
Focused Quantization for Sparse DNNs
Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

1 Training Configuration1

For image preprocessing, we follow the augmentation procedures in Krizhevsky et al. [2012], which2

includes aspect ratio distortion, random flipping, random cropping, and hue, saturation, contrast and3

brightness changes to preprocess each training example.4

2 Model Optimization5

Here we provide the details of the model optimization explained in Section 3.5 in the form of an6

algorithm. Algorithm 1 optimizes L(θ,φ), where E specifies the number of epochs to fine-tune the7

quantized sparse model, and it returns the final optimized hyperparameters φ? and quantized weights8

Qφ? [θ]. Note that we assume the pruned weights given by the pruning constant zθ to remain zero9

throughout fine-tuning.10

Algorithm 1 Model Optimization

1: function OPTIMIZE(θ, E)
2: e← 0, k ← 1
3: while e < E do
4: φ? ← argminφ KL

(
qmix
φ (θ)‖p(θ)

)
5: for θ ∈ θ do
6: Sample the component selector mθ in φ?

7: end for
8: for k epochs do
9: Sample a mini-batch (x̃, ỹ) from D

10: θ ← SGD (− log p (ỹ|x̃,Qφ? [θ]))
11: end for
12: e← e+ k, k ← 2k
13: end while
14: return φ?,Qφ? [θ]
15: end function

For ResNet-50 on ImageNet, line 4 in the algorithm above takes 24 minutes to complete on an Intel11

Core i7-6700k CPU, while each epoch of the SGD optimization (line 8–11) requires 1.5 GPU-day to12

complete on an Nvidia GTX 1080 Ti. For each Image model we fine-tune for 10 epochs.13

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



3 Bit-width Saving Tricks14

Recentralized quantization Q is designed to capture the high-probability components in the weight15

distribution, which in theory provides a less redundant use of bits compared to shift quantization.16

We further reduce the bit-width by removing certain representable values that occur rarely after17

quantization. Although it does not bring better compression rates for Huffman-coded weights because18

we are removing rarely used values, it lowers the number of bits required for representing weights19

assuming constant bit-widths.20

The tricks are generally applicable. Consider the c− (orange) and c+ (blue) Gaussian components21

in the first block of Figure 2 in the paper, it is notable that the means µ− and µ+ are surrounded22

with many fine-grained quantization levels, thus sacrificing these representations by quantizing to23

nearby values is equivalently efficient. Similarly, very few values quantized by c− lie about the24

well-quantized region of c+ and vice versa. It means that we can remove the largest representation25

from c− and smallest representation from c+. By removing these values from the representation, we26

use exactly at most n bits to represent a Q quantized value which internally uses (n − 1)-bit shift27

quantization. To further simplify computation, we constrain σ− and σ+ to the nearest powers-of-two28

values. For instance, a 3-bit recentralized quantization uses the following representable values29

{−9,−5, 3} ∪ {−3, 5, 9} ∪ {0} if αl = 1, µ− = −1, µ+ = 1,b = 0, where the first two sets30

correspond to values quantized by the c− and c+ components respectively.31

References32

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-33

tional neural networks. In Advances in Neural Information Processing Systems 25. 2012.34

2


	Training Configuration
	Model Optimization
	Bit-width Saving Tricks

