
1 Implementation

1.1 Network Architecture

The architecture details are as follows, except that the domain label encoder Ed is organized as a
dictionary without learnable parameters. We follow the notations used in [1]: h and w: height and
width of the input image, ns and nd: dimensions of style s and domain label d, N: the number of
output channels, K: kernel size, S: stride size, P: padding size, FC: fully connected layer, IN: instance
normalization, LN: layer normalization, CBN: central biasing normalization, LReLu: Leaky ReLu
with a negative slope of 0.2.

Part Input → Output Shape Layer Information

(h,w,3) → (h,w,64) CONV-(N64, K7x7, S1, P3), IN, LReLU
Down-sampling (h,w,64) → (h2 ,w2 ,128) CONV-(N128, K4x4, S2, P1), IN, LReLU

(h2 ,w2 ,128) → (h4 ,w4 ,256) CONV-(N128, K4x4, S2, P1), IN, LReLU

Bottleneck

(h4 ,w4 ,256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), IN, LReLU
(h4 ,w4 ,256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), IN, LReLU
(h4 ,w4 ,256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), IN, LReLU
(h4 ,w4 ,256) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), IN, LReLU

Table 1: Architecture of content encoder Ec

Part Input → Output Shape Layer Information

Down-sampling

(h,w,3) → (h2 ,w2 ,64) CONV-(N64, K4x4, S2, P1)

(h2 ,w2 ,64) → (h4 ,w4 ,128) ResBlock: CONV-(N256, K3x3, S1, P1),
IN, LReLu, AvgPool-(K2x2, S2)

(h4 ,w4 ,128) → (h8 ,w8 ,256) ResBlock: CONV-(N256, K3x3, S1, P1),
IN, LReLu, AvgPool-(K2x2, S2)

(h8 ,w8 ,256) → (h
16 , w16 ,256) ResBlock: CONV-(N256, K3x3, S1, P1),

IN, LReLu, AvgPool-(K2x2, S2)

(h
16 , w16 ,256) → (256) LReLu, GlobalAvgPool

Output Layer(µ) (256) → (ns) FC-(256, ns)
Output Layer(logvar) (256) → (ns) FC-(256, ns)

Table 2: Architecture of style encoder Es

Part Input → Output Shape Layer Information

Bottleneck

(h4 ,w4 ,256)+(ns+nd) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), CBIN, ReLu
(h4 ,w4 ,256)+(ns+nd) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), CBIN, ReLu
(h4 ,w4 ,256)+(ns+nd) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), CBIN, ReLu
(h4 ,w4 ,256)+(ns+nd) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), CBIN, ReLu
(h4 ,w4 ,256)+(ns+nd) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), CBIN, ReLu
(h4 ,w4 ,256)+(ns+nd) → (h4 ,w4 ,256) ResBlock: CONV-(N256, K3x3, S1, P1), CBIN, ReLu

Up-sampling
(h4 ,w4 ,256) → (h2 ,w2 ,128) DECONV-(N128, K4x4, S2, P1), LN, ReLu
(h2 ,w2 ,128) → (h,w,64) DECONV-(N64, K4x4, S2, P1), LN, ReLu

(h,w,64) → (h,w,3) CONV-(N3, K7x7, S1, P3), Tanh

Table 3: Architecture of generator G. The style s and the domain label d are injected by central
biasing normalization.

1

Part Input → Output Shape Layer Information

Down-sampling

(h,w,3) → (h2 ,w2 ,64) CONV-(N64, K4x4, S2, P1)

(h2 ,w2 ,64)+(nd) → (h4 ,w4 ,128) ResBlock: CONV-(N256, K3x3, S1, P1),
CBIN, LReLu, AvgPool-(K2x2, S2)

(h4 ,w4 ,128)+(nd) → (h8 ,w8 ,256) ResBlock: CONV-(N256, K3x3, S1, P1),
CBIN, LReLu, AvgPool-(K2x2, S2)

Output Layer (h8 ,w8 ,256) → (h8 ,w8 ,1) CONV-(N1, K1x1, S1, P0)

Table 4: Architecture of discriminator Dc and Dx. The domain label d are injected by central biasing
normalization.

1.2 Training Details

We train all our models with Adam optimizer [3], setting the learning rate of 0.0001 and exponential
decay rates (β1, β2) = (0.5, 0.999). To keep each loss close in magnitude, the hyper-parameters are
set as follows: λrec = 10, λreg = 1, λKL = 0.01. The batch size is set as one for season transfer and
sketch-to-photo tasks, and eight for semantic image synthesis and facial attribute transfer. Besides,
we adopt multi-scale strategy proposed by Zhu et al. [8] to discriminate the real and fake images
in different scales. Since the distributions of content c are still changing, we use the objective of
LSGAN [5] to stabilize the training of Dc. Besides, we replace the standard adversarial loss of
Dx with hinge version [6] to accelerate the convergence. All of the models are trained on a single
NVIDIA TITAN V GPU.

2 Additional Experiment Results

2.1 Season Transfer
Style

Domain (summer → winter)

Figure 1: The interpolation on latent representations. In this experiment, the content representa-
tion is extracted from the image of the first row and the style representations are extracted from the
first and final columns. The images on the same row have the same style representation and images
on the same column have the same domain label representation.

2

Figure 2: Example-guided image translation. In this experiment, the content representation is
extracted from the image of the first column and the style representations are extracted from the first
row. The images on the same row have the same content representation and images on the same
column have the same style representation.

3

2.2 Semantic Image Synthesis

Figure 3: Semantic image synthesis on CUB [7]. The first row shows the input images. Each of
the remaining rows presents the translation results according to the text description.

4

2.3 Facial Attribute Transfer

we perform the facial attribute transfer on the The CelebFaces Attributes(CelebA) dataset [4]. CelebA
dataset contains a large number of celebrity images. We preprocess the CelebA dataset according to
the method in [1]. Twelve attributes are selected to construct the attribute vector: hair color (black,
blond, brown, gray), gender (male/female), age (young/old), expression (with/without smile), and
hairstyle (with/without bangs). The quantitative and qualitative comparisons are shown in Table 5
and Fig. 4, and more visual results are presented in Fig. 5.

Table 5: Quantitative comparison of facial attribute transfer.

FID LPIPS
StarGAN 51.20 -
StarGAN∗ 48.16 0.001
DMIT 32.36 0.066

Black hair Blond hair Brown hair Female Old Smiling BangGray hairInput

Figure 4: Qualitative comparison of facial attribute transfer. The styles of StarGAN∗ and DMIT
are sampled from random noise.

Figure 5: Facial attribute transfer results of DMIT on CelebA (Input, Black hair, Blond hair, Brown
hair, Gray hair, Gender, Age, Smile, Bangs). Since "Old" and "Gray hair" are generally present at the
same time in CelebA, we thus set the hair to gray to generate a realistic old face.

5

2.4 Sketch-to-Photo

We use the dataset provided by Isola et al. [2] to perform Sketch-to-Shoe and Shoe-to-Shoe transla-
tions. Our model in this task is trained with unpaired data, and the qualitative results are shown in
Fig. 6

Figure 6: Qualitative results of sketch-to-photo. The first two rows show the inter-domain
translation results of our model, and the last two rows shows the intra-domain translation results.

References
[1] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.

Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In
CVPR, 2018.

[2] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In CVPR, 2017.

[3] D Kinga and J Ba Adam. A method for stochastic optimization. In ICLR, 2015.

[4] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In ICCV, 2015.

[5] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In ICCV, 2017.

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In ICLR, 2018.

[7] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-
ucsd birds-200-2011 dataset. 2011.

[8] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver Wang, and
Eli Shechtman. Toward multimodal image-to-image translation. In NIPS, 2017.

6

	Implementation
	Network Architecture
	Training Details

	Additional Experiment Results
	Season Transfer
	Semantic Image Synthesis
	Facial Attribute Transfer
	Sketch-to-Photo

