
A Theoretical Analysis
A.1 Preliminaries and Notations

We formally define an ambient control policy space U to be a vector space equipped with inner
product 〈·, ·〉 : U × U 7→ R, which induces a norm ‖u‖ =

√
〈u, u〉, and its dual norm defined as

‖v‖∗ = sup{〈v, u〉| ‖u‖ ≤ 1}. While multiple ways to define the inner product exist, for concreteness
we can think of the example of square-integrable stationary policies with 〈u, v〉 =

∫
S u(s)v(s)ds.

The addition operator + between two policies u, v ∈ U is defined as (u+ v)(s) = u(s) + v(s) for
all state s ∈ S. Scaling λu+ κv is defined similarly for scalar λ, κ.

The cost functional of a control policy u is defined as J(u) =
∫∞

0
c(s(τ), u(τ))dτ , or J(u) =∫

S c(s, u(s))dµu(s), where µu is the distribution of states induced by policy u. This latter example
is equivalent to the standard notion of value function in reinforcement learning.

Separate from the parametric representation issues, both programmatic policy class Π and neural
policy class F , and by extension - the joint policy class H, are considered to live in the ambient
vector space U . We thus have a common and well-defined notion of distance between policies from
different classes.

We make an important distinction between differentiability of J(h) in the ambient policy space
(non-parametric), versus differentiability in parameterization (parametric). For example, if Π is a
class of decision-tree based policy, policies in Π may not be differentiable under representation.
However, policies π ∈ Π might still be differentiable when considered as points in the ambient vector
space U .

We will use the following standard notion of gradient and differentiability from functional analysis:
Definition A.1 (Subgradients). The subgradient of J at h, denoted ∂J(h), is the non-empty set
{g ∈ H|∀j ∈ H : 〈j − h, g〉+ J(h) ≤ J(j)}
Definition A.2 (Fréchet gradient). A bounded linear operator∇ : H 7→ H is called Fréchet functional
gradient of J at h ∈ H if lim

‖g‖→0

J(h+g)−J(h)−〈∇J(h),g〉
‖g‖ = 0

The notions of convexity, smoothness and Bregman divergence are analogous to finite-dimensional
setting:
Definition A.3 (Strong convexity). A differentiable function R is α−strongly convex w.r.t norm ‖·‖
if R(y) ≥ R(x) + 〈∇R(x), y − x〉+ α

2 ‖y − x‖
2

Definition A.4 (Lipschitz continuous gradient smoothness). A differentiable function R is
LR−strongly smooth w.r.t norm ‖·‖ if ‖∇R(x)−∇R(y)‖∗ ≤ LR ‖x− y‖
Definition A.5 (Bregman Divergence). For a strongly convex regularizer R, DR(x, y) = R(x) −
R(y)− 〈∇R(y), x− y〉 is the Bregman divergence between x and y (not necessarily symmetric)

The following standard result for Bregman divergence will be useful:
Lemma A.1. [10] For all x, y, z we have the identity 〈∇R(x) − ∇R(y), x − z〉 = DR(x, y) +
DR(z, x)−DR(z, y). Since Bregman divergence is non-negative, a consequence of this identity is
that DR(z, x)−DR(z, y) ≤ 〈∇R(x)−∇R(y), z − x〉

A.2 Expected Regret Bound under Noisy Policy Gradient Estimates and Projection Errors

In this section, we show regret bound for the performance of the sequence of returned programs
π1, . . . , πT of the algorithm. The analysis here is agnostic to the particular implementation of
algorithm 2 and algorithm 3.

Let R be a α−strongly convex and LR−smooth functional with respect to norm ‖·‖ onH. The steps
from algorithm 1 can be described as follows.

• Initialize π0 ∈ Π. For each iteration t:

1. Obtain a noisy estimate of the gradient ∇̂J(πt−1) ≈ ∇J(πt−1)

2. Update in theH space: ∇R(ht) = ∇R(πt−1)− η∇̂J(πt−1)

3. Obtain approximate projection πt = PROJECTRπ (ht) ≈ argminpi∈ΠDR(π, ht)

13

This procedure is an approximate functional mirror descent scheme under bandit feedback. We will
develop the following result, which is a more detailed version of 4.1 in the main paper.

In the statement below, D is the diameter on Π with respect to defined norm ‖·‖ (i.e., D =
sup ‖π − π′‖). LJ is the Lipschitz constant of the functional J on H. β, σ2 are the bound on
the bias and variance of the gradient estimate at each iteration, respectively. α and R are the strongly
convex and smooth coefficients of the functional regularizer R. Finally, ε is the bound on the
projection error with respect to the same norm ‖·‖.
Theorem A.2 (Regret bound of returned policies). Let π1, . . . , πT be a sequence of programmatic
policies returned by algorithm 1 and π∗ be the optimal programmatic policy. We have the expected
regret bound:

E

[
1

T

T∑
t=1

J(πt)

]
− J(π∗) ≤ LRD

2

ηT
+
εLRD

η
+
η(σ2 + L2

J)

α
+ βD

In particular, choosing the learning rate η =

√
1
T +ε

σ2 , the expected regret is simplified into:

(4)

E

[
1

T

T∑
t=1

J(πt)

]
− J(π∗) = O

(
σ

√
1

T
+ ε+ β

)
Proof. At each round t, let ∇t = E[∇̂t|πt] be the conditional expectation of the gradient estimate.
We will use the shorthand notation ∇t = ∇J(πt). Denote the upper-bound on the bias of the
estimate by βt, i.e.,

∥∥∇t −∇t∥∥∗ ≤ βt almost surely. Denote the noise of the gradient estimate by

ξt = ∇t − ∇̂t, and σ2
t = E

[∥∥∥∇̂t −∇t∥∥∥2

∗

]
is the variance of gradient estimate ∇̂t.

The projection operator is ε−approximate in the sense that
∥∥πt − PROJECTRΠ(ft)

∥∥ =∥∥∥∥ ̂PROJECT
R

Π(ht)− PROJECTRΠ(ht)

∥∥∥∥ ≤ ε with some constant ε, which reflects the statistical er-

ror of the imitation learning procedure. This projection error in general is independent of the choice
of function classes Π and F .We will use the shorthand notation π∗t = PROJECTRΠ(ft) for the true
Bregman projection of ht onto Π.

Due to convexity of J over the spaceH (which includes Π), we have for all π ∈ Π:
J(πt)− J(π) ≤ 〈∇t, πt − π〉

We proceed to bound the RHS, starting with bounding the inner product where the actual gradient is
replaced by the estimated gradient.

〈∇̂t, πt − π〉 =
1

ηt
〈∇R(πt)−∇R(ht+1), πt − π〉 (5)

=
1

ηt

(
DR(π, πt)−DR(π, ht+1) +DR(πt, ht+1)

)
(6)

≤ 1

ηt

(
DR(π, πt)−DR(π, π∗t+1)−DR(π∗t+1, ht+1) +DR(πt, ht+1)

)
(7)

=
1

ηt

(
DR(π, πt)−DR(π, πt+1)︸ ︷︷ ︸

telescoping

+DR(π, πt+1)−DR(π, π∗t+1)︸ ︷︷ ︸
projection error

−DR(π∗t+1, ht+1) +DR(πt, ht+1)︸ ︷︷ ︸
relative improvement

)
(8)

Equation (5) is due to the gradient update rule in F space. Equation (6) is derived from definition
of Bregman divergence. Equation (7) is due to the generalized Pythagorean theorem of Bregman
projection DR(x, y) ≥ DR(x, PROJECTRΠ(x)) + DR(PROJECTRΠ(x), y). The RHS of equation (7)
are decomposed into three components that will be bounded separately.

Bounding projection error. By lemma (A.1) we have
DR(π, πt+1)−DR(π, π∗t+1) ≤ 〈∇R(πt+1)−∇R(π∗t+1), π − πt+1〉 (9)

≤
∥∥∇R(πt+1)−∇R(π∗t+1)

∥∥ ‖π − πt+1‖∗ (10)

14

≤ LR
∥∥πt+1 − π∗t+1

∥∥D ≤ εLRD (11)
Equation (10) is due to Cauchy–Schwarz. Equation (11) is due to Lipschitz smoothness of ∇R and
definition of ε−approximate projection.

Bounding relative improvement. This follows standard argument from analysis of mirror descent
algorithm.

DR(πt, ht+1)−DR(π∗t+1, ht+1) = R(πt)−R(π∗t+1) + 〈∇R(ht+1), π∗t+1 − πt〉 (12)

≤ 〈∇R(πt), πt − π∗t+1〉 −
α

2

∥∥π∗t+1 − πt
∥∥2

∗ + 〈∇R(ht+1), π∗t+1 − πt〉 (13)

= −ηt〈∇̂t, π∗t+1 − πt〉 −
α

2

∥∥π∗t+1 − πt
∥∥2

(14)

≤ η2
t

2α

∥∥∥∇̂t∥∥∥2

∗
≤ η2

t

α
(σ2
t + L2

J) (15)

Equation (13) is from the α−strong convexity property of regularizerR. Equation (14) is by definition
of the gradient update. Combining the bounds on the three components and taking expectation, we
thus have

E
[
〈∇̂t, πt − π〉

]
≤ 1

ηt

(
DR(π, πt)−DR(π, πt+1) + εLRD +

η2
t

α
(σ2
t + L2

J)

)
(16)

Next, the difference between estimated gradient ∇̂t and actual gradient∇t factors into the bound via
Cauchy-Schwarz:

E
[
〈∇t − ∇̂t, πt − π〉

]
≤
∥∥∥∇t − E[∇̂t]

∥∥∥
∗
‖πt − π‖ ≤ βtD (17)

The results can be deduced from equations (16) and (17).

Unbiased gradient estimates. For the case when the gradient estimate is unbiased, assume the
variance of the noise of gradient estimates is bounded by σ2, we have the expected regret bound for
all pi ∈ Π

E

[
1

T

T∑
t=1

J(πt)

]
− J(π) ≤ LRD

2

ηT
+
εLRD

η
+
η(σ2 + L2

J)

α
(18)

here to clarify, LR is the smoothness coefficient of regularizer R (i.e., the gradient of R is LR-
Lipschitz, LJ is Lipschitz constant of J , D is the diameter of Π under norm ‖·‖, σ2 is the upper-
bound on the variance of gradient estimates, and ε is the error from the projection procedure (i.e.,
imitation learning loss).

We can set learning rate η =

√
1
T +ε

σ2 to observe that the expected regret is bounded by O(σ
√

1
T + ε).

Biased gradient estimates. Assume that the bias of gradient estimate at each round is upper-bounded
by βt ≤ β. Similar to before, combining inequalities from (16) and (17), we have

E

[
1

T

T∑
t=1

J(πt)

]
− J(π) ≤ LRD

2

ηT
+
εLRD

η
+
η(σ2 + L2

J)

α
+ βD (19)

Similar to before, we can set learning rate η =

√
1
T +ε

σ2 to observe that on the expected regret is

bounded by O(σ
√

1
T + ε+ β). Compared to the bound on (18), in the biased case, the extra regret

incurred per bound is simply a constant, and does not depend on T .

A.3 Finite-Sample Analysis

In this section, we provide overall finite-sample analysis for PROPEL under some simplifying
assumptions. We first consider the case where exact gradient estimate is available, before extending
the result to the general case of noisy policy gradient update. Combining the two steps will give us
the proof for the following statement (theorem 4.2 in the main paper)
Theorem A.3 (Finite-sample guarantee). At each iteration, we perform vanilla policy gradient
estimate of π (overH) using m trajectories and use DAgger algorithm to collect M roll-outs. Setting

15

the learning rate η =

√
1
σ2

(
1
T + H

M +
√

log(T/δ)
M

)
, after T rounds of the algorithm, we have that

1

T

T∑
t=1

J(πt)− J(π∗) ≤ O

σ
√

1

T
+
H

M
+

√
log(T/δ)

M

+O

(
σ

√
log(Tk/δ)

m
+
AH log(Tk/δ)

m

)

holds with probability at least 1− δ, with H the task horizon, A the cardinality of action space, σ2

the variance of policy gradient estimates, and k the dimension Π’s parameterization.

Exact gradient estimate case. Assuming that the policy gradients can be calculated exactly, it is
straight-forward to provide high-probability guarantee for the effect of the projection error. We start
with the following result, adapted from [45] for the case of projection error bound. In this version
of DAgger, we assume that we only collect a single (state, expert action) pair from each trajectory
roll-out. Result is similar, with tighter bound, when multiple data points are collected along the
trajectory.

Lemma A.4 (Projection error bound from imitation learning procedure). Using DAgger as the
imitation learning sub-routine for our PROJECT operator in algorithm 3, let M be the number of
trajectories rolled-out for learning, and H be the horizon of the task. With probability at least 1− δ,
we have

DR(π, π∗) ≤ Õ(1/M) +
2`max(1 +H)

M
+

√
2`max log(1/δ))

M
where π is the result of PROJECT, π∗ is the true Bregman projection of h onto Π, and `max is the
maximum value of the imitation learning loss function DR(·, ·)

The bound in lemma A.4 is simpler than previous imitation learning results with cost information
([44, 45]. The reason is that the goal of the PROJECT operator is more modest. Since we only care
about the distance between the empirical projection π and the true projection π∗, the loss objective
in imitation learning is simplified (i.e., this is only a regret bound), and we can disregard how well
policies in Π can imitate the expert h, as well as the performance of J(π) relative to the true cost
from the environment J(h).

A consequence of this lemma is that for the number of trajectories at each round of imitation learning
M = O(log 1/δ

ε2) +O(Hε), we have DR(πt, π
∗
t) ≤ ε with probability at least 1− δ. Applying union

bound across T rounds of learning, we obtain the following guarantee (under no gradient estimation
error)

Proposition A.5 (Finite-sample Projection Error Bound). To simplify the presentation of the result, we
consider LR, D, L, α to be known constants. Using DAgger algorithm to collect M = O(log T/δ

ε2) +

O(Hε) roll-outs at each iteration, we have the following regret guarantee after T rounds of our main
algorithm:

1

T

T∑
t=1

J(πt)− J(π∗) ≤ O
(

1

ηT
+
ε

η
+ η

)

with probability at least 1− δ. Consequently, setting η =

√
1
T + H

M +
√

log(T/δ)
M , we have that

1

T

T∑
t=1

J(πt)− J(π∗) ≤ O

√ 1

T
+
H

M
+

√
log(T/δ)

M

with probability at least 1− δ

Note that the dependence on the time horizon of the task is sub-linear. This is different from standard
imitation learning regret bounds, which are often at least linear in the task horizon. The main reason
is that our comparison benchmark π∗ does live in the space Π, whereas for DAgger, the expert policy
may not reside in the same space.

Noisy gradient estimate case. We now turn to the issue of estimating the gradient of ∇J(π). We
make the following simplifying assumption about the gradient estimation:

16

• The π is parameterized by vector θ ∈ Rk (such as a neural network). The parameterization
is differentiable with respect to θ (Alternatively, we can view Π as a differentiable subspace
of F , in which case we haveH = F)

• At each UPDATE loop, the policy is rolled out m times to collect the data, each trajectory
has horizon length H

• For each visited state s ∼ dh, the policy takes a uniformly random action a. The action
space is finite with cardinality A.

• The gradient∇hθ is bounded by B

The gradient estimate is performed consistent with a generic policy gradient scheme, i.e.,

∇̂J(θ) =
A

m

H∑
i=1

m∑
j=1

∇πθ(aji |sji , θ)Q̂ji

where Q̂ji is the estimated cost-to-go [55].

Taking uniform random exploratory actions ensures that the samples are i.i.d. We can thus apply
Bernstein’s inequality to obtain the bound between estimated gradient and the true gradient. Indeed,
with probability at least 1− δ, we have that the following bound on the bias component-wise:∥∥∥∇̂J(θ)−∇J(θ)

∥∥∥
∞
≤ β when m ≥ (2σ2 + 2AHB β

3) log k
δ

β2

which leads to similar bound with respect to ‖·‖∗ (here we leverage the equivalence of norms in finite
dimensional setting):∥∥∥∇t − ∇̂t∥∥∥

∗
≤ β when m = O

(
(σ2 +AHBβ) log k

δ

β2

)
Applying union bound of this result over T rounds of learning, and combining with the result from
proposition (A.5), we have the following finite-sample guarantee in the simplifying policy gradient
update. This is also the more detailed statement of theorem 4.2 in the main paper.
Proposition A.6 (Finite-sample Guarantee under Noisy Gradient Updates and Projection Error). At
each iteration, we perform policy gradient estimate using m = O(

(σ2+AHBβ) log Tk
δ

β2) trajectories

and use DAgger algorithm to collect M = O(log T/δ
ε2) +O(Hε) roll-outs. Setting the learning rate

η =

√
1
σ2

(
1
T + H

M +
√

log(T/δ)
M

)
, after T rounds of the algorithm, we have that

1

T

T∑
t=1

J(πt)− J(π∗) ≤ O

σ
√

1

T
+
H

M
+

√
log(T/δ)

M

+ β

with probability at least 1− δ.

Consequently, we also have the following regret bound:

1

T

T∑
t=1

J(πt)−J(π∗) ≤ O

σ
√

1

T
+
H

M
+

√
log(T/δ)

M

+O

(
σ

√
log(Tk/δ)

m
+
AH log(Tk/δ)

m

)
holds with probability at least 1− δ, where again H is the task horizon, A is the cardinality of action
space, and k is the dimension of function class Π’s parameterization.

Proof. (For both proposition (A.6) and (A.5)). The results follow by taking the inequality from
equation (19), and by solving for ε and β explicitly in terms of relevant quantities. Based on the
specification of M and m, we obtain the necessary precision for each round of learning in terms of
number of trajectories:

β = O(σ
log(k/δ)

m
+
AHB log(k/δ)

m
)

ε = O(
H

M
+

√
log(1/δ)

M
)

17

Setting the learning rate η =
√

1
σ2

(
1
T + ε

)
and rearranging the inequalities lead to the desired

bounds.

The regret bound depends on the variance σ2 of the policy gradient estimates. It is well-known that
vanilla policy gradient updates suffer from high variance. We instead use functional regularization
technique, based on CORE-RL, in the practical implementation of our algorithm. The CORE-RL
subroutine has been demonstrated to reduce the variance in policy gradient updates [19].

A.4 Defining a consistent approximation of∇HJ(π) - Proof of Proposition 4.3

We are using the notion of Fréchet derivative to define gradient of differentiable functional. Note that
while Gateaux derivative can also be utilized, Fréchet derivative ensures continuity of the gradient
operator that would be useful for our analysis.

Definition A.6 (Fréchet gradient). A bounded linear operator∇ : H 7→ H is called Fréchet functional
gradient of J at h ∈ H if lim

‖g‖→0

J(h+g)−J(h)−〈∇J(h),g〉
‖g‖ = 0

We make the following assumption aboutH and F . One interpretation of this assumption is that the
space of policies Π and F that we consider have the property that a programmatic policy π ∈ Π can
be well-approximated by a large space of neural policies f ∈ F .

Assumption 1. J is Fréchet differentiable onH. J is also differentiable on the restricted subspace
F . And F is dense inH (i.e., the closure F = H)

It is then clear that ∀ f ∈ F the Fréchet gradient∇FJ(f), restricted to the subspace F is equal to the
gradient of f in the ambient spaceH (since Fréchet gradient is unique). In general, given π ∈ Π and
f ∈ F , π + f is not necessarily in F . However, the restricted gradient on subspace F of J(π + f)
can be defined asymptotically.

Proposition A.7. Fixing a policy π ∈ Π, define a sequence of policies fk ∈ F , k = 1, 2, . . . that
converges to π: limk→∞ ‖fk − g‖ = 0, we then have limk→∞ ‖∇FJ(fk)−∇HJ(π)‖∗ = 0

Proof. Since Fréchet derivative is a continuous linear operator, we have
limk→∞ ‖∇HJ(fk)−∇HJ(π)‖∗ = 0. By the reasoning above, for f ∈ F , the gradient
∇FJ(f) defined via restriction to the space F does not change compared to ∇HJ(f), the gradient
defined over the ambient space H. Thus we also have limk→∞ ‖∇FJ(fk)−∇HJ(π)‖∗ = 0. By
the same argument, we also have that for any given π ∈ Π and f ∈ F , even if π + f 6∈ F , the
gradient∇FJ(π + f) with respect to the F can be approximated similarly.

Note that we are not assuming J(π) to be differentiable when restricting to the policy subspace Π.

A.5 Theoretical motivation for Algorithm 2 - Proof of Proposition 4.4 and 4.5

We consider the case where Π is not differentiable by parameterization. Note that this does not
preclude J(π) for π ∈ Π to be differentiable in the non-parametric function space. Two complications
arise compared to our previous approximate mirror descent procedure. First, for each π ∈ Π,
estimating the gradient∇J(π) (which may not exist under certain parameterization, per section 4.3)
can become much more difficult. Second, the update rule∇R(π)−∇FJ(π) may not be in the dual
space of F , as in the simple case where Π ⊂ F , thus making direct gradient update in the F space
inappropriate.

Assumption 2. J is convex inH.

By convexity of J inH, sub-gradients ∂J(h) exists for all h ∈ H. In particular, ∂J(π) exists for all
π ∈ Π. Note that ∂J(π) reflects sub-gradient of π with respect to the ambient policy spaceH.

We will make use of the following equivalent perspective to mirror descent[10], which consists of
two-step process for each iteration t

1. Solve for ht+1 = argminh∈H η〈∂J(πt), h〉+DR(h, πt)

2. Solve for πt+1 = argminπ∈ΠDR(π, ht+1)

18

We will show how this version of the algorithm motivates our main algorithm. Consider step 1 of the
main loop of PROPEL, where given a fixed π ∈ Π, the optimization problem withinH is

(OBJECTIVE_1) = min
h∈H

η〈∂J(π), h〉+DR(h, π) (20)

Due to convexity ofH and the objective, problem (OBJECTIVE_1) is equivalent to:
(OBJECTIVE_1) = min〈∂J(π), h〉 (21)

s.t. DR(h, π) ≤ τ (22)
where τ depends on η. Since π is fixed, this optimization problem can be relaxed by choosing
λ ∈ [0, 1], and a set of candidate policies h = π + λf , for all f ∈ F , such that DR(h, π) ≤ τ is
satisfied (Selection of λ is possible with bounded spaces). Since this constraint set is potentially a
restricted set compared to the space of policies satisfying inequality (22), the optimization problem
(20) is relaxed into:

(OBJECTIVE_1) ≤ (OBJECTIVE_2) = min
f∈F
〈∂J(π), π + λf〉 (23)

Due to convexity property of J , we have
〈∂J(π), λf〉 = 〈∂J(π), π + λf − π)〉 ≤ J(π + λf)− J(π) (24)

The original problem OBJECTIVE_1 is thus upper bounded by:
min
h∈H

η〈∂J(π), h)〉+DR(h, π) ≤ min
f∈F

J
(
π + λf

)
− J(π) + 〈∂J(π), π〉

Thus, a relaxed version of original optimization problem OBJECTIVE_1 can be obtained by miniz-
iming J(π + λf) over f ∈ F (note that π is fixed). This naturally motivates using functional
regularization technique, such as CORE-RL algorithm [19], to update the parameters of differentiable
function f via policy gradient descent update:

f ′ = f − ηλ∇FλJ(π + λf)

where the gradient of J is taken with respect to the parameters of f (neural networks). This is exactly
the update step in algorithm 2 (also similar to iterative updte of CORE-RL algorithm), where the
neural network policy is regularized by a prior controller π.

Statement and Proof of Proposition 4.5
Proposition A.8 (Regret bound for the relaxed optimization objective). Assuming J(h) is L-strongly
smooth overH, i.e., ∇HJ(h) is L-Lipschitz continuous, approximating UPDATEH by UPDATEF per

Alg. 2 leads to the expected regret bound: E
[

1
T

∑T
t=1 J(πt)

]
− J(π∗) = O

(
λσ
√

1
T + ε+ λ2L2

)
Proof. Instead of focusing on the bias of the gradient estimate ∇HJ(π), we will shift our focus on
the alternative proximal formulation of mirror descent, under optimization and projection errors.
In particular, at each iteration t, let h∗t+1 = argminh∈H η〈∇J(πt), h〉 + DR(h, πt) and let the
optimization error be defined as βt where ∇R(ht+1) = ∇R(h∗t+1) + βt. Note here that this is
different from (but related to) the notion of bias from gradient estimate of∇J(π) used in theorem
4.1 and theorem A.2. The projection error from imitation learning procedure is defined similarly to
theorem 4.1: π∗t+1 = argminπ∈ΠDR(π, ht+1) is the true projection, and

∥∥πt+1 − π∗t+1

∥∥ ≤ ε.
We start with similar bounding steps to the proof of theorem 4.1:

〈∇J(πt), πt − π〉 =
1

η
〈∇R(h∗t+1)−∇R(πt), πt − π〉

=
1

η
(〈∇R(ht+1)−∇R(πt), πt − π〉 − 〈βt, πt − π〉)

=
1

η
(DR(π, πt)−DR(π, ht+1) +DR(πt, ht+1))︸ ︷︷ ︸

component_1

+
1

η
〈βt, πt − π〉︸ ︷︷ ︸
component_2

(25)

As seen from the proof of theorem A.2, component_1 can be upperbounded by:
1
η

(
DR(π, πt)−DR(π, πt+1)︸ ︷︷ ︸

telescoping

+DR(π, πt+1)−DR(π, π∗t+1)︸ ︷︷ ︸
projection error

−DR(π∗t+1, ht+1) +DR(πt, ht+1)︸ ︷︷ ︸
relative improvement

)
The bound on projection error is identical to theorem A.2:

DR(π, πt)−DR(π, π∗t+1) ≤ εLRD (26)

19

The bound on relative improvement is slightly different:
DR(πt, ht+1)−DR(π∗t+1, ht+1) = R(πt)−R(π∗t+1) + 〈∇R(ht+1), π∗t+1 − πt〉
= R(πt)−R(π∗t+1 + 〈∇R(h∗t+1), π∗t+1 − πt〉) + 〈βt, π∗t+1 − πt〉
≤ 〈∇R(πt), πt − π∗t+1〉 −

α

2

∥∥π∗t+1 − πt
∥∥2

+ 〈∇R(h∗t+1), π∗t+1 − πt〉+ 〈βt, π∗t+1 − πt〉

= −η〈∇JH(πt), π
∗
t+1 − πt〉 −

α

2

∥∥π∗t+1 − πt
∥∥2

+ 〈βt, π∗t+1 − πt〉 (27)

≤ η2

2α
‖∇HJ(πt)‖2∗ + 〈βt, π∗t+1 − πt〉

≤ η2

2α
L2
J + 〈βt, π∗t+1 − πt〉 (28)

Note here that the gradient ∇HJ(πt) is not the result of estimation. Combining equations (25), (26),
(27), (28), we have:

〈∇J(πt), πt − π〉 ≤
1

η

(
DR(π, πt)−DR(π, πt+1) + εLRD +

η2

2α
L2
J + 〈βt, π∗t+1 − π〉

)
(29)

Next, we want to bound βt. Choose regularizer R to be 1
2 ‖·‖

2 (consistent with the pseudocode in
algorithm 2). We have that:

h∗t+1 = argmin
h∈H

η〈∇J(πt), h〉+
1

2
‖h− πt‖2

which is equivalent to:

h∗t+1 = πt + argmin
f∈F

η〈∇J(πt), f〉+
1

2
‖f‖2

Let f∗t+1 = argminf∈F η〈∇J(πt), f〉+ 1
2 ‖f‖

2. Taking the gradient over f , we can see that f∗t+1 =
−η∇J(πt). Let ft+1 be the minimizer of minf∈F J(πt + λf). We then have h∗t+1 = πt + f∗t+1 and
ht+1 = π + λft+1. Thus βt = ht+1 − h∗t+1 = ft+1 − f∗t+1.

On one hand, we have

J(πt + λft+1) ≤ J(πt + ωf∗t+1) ≤ J(πt) + 〈∇J(πt), ωf
∗
t+1〉+

L

2

∥∥ωf∗t+1

∥∥2

due to optimality of ft+1 and strong smoothness property of J . On the other hand, since J is convex,
we also have the first-order condition:

J(πt + λft+1) ≥ J(πt) + 〈∇J(πt), λft+1〉
Combine with the inequality above, and subtract J(πt) from both sides, and using the relationship
f∗t+1 = −η∇J(πt), we have that:

〈−1

η
f∗t+1, λft+1〉 ≤ 〈−

1

η
f∗t+1, ωf

∗
t+1〉+

Lω2

2

∥∥f∗t+1

∥∥2

Since this is true ∀ω, rearrange and choose ω such that ωη − Lω2

2 = − λ
2η , namely ω = 1−√1−ληL

Lη ,
and complete the square, we can establish the bound that:∥∥ft+1 − f∗t+1

∥∥ ≤ η(λL)2B (30)

for B the upperbound on ‖ft+1‖. We thus have ‖βt‖ = O(η(λL)2). Plugging the result from
equation 30 into RHS of equation 29, we have:

〈∇J(πt), πt − π〉 ≤
1

η

(
DR(π, πt)−DR(π, πt+1) + εLRD +

η2

2α
L2
J

)
+
(
η(λL)2B

)
(31)

Since J is convex inH, we have J(πt)− J(π) ≤ 〈∇J(πt), πt − π〉. Similar to theorem 4.1, setting

η =
√

1
λ2σ2 (1

T + ε) and taking expectation on both sides, we have:

E

[
1

T

T∑
t=1

J(πt)

]
− J(π∗) = O

(
λσ

√
1

T
+ ε+ λ2L2

)
(32)

Note that unlike regret bound from theorem 4.1 under general bias, variance of gradient estimate
and projection error, σ2 here explicitly refers to the bound on neural-network based policy gradient

20

variance. The variance reduction of λσ, at the expense of some bias, was also similarly noted in a
recent functional regularization technique for policy gradient [19].

B Additional Experimental Results and Details

B.1 TORCS

We generate controllers for cars in The Open Racing Car Simulator (TORCS) [59]. In its full generality
TORCS provides a rich environment with input from up to 89 sensors, and optionally the 3D graphic
from a chosen camera angle in the race. The controllers have to decide the values of 5 parameters
during game play, which correspond to the acceleration, brake, clutch, gear and steering of the car.

Apart from the immediate challenge of driving the car on the track, controllers also have to make
race-level strategy decisions, like making pit-stops for fuel. A lower level of complexity is provided
in the Practice Mode setting of TORCS. In this mode all race-level strategies are removed. Currently,
so far as we know, state-of-the-art DRL models are capable of racing only in Practice Mode, and this
is also the environment that we use. Here we consider the input from 29 sensors, and decide values
for the acceleration, steering, and braking actions.

We chose a suite of tracks that provide varying levels of difficulty for the learning algorithms. In
particular, for the tracks Ruudskogen and Alpine-2, the DDPG agent is unable to reliably learn a
policy that would complete a lap. We perform the experiments with twenty-five random seeds and
report the median lap time over these twenty-five trials. However we note that the TORCS simulator
is not deterministic even for a fixed random seed. Since we model the environment as a Markov
Decision Process, this non-determinism is consistent with our problem statement.

For our Deep Reinforcement Learning agents we used standard open source implementations (with
pre-tuned hyper-parameters) for the relevant domain.

All experiments were conducted on standard workstation with a 2.5 GHz Intel Core i7 CPU and a
GTX 1080 Ti GPU card.

The code for the TORCS experiments can be found at: https://bitbucket.org/averma8053/propel

In Table 3 we show the lap time performance and crash ratios of PROPEL agents initialized with neural
policies obtained via DDPG. As discussed in Section 5, DDPG often exhibits high variance across
trials and this adversely affects the performance of the PROPEL agents when they are initialized via
DDPG. In Table 4 we show generalization results for the PROPELTREE agent. As noted in Section 5,
the generalization results for PROPELTREE are in between those of DDPG and PROPELPROG.

Verified Smoothness Property. For the program given in Figure 2 we proved using symbolic
verification techniques, that ∀k, ∑k+5

i=k ‖peek(s[RPM], i+ 1)− peek(s[RPM], i)‖ < 0.003 =⇒
‖peek(a[Accel], k + 1)− peek(a[Accel], k)‖ < 0.63. Here the function peek(., i) takes in a
history/sequence of sensor or action values and returns the value at position i, . Intuitively, the above
logical implication means that if the sum of the consecutive differences of the last six RPM sensor
values is less than 0.003, then the acceleration actions calculated at the last and penultimate step will
not differ by more than 0.63.

Table 3: Performance results in TORCS of PROPEL agents initialized with neural policies obtained
via DDPG, over 25 random seeds. Each entry is formatted as Lap-time / Crash-ratio, reporting
median lap time in seconds over all the seeds (lower is better) and ratio of seeds that result in crashes
(lower is better). A lap time of CR indicates the agent crashed and could not complete a lap for more
than half the seeds.

G-TRACK E-ROAD AALBORG RUUDSKOGEN ALPINE-2
LENGTH 3186M 3260M 2588M 3274M 3774M

PROPELPROG-DDPG 97.76/.12 108.06/.08 140.48/.48 CR / 0.68 CR / 0.92
PROPELTREE-DDPG 78.47/0.16 85.46/.04 CR / 0.56 CR / 0.68 CR / 0.92

21

https://bitbucket.org/averma8053/propel

Table 4: Generalization results in TORCS for PROPELTREE, where rows are training and columns
are testing tracks. Each entry is formatted as PROPELPROG / DDPG, and the number reported is the
median lap time in seconds over all the seeds (lower is better). CR indicates the agent crashed and
could not complete a lap for more than half the seeds.

G-TRACK E-ROAD AALBORG RUUDSKOGEN ALPINE-2

G-TRACK - 95 CR CR CR
E-ROAD 84 - CR CR CR
AALBORG 111 CR - CR CR
RUUDSKOGEN 154 CR CR - CR
ALPINE-2 CR 276 CR CR -

Table 5: Performance results in Classic Control problems. Higher scores are better.

MOUNTAINCAR PENDULUM

PRIOR 0.59 -875.53
DDPG 96.35 -135.83
TRPO 95.14 -133.53
NDPS 68.34 -440.82
VIPER 61.46 -392.85
PROPELPROG 95.87 -184.26
PROPELTREE 95.85 -141.26

B.2 Classic Control

We present results from two classic control problems, Mountain-Car (with continuous actions) and
Pendulum, in Table 5. We use the OpenAI Gym implementations of these environments. More
information about these environments can be found at the links: MountainCar and Pendulum.

In Mountain-Car the goal is to drive an under-powered car up the side of a mountain in as few
time-steps as possible. In Pendulum, the goal is to swing a pendulum up so that it stays upright. In
both the environments an episode terminates after a maximum of 200 time-steps.

In Table 5 we report the average score over 100 episodes for the listed agents, in both these environ-
ments. In Figure 6 and Figure 7 we show the improvements made over the prior by the PROPELPROG
agent in MountainCar and Pendulum respectively, with each iteration of the PROPEL algorithm.

0 1 2 3
Iterations

0

20

40

60

80

100

S
c
o
re

 I
m

p
ro

v
e
m

e
n
t

MountainCar

Figure 6: Score improvements in the Moun-
tainCar environment over iterations of PRO-
PELPROG.

0 1 2 3
Iterations

0

200

400

600

S
c
o
re

 I
m

p
ro

v
e
m

e
n
t

Pendulum

Figure 7: Score improvements in the Pendu-
lum environment over iterations of PROPEL-
PROG.

22

https://gym.openai.com/envs/MountainCarContinuous-v0/
https://gym.openai.com/envs/Pendulum-v0/

	Introduction
	Problem Statement
	Learning Algorithm
	Theoretical Analysis
	Propel as (Approximate) Functional Mirror Descent
	Finite-Sample Analysis under Vanilla Policy Gradient Update and DAgger Projection
	Closing the gap between UpdateH and UpdateF

	Experiments
	Related Work
	Conclusion and Future Work
	Theoretical Analysis
	Preliminaries and Notations
	Expected Regret Bound under Noisy Policy Gradient Estimates and Projection Errors
	Finite-Sample Analysis
	Defining a consistent approximation of HJ() - Proof of Proposition 4.3
	Theoretical motivation for Algorithm 2 - Proof of Proposition 4.4 and 4.5

	Additional Experimental Results and Details
	TORCS
	Classic Control

