds for
i+ 1.

38



1. The proof is based on monotonic convergence to Bi tube argument and is identical to the
one used in Lemma B.17 with the same conditions on Cb and Cγ .

2. Similarly to the proof of Lemma B.17 here we only need to handle coordinates j such that
w�

j > 20Bi = 2−i−1w�
max and

���wT̄i−1,j − w�
j

��� > 2−i−1w�
max.

If wT̄i−1,j ≤ w�
j we apply the second part of Lemma B.12 with ε = 19Bi to obtain that for

any

t ≥ 1

2

1

ηT̄i−1,jw
�
j

log
1

α4

≥ 15

32ηw�
j

1

ηT̄i−1,jw
�
j

log
(w�

j )
2

wT̄i−1,j · 19Bi

iterations the following holds
���wT̄i−1+t,j − w�

j

��� ≤ 20Bi ≤ 2−i−1w�
max.

By the fourth induction hypothesis and by definition of η0,j we have

1

ηT̄i−1,jw
�
j

≤ 8

η0,jw�
max

≤ 16 · 20.

and hence T iterations are enough.

If wT̄i−1,j ≥ w�
j by the third induction hypothesis we also have wT̄i−1,j ≤ 6

5w
�
j so that the

pre-condition of Lemma B.11 apply and we are done, since it requires fewer iterations than
considered above.

3. We first deal with the upper-bound. For j such that w�
j ≥ 20Bi we have by the third

induction hypothesis wT̄i−1,j ≤ 6
5w

�
j and hence by the monotonic convergence to Bi-tube

argument given in Lemma B.10 this bound still holds after the ith induction step. For
any j such that w�

j ≤ 20Bi we use Lemma B.14 and the fourth induction hypothesis
ηT̄i−1,j ≥ 2i−3η0,j to show that after

T ≥ 32

η0,jw�
max

≥ 2i+2

ηT̄i−1,jw
�
max

=
1

10ηT̄i−1,jBi
.

iterations for any such j we have wT̄i−1+t ≤ w�
j +2Bi = w�

j +4Bi+1. Finally, this implies
that if 10Bi ≤ w�

j ≤ 20Bi then after T iterations wT̄i,j ≤ 6
5w

�
j .

To prove the lower-bound, note that during the ith induction step for any j we have ηj,T̄i−1
≤

2iη0,j since each step size at most doubles after every induction step. Hence during the ith

induction step, the accumulation of error can be upper-bounded by

T̄i−1�

i=T̄i−1

(1 + 4ηT̄i−1,j(�bi�∞ + �pi�∞))2

≤ (1 + 4 · 2iη0,j(�bi�∞ + �pi�∞))2T

≤ (1 + 4 · η0,j(�bi�∞ + �pi�∞))2·2
iT .

Now since our 2iT is simply the same Ti as used in Lemma B.17 rescaled at most 8 times, the
same bounds holds on the accumulation of error as in Lemma B.17 with absolute constants
Cb and Cγ rescaled by 1

8 in this lemma. This completes the third induction hypothesis step.

4. After the ith induction step (recall that the induction steps are numbered starting from 0), if
i ≥ 1 our step size scheme doubles ηT̄i,j if wT̄i,j ≤ 2−i−2ẑ. Recall that after ith induction
step we have

��wt −w�
+

��
∞ ≤ 2−i−1w�

max.

For every j such that w�
j > 2−iw�

max we have wT̄i,j > 2−i−1w�
max ≥ 2−i−2ẑ and hence

ηT̄i,j will not be affected.
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For every j such that w�
j ≤ 2−i−3w�

max we have wT̄i,j ≤ w�
j + 4Bi+1 ≤ 2−i−2w�

max and
for such j the step size will be doubled.

Hence for any non-negative integer k and any j such that 2−k−1w�
max < w�

j ≤ 2−kw�
max

the corresponding step size will be doubled after ith induction step for i = 1, . . . , k − 3
and will not be touched anymore after and including the k + 1th induction step. We are
only uncertain about what happens for such j after the k − 2, k − 1 and kth induction steps,
which is where the factor of 8 comes from. This concludes the proof of the fourth induction
hypothesis.

The result then follows after mT iterations which is what we wanted to show.

Similarly to the proof of Proposition 1 we can extend the above Lemma to a general setting (i.e.
parametrization wt := ut � ut − vt � vt) by using Lemma B.16. The following proposition then
corresponds to Proposition 1 but allows to use our increasing step sizes scheme.

Proof of Proposition 3. Immediate by Lemma B.16 by the same argument as used in the proof of
Proposition 1.

F Gradient Descent Updates

We add the derivation of gradient descent updates for completeness. Let w = u� u− v � v and
suppose

L(w) =
1

n
�Xw − y�22 .

We then have for any i = 1, . . . , d

∂

∂ui
L(w) =

1

n

n�

j=1

∂

∂ui
(Xw − y)2j

=
1

n

n�

j=1

2(Xw − y)j ·
∂

∂ui
(Xw − y)j

=
1

n

n�

j=1

2(Xw − y)j ·
∂

∂ui
(X(u� u))j

=
1

n

n�

j=1

2(Xw − y)j · 2uiXji

= 4ui
1

n

n�

j=1

Xji(Xw − y)j

= 4ui
1

n

�
XT(Xw − y)

�
i

and hence

∇uL(w) =
4

n
XT(Xw − y)� u,

∇vL(w) = − 4

n
XT(Xw − y)� v.

G Comparing Assumptions to [30]

We compare our conditions on α, δ and η to the related work analyzing implicit regularization effects
of gradient descent for noiseless low-rank matrix recovery problem with a similar parametrization
[30].
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The parameter α plays a similar role in both papers: �2 (or reconstruction) error in the noiseless
setting is directly controlled by the size of α as we show in Corollary 1. In both settings the number
of iterations is affected only by a multiplicative factor of O(log 1/α).

The conditions imposed on α and η in [30] are much stronger than required in our work. Our results do
not follow from the main result of [30] by considering a matrix recovery problem for the ground truth
matrix diag(w�). Letting κ = w�

max/w
�
min the assumptions of [30] require δ � 1/(κ3

√
k log2 d)

and η � δ yielding Ω(κ/η log 1/α) = Ω(κ4 log2 d
√
k log 1/α) iteration complexity. In contrast, our

theorem only requires δ to scale only as 1/ log κ. We are able to set the step-size using data and do
not rely on knowing the unknown quantities κ and k.

Crucially, when w�
min � �XTξ�∞/n in the sub-Gaussian noise setting the assumption δ �

1/(κ3
√
k log2 d) implies that for sample size n, the RIP parameter δ = O(n−3/2), which is in

general impossible to satisfy, e.g. when the entries of X are i.i.d. Gaussian. Hence moving the
dependence on κ into a logarithmic factor as done in our analysis is key for handling the general
noisy setting. For this reason, our proof techniques are necessarily quite different and may be of
independent interest.

H Comparing Our Results to [56]

Instead of using parametrization w = u� u− v � v, the authors of [56] consider a closely related
Hadamard product reparametrization w = u� v and perform gradient descent updates on u and v for
the least squares objective function with no explicit regularization. This work is related to ours in that
the ideas of implicit regularization and sparsity are combined to yield a statistically optimal estimator
for sparse recovery under the RIP assumption. In this section, we compare this work to ours, pointing
out the key similarities and differences.

To simplify the notation, in all points below we assume that w�
min � �XTξ�∞/n so that the variable

m used in [56] coincides with w�
min used in this paper.

(Difference) Properly handling noisy setting: Let κ := w�
max/w

�
min. The assumption (B) in [56]

requires X/
√
n to satisfy (k + 1, δ)-RIP with δ � 1

κ
√
k log(d/α)

. On the other hand, for our results

to hold it is enough to have δ � 1√
k log κ

. Moving κ into a logarithmic factor is the key difference,
which requires a different proof technique and also allows to handle the noise properly. To see why
the latter point is true, consider w�

min � σ
√
log d/

√
n. The assumption (B) in [56] then requires

δ = O(1/(
√
k
√
n)), which is in general impossible to satisfy with random design matrices, e.g.,

when entries of X are i.i.d. Gaussian. Hence, in contrast to our results, the results of [56] cannot
recover the smallest possible signals (i.e., w� coordinates of order σ

√
log d/

√
n).

(Difference) Computational optimality: In this paper we consider an increasing step size scheme
which yields up to poly-logarithmic factors a computationally optimal algorithm for sparse recovery
under the RIP. On the other hand, only constant step sizes were considered in [56], which does not
result in a computationally optimal algorithm.

Moreover, due to different constraints on step sizes, the two papers yield different iteration com-
plexities for early stopping times even in the setting of running gradient descent with constant step
sizes. In [56, Theorem 3.2] the required number of iterations is Ω( log(d/α)ηw�

min
) = Ω( κ

w�
min

log2(d/α)).

If w�
min � σ

√
log d/

√
n the required number of iterations is then Ω(

nw�
max

σ2 log(d/α)). On the
other hand, in our paper Theorem 1 together with step size tuned by using Theorem 2, requires
O(κ logα−1) = O(

√
nw�

max

σ logα−1) iterations, yielding an algorithm faster by a factor of
√
n.

(Difference) Conditions on step size: We require η � 1/w�
max while [56] requires (Assumption

(C)) that η � w�
min

w�
max

(log d
α )

−1. The crucial difference is that this step size can be much smaller
than 1/w�

max required in our theorems and impacts computational efficiency as discussed in the
computational optimality paragraph above.

Furthermore, a crucial result in our paper is Theorem 2 which allows us to optimally tune the step
size with an estimate of w�

max that can be computed from the data. On the other hand, in [56] η
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also depends on w�
min. It is not clear how to choose such an η in practice and hence it becomes an

additional hyperparameter which needs to be tuned.

(Difference) Dependence on w�
max: Our results establish explicit dependence on w�

max, while
assumption (A) in [56] requires w�

max � 1.

(Similarity) Recovering only coordinates above the noise level: In both papers, the early stop-
ping procedure stops while for all i ∈ S such that |w�

i | � �XTξ�∞/n we have wt,i ≈ 0. Essentially,
such coordinates are treated as if they did not belong to the true support, since they cannot be
recovered as certified by minimax-optimality bounds.

(Similarity) Statistical optimality: Both papers achieve minimax-optimal rates with early stop-
ping and also prove dimension-independent rates when w�

min � �XTξ�∞/n. Our dimension-
independent rate (Corollary 3) has an extra log k not present in results of [56]. We attribute this
difference to stronger assumptions imposed on RIP parameter δ in [56]. Indeed, the log k factor comes
from the δ

√
k
��XTξ/n� 1S

��
∞ term in Theorems 1 and 3, which gets smaller with decreasing δ.

I Further Improvements

In this section we expand on the potential improvements of our work outlined in Section 6.

Sub-Optimal Sample Complexity. Our RIP parameter δ scales as �O(1/
√
k). We remark that such

scaling on δ is less restrictive than in [30, 56] (see Appendix G and H). If we consider, for example,
sub-Gaussian isotropic designs, then satisfying such an assumption requires n � k2 log(ed/k)
samples. To see that, consider an n× k i.i.d. standard normal ensemble which we denote by X. By
standard results in random-matrix theory [50, Chapter 6], �XTX/n− I� �

�
k/n+ k/n where �·�

denotes the operator norm. Hence, we need n � k2 to satisfy �XTX/n− I� � 1/
√
k.

Note that Theorems 1 and 3 provide coordinate-wise bounds which is in general harder than providing
�2 error bounds directly. In particular, under the condition that δ = �O(1/

√
k), our main theorems

imply minimax-optimal �2 bounds; this requirement on δ implies that n needs to be at least quadratic
in k. Hence we need to answer two questions. First, do we need sample complexity quadratic in k to
obtain minimax-rates? The left plot in Figure 7 suggests that linear sample complexity in k is enough
for our method to match and eventually exceed performance of the lasso in terms of �2 error. Second,
is it necessary to change our �∞ based analysis to an �2 based analysis in order to obtain optimal
sample complexity? The right plot in Figure 7 once again suggests that sample complexity linear in k
is enough for our main theorems to hold.
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Figure 7: Sample complexity requirements.
We let d = 5000,σ = 1 and w�

S = 1S . The
plot on the left computes the log2 error ra-
tio for our method (stopping time chosen by
cross-validation) and the lasso (λ chosen op-
timally using knowledge of w�). The plot
on the right computes �wt � 1Sc�∞ for opti-
mally chosen t.

Relaxation to the Restricted Eigenvalue (RE) Assumption. The RIP assumption is crucial for
our analysis. However, the lasso satisfies minimax optimal rates under less restrictive assumptions,
namely, the RE assumption introduced in [9]. The RE assumption with parameter γ requires that
�Xw�22/n ≥ γ�w�22 for vectors w satisfying the cone condition �wSc�1 ≤ c�wS�1 for a suitable
choice of constant c ≥ 1. In contrast to RIP, RE only imposes constraints on the lower eigenvalue of
XTX/n for approximately sparse vectors and can be satisfied by random correlated designs [36, 42].
The RE condition was shown to be necessary for any polynomial-time algorithm returning a sparse
vector and achieving fast rates for prediction error [55].

We sample i.i.d. Gaussian ensembles with covariance matrices equal to (1− µ)I+ µ11T for µ = 0
and 0.5. For µ = 0.5 the RIP fails but the RE property holds with high probability [50, Chapter 7].
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In Figure 8 we show empirically that our method achieves the fast rates and eventually outperforms
the lasso even when we violate the RIP assumption.
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Figure 8: Violating the RIP assumption. We consider the same setting as in Figure 3 with rows of X
sampled from a Gaussian distribution with covariance matrix equal to (1− µ)I+ µ11T.
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J Table of Notation

We denote vectors with boldface letters and real numbers with normal font. Hence w denotes a
vector, while for example, wi denotes the ith coordinate of w. We let X be a n× d design matrix,
where n is the number of observations and d is the number of features. The true parameter is a
k-sparse vector denoted by w� whose unknown support is denoted by S ⊆ {1, . . . , d}. We let
w�

max = maxi∈S |w�
i | and w�

min = mini∈S |w�
i |. We let 1 be a vector of ones, and for any index

set A we let 1A denote a vector equal to 1 for all coordinates i ∈ A and equal to 0 everywhere else.
We denote coordinate-wise product of vectors by � and coordinate-wise inequalities by �. With a
slight abuse of notation we write w2 to mean coordinate-wise square of each element for a vector
w. Finally, we denote inequalities up to multiplicative absolute constants, meaning that they do not
depend on any parameters of the problem, by �.

Table 1: Table of notation
Symbol Description

n Number of data points
d Number of features
k Sparsity of the true solution
w� Ground truth parameter
w�

max maxi∈{1,...,k} |w�
i |

w�
min mini∈{1,...,k} |w�

i |
κ w�

max/w
�
min

κeff w�
max/(w

�
min ∨ ε ∨ (�XTξ�∞/n))

� Coordinatewise multiplication operator for vectors
� A coordinatewise inequality symbol for vectors
� An inequality up to some multiplicative absolute constant
wt Gradient descent iterate at time t equal to ut � ut + vt � vt
ut Parametrization of the positive part of wt

vt Parametrization of the negative part of wt

α Initialization of u0 and v0
η The step size for gradient descent updates
w+

t ut � ut

w−
t vt � vt

S Support of the true parameter w∗

S+ Support of positive elements of the true parameter w∗

S− Support of negative elements of the true parameter w∗

1A A vector with coordinates set to 1 on some index set A and 0 everywhere else
1i A short-hand notation for 1{i}
st The signal sequence equal to 1S+ � w+

t + 1S− � w−
t

et The error sequence equal to 1Sc � wt + 1S− � w+
t + 1S+ � w−

t
bt Represents sequences of bounded errors
pt Represents sequences with errors proportional to the

convergence distance �st −w��∞
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