
Supplementary Material for
Trajectory of Alternating Direction Method of Multipliers

and Adaptive Acceleration

Clarice Poon
University of Bath, Bath UK
cmhsp20@bath.ac.uk

Jingwei Liang
University of Cambridge, Cambridge UK

jl993@cam.ac.uk

Abstract

The organization of the supplementary material is as follows: In Section A, more
substantial discussions on the failure of inertia are provided. Variants of ADMM,
including relaxed ADMM and symmetric ADMM, are discussed in Section B. In
Section C, we provide more numerical experiments to demonstrate the performance
of A3DMM. The proofs of the main results of the paper are contained in Sections D,
E and F, where in Section D some preliminary results on angles between subspaces
and Riemannian geometry are provide, in Section E the proofs for the trajectory of
ADMM are provided, and lastly in in Section F we provide proofs for A3DMM.

A The failure of inertial acceleration continue

In this part, to support the discussion of Section 3, we provide extra discussion on why inertial
acceleration, in particular Nesterov/FISTA, will fail when the (leading) eigenvalue of M is complex.

Let M ∈ Rn×n be a square matrix and consider the following linear equation

zk+1 = Mzk. (A.1)

According to [31], (A.1) is linearly convergent when the spectral radius of M is strictly smaller than
1, i.e. ρ(M) < 1. For simplicity, consider the inertial version of (A.1) with fixed inertial parameter
ak ≡ a ∈ [0, 1], we get

yk = zk + a(zk − zk−1)

zk+1 = Myk.
(A.2)

The above scheme corresponds to the local linearization of the inertial ADMM (3) without the small

o-term. Define the augmented variable wk =

(
zk
zk−1

)
and block matrix M̃ def

=

[
(1 + a)M −aM

Id 0

]
,

then (A.2) can be written as
wk+1 = M̃wk. (A.3)

To guarantee the convergence of (A.3), we require the spectral radius satisfying ρ(M̃) < 1. Therefore,
in the following, motivated by [31, 24, 26], we discuss the property of the spectral radius ρ(M̃) and
the conditions such that ρ(M̃) < 1.

Let η, ρ be the leading eigenvalues of M and M̃ , respectively. According to [26, Proposition 4.6], we
have the following lemma regarding the relation between η and ρ.

Lemma A.1 ([26, Proposition 4.6]). Suppose
(
r1

r2

)
is the eigenvector of M̃ corresponding to

eigenvalue ρ, then it must satisfy r1 = ρr2. Moreover, r2 is an eigenvector of M associated to
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eigenvalue η, where η and ρ satisfy the relation

ρ2 − (1 + a)ηρ+ aη = 0. (A.4)

The relation (A.4) is a simple quadratic equation of ρ, we have

ρ =
(1 + a)η +

√
(1 + a)2η2 − 4aη
2

. (A.5)

The value of |ρ| depends on a and η, and the discussion splits into two scenarios: η is real and η is
complex.

A.1 Real η

When η is real valued, the property of ρ is well studied, we refer to [26] and references therein for
detailed discussions. Basically, we have that

|ρ| =

{
(1 + a)2η2 ≥ 4aη : ρ is real, |ρ| < 1 holds for any a ∈ [0, 1],

(1 + a)2η2 < 4aη : ρ is complex, |ρ| = √aη < 1 holds for any a ∈ [0, 1].

The above result can be summarized below.
Lemma A.2 ([26, Proposition 4.6]). Given any a ∈ [0, 1], we have |ρ| < 1 as long as 0 ≤ η < 1.

To demonstrate the above result, we consider fixing η and varying a ∈ [0, 1]. Two choices of η are
considered η = 0.9, 0.98, the value of |ρ| is plotted in Figure A.1 in black line. It can be observed
that |ρ| is strictly smaller than one for both choices of η. Note that |ρ| reaches a minimal value for
some a, we refer to [26] for detailed discussion on this.
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Figure A.1: The value of |ρ| under fixed |η| and a ∈ [0, 1].

A.2 Complex η

When η is complex, it can be written as η = |η|eiα where α is the argument of η. The dependence
of |ρ| on a and η becomes much more complicated, below we briefly demonstrate numerically the
properties of |ρ|.

General form η = |η|eiα For this case, we have

ρ =
(1 + a)η +

√
(1 + a)2η2 − 4aη
2

=
(1 + a)|η|eiα +

√
(1 + a)2|η|2ei2α − 4a|η|eiα

2
.

Suppose (x+ iy)2 = (1 + a)2|η|2ei2α − 4a|η|eiα, we get

x2 − y2 = (1 + a)2|η|2 cos(2α)− 4a|η| cos(α)

xy =
(1 + a)2|η|2 sin(2α)− 4a|η| sin(α)

2
,
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which can be simplified to a equation of x

x4 −
(
(1 + a)2|η|2 cos(2α)− 4a|η| cos(α)

)
x2 − ((1 + a)2|η|2 sin(2α)− 4a|η| sin(α))2

4
= 0.

Solving the above equation, we get

x =
( ((1+a)2|η|2 cos(2α)−4a|η| cos(α))+

√
((1+a)2|η|2 cos(2α)−4a|η| cos(α))2+((1+a)2|η|2 sin(2α)−4a|η| sin(α))2

2

)1/2
,

y =
(1 + a)2|η|2 sin(2α)− 4a|η| sin(α)

2x
,

here we only take the positive root x. Back to the expression of ρ, we get

ρ =
(1 + a)|η|eiα + (x+ iy)

2
=

((1 + a)|η| cos(α) + x) + i((1 + a)|η| sin(α) + y)
2

.

Given the complicated form of x, the analysis of |ρ| becomes rather difficult. Therefore, below we
discuss the properties of |ρ| through numerical verification.

Similar to the real η case, |η| = 0.9, 0.98 are considered. Let α be the argument of η, then we have
η = |η|eiα. In total, six choices of α are considered: α ∈ {π4 ,

π
8 ,

π
16 ,

π
32 ,

π
64 ,

π
128}. The value of |ρ|

are shown in Figure A.1. Taking Figure A.1 (a) for example, we have the following observations: let
aα be the largest a allowed such that |ρ| ≤ 1,

• For all choices of α except α = π
128 , we have aα < 1.

• The larger the value of α, the smaller the value of aα, see the green line in both figures.

From the above discussion, we can conclude that

• The inertial scheme is robust when all the eigenvalues of M are real, and we can afford the
inertial parameter up to 1 which includes the FISTA [5] schemes as ak → 1, same for the
Nesterov’s accelerated gradient descent.
• When M has complex eigenvalue(s), which is not necessary to the leading eigenvalue, the

largest value of a such that |ρ| < 1 is smaller than 1 and FISTA/Nesterov’s scheme will fail.

To complete the discussion, we consider the values of |ρ| under α ∈ [0, π/2] and a ∈ [0, 1]. The
results are shown below in Figure A.2. Again |η| = 0.9, 0.98 are considered. The horizontal axis is
for α while the vertical is for a, each point inside the square stands for the value of |ρ| with colorbar
provided. In each figure:

• The red line stands for |ρ| = 1. Therefore, only for the area below the red line we have |ρ| < 1.
Given any α ∈ [0, π/2], the larger the value of α, the smaller range of choice of a such that
|ρ| < 1. This coincides with the observations from Figure A.1.
• The magenta line stands for |ρ| = |η|. Only the small area below the magenta line has |ρ| < |η|,

meaning that acceleration can be obtained. As a result, given η = |η|eiα, when α is large enough,
such as about π/8 for |η| = 0.9, inertial will fail to provide acceleration.
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Figure A.2: The value of |ρ| under fixed η and a ∈ [0, 1].

It should be noted that, for the above discussion, we consider the case that the leading eigenvalue
is complex, while the rest of the eigenvalues are real. For the case leading eigenvalue is real while
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the rest are complex, then the spectral radius of M̃ will be determined by the non-leading complex
eigenvalues when the inertial parameter a is large enough. Consequently, the FISTA inertial parameter
rule still can not be applied, unless the magnitude of the leading eigenvalue is small enough; See
Figure A.2 (a).
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Figure A.3: The value of |ρ| when η = cos(α)eiα and a ∈ [0, 1].

Special case η = cosαeiα Now we consider a special case where η = cos(α)eiα, α ∈ [0, π/2]
which corresponds to the case R, J in (PADMM) are locally polyhedral around x?, y?. Similar to
above, six choices of α are considered: α ∈ {π4 ,

π
8 ,

π
16 ,

π
32 ,

π
64 ,

π
128}. The value of |ρ| is shown below

in Figure A.3 (a). It can be observed that, for each α, the value of |ρ| is monotonically increasing as
the value of a increases, which means inertial slows down the speed of convergence. In Figure A.3
(b), we consider the value of |ρ| under α ∈ [0, π/2] and a ∈ [0, 1]. We have

• Similar to Figure A.2, the red line stands for |ρ| = 1. For each α, |ρ| < 1 for all the choices of a
under the red line.
• The magenta line stands for |ρ| = |η|. It can be observed that, except for α = 0 where |ρ| = 1

holds for all a ∈ [0, 1], |ρ| = 1 holds only for a = 0 when α ∈]0, π/2].

Therefore, we can conclude that when R, J are locally polyhedral around the solution x?, y?, inertial
scheme will not provide any acceleration.

B Discussions

In this section, we discuss two variants of ADMM: relaxed ADMM and symmetric ADMM are
discussed, and then build connections between ADMM and Douglas–Rachford [14] and Peaceman–
Rachford splitting [30] methods.

B.1 Variants of ADMM

Relaxed ADMM In the literature, a popular variant of ADMM is the relaxed ADMM which takes
the following iteration procedure:

xk = argminx∈Rn R(x) + γ
2 ||Ax+Byk−1 − b+ 1

γψk−1||2,
x̄k = φAxk − (1− φ)(Byk−1 − b),
yk = argminy∈Rm J(y) + γ

2 ||x̄k +By − b+ 1
γψk−1||2,

ψk = ψk−1 + γ(x̄k +Byk − b),

(B.1)

where φ ∈ [0, 2] is the relaxation parameter.

In its dual form, the relaxed ADMM is equivalent to the relaxed Douglas–Rachford splitting applied
to solve (DADMM), see Section B.2.1. The convergence of (B.1) can be guaranteed for φ ∈]0, 2[ [2].
Similar to (2), define zk

def
= ψk−1 + γx̄k = ψk−1 + γ(φAxk − (1− φ)(Byk−1 − b)), we can rewrite
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the relaxed ADMM into the following form

xk = argminx∈Rn R(x) + γ
2
||Ax− 1

γ (zk−1 − 2ψk−1)||2,
zk = ψk−1 + γ(φAxk − (1− φ)(Byk−1 − b)),
yk = argminy∈Rm J(y) + γ

2
||By + 1

γ (zk − γb)||2,
ψk = zk + γ(Byk − b).

(B.2)

Symmetric ADMM As aforementioned, see also Section B.2.1, the ADMM iteration (1) is equiva-
lent to applying Douglas–Rachford splitting to the dual problem (DADMM) [17]. It is also pointed
out in [17] that, if the Peaceman–Rachford splitting method [30] is applied to solve (DADMM), then
it leads to the following iteration in the primal form

xk = argminx∈Rn R(x) + γ
2 ||Ax+Byk−1 − b+ 1

γψk−1||2,
ψk− 1

2
= ψk−1 + γ(Axk +Byk−1 − b),

yk = argminy∈Rm J(y) + γ
2 ||Axk +By − b+ 1

γψk− 1
2
||2,

ψk = ψk− 1
2

+ γ(Axk +Byk − b),

(B.3)

which is also called the symmetric ADMM. A brief derivation is provided below in Section B.2.2, and
we refer to [17, 22] and the references therein for more detailed discussions.

In general, the conditions needed for the convergence of (B.3) is stronger than the standard ADMM
(1), which is due to the fact that stronger conditions are needed to guarantee the convergence of
Peaceman–Rachford splitting method [17]. However, when (B.3) converges, it tends to provide faster
performance than (1) [17]. Similar to (2), if we define zk = ψk − γByk + γb = ψk− 1

2
+ γAxk, then

(B.3) is equivalent to

xk = argminx∈Rn R(x) + γ
2 ||Ax+ 1

γ (2ψk−1 − zk−1)||2,
zk = ψk−1 + γ(2Axk +Byk−1 − b),
yk = argminy∈Rm J(y) + γ

2 ||By + 1
γ (zk − γb)||2,

ψk = zk + γ(Byk − b),

(B.4)

which can be written as the fixed-point iteration in terms of zk, see Section B.2.2.

Extension of A3DMM to the variants We can summarize the standard (2), relaxed (B.1) and
symmetric (B.4) ADMM into the following form

xk = argminx∈Rn R(x) + γ
2 ||Ax+ 1

γ (2ψk−1 − zk−1)||2,
zk = Z(γ, φ;xk, yk−1, ψk−1),

yk = argminy∈Rm J(y) + γ
2 ||By + 1

γ (zk − γb)||2,
ψk = zk + γ(Byk − b),

(B.5)

where Z represent the way of updating zk; See (2), (B.1) and (B.4). Accordingly, we can easily adapt
Algorithm 1 to the relaxed and symmetric ADMM, that is changing the update of zk.

In Algorithm 1, we change the order of updates so that the extrapolation step only needs to be carried
out on zk. This is due to the fact, the update of yk only depends on zk, and such an arrangement
requires the minimal computational overhead.

B.2 Fixed-point characterization and convergence of ADMM

We discuss the relation between ADMM and Douglas–Rachford splitting [14] and Peaceman–
Rachford splitting [30].

B.2.1 Relaxed ADMM and Douglas–Rachford splitting

It is well-known that ADMM is equivalent to applying Douglas–Rachford splitting [14] to solve the
dual problem of (PADMM) which reads

max
ψ∈Rp

−
(
R∗(−ATψ) + J∗(−BTψ) + 〈ψ, b〉

)
, (DADMM)
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where R∗(v)
def
= supx∈Rn (〈x, v〉 − R(x)) is called the Fenchel conjugate, or simply conjugate,

of R. Below we first recall the equivalence between ADMM and Douglas–Rachford which was
first established in [17], and then use the convergence of Douglas–Rachford splitting which is well
established in the literature [2] to conclude the convergence of ADMM.

Consider the relaxed ADMM (B.1) , when φ = 1, the relaxed ADMM recovers the standard ADMM
(2). Below show demonstrate that the relaxed ADMM is equivalent to the relaxed Douglas–Rachford
applying to solve (DADMM).

• Define zk = ψk − γ(Byk − b), we have

zk = ψk − γByk + γb = ψk−1 + γx̄k
= φψk−1 + φγAxk + (1− φ)ψk−1 − (1− φ)γ(Byk−1 − b)
= (1− φ)zk−1 + φ(ψk−1 + γAxk)

= (1− φ)zk−1 + φ(zk−1 + uk − ψk−1).

When φ = 1, we have zk = ψk−1 + γAxk.
• For the update of xk, denote uk = ψk−1 + γ(Axk +Byk−1− b). Since A has full column rank,

we have xk is the unique minimiser of R(x) + γ
2 ||Ax+Byk−1 − b+ 1

γψk−1||2. Let R∗ be the
conjugate of R, then owing to duality, we get

xk = argminx∈Rn R(x) + γ
2
||Ax+Byk−1 − b+ 1

γψk−1||2

⇐⇒ 0 ∈ ∂R(xk) + γAT
(
Axk +Byk−1 − b+ 1

γψk−1

)
⇐⇒ −ATuk ∈ ∂R(xk)

⇐⇒ xk ∈ ∂R∗(−ATuk)

⇐⇒ uk − γAxk ∈ uk + γ∂(R∗ ◦ −AT )(uk)

⇐⇒ uk =
(
Id + γ∂(R∗ ◦ −AT )

)−1
(uk − γAxk)

⇐⇒ uk =
(
Id + γ∂(R∗ ◦ −AT )

)−1
(2ψk−1 − zk−1).

• For the update of yk, the full column rank of B also ensures that yk is the unique minimiser of
J(y) + γ

2
||x̄k +By − b+ 1

γψk−1||2. Since ψk = ψk−1 + γ(x̄k +Byk − b), then

yk = argminy∈Rm J(y) + γ
2
||x̄k +By − b+ 1

γψk−1||2

⇐⇒ 0 ∈ ∂J(yk) + γBT
(
x̄k +Byk − b+ 1

γψk−1

)
⇐⇒ −BTψk ∈ ∂J(yk)

⇐⇒ yk ∈ ∂J∗(−BTψk)

⇐⇒ ψk − γByk ∈ ψk + γ∂(J∗ ◦ −BT )(ψk)

⇐⇒ ψk =
(
Id + γ∂(J∗ ◦ −BT )

)−1
(ψk − γByk)

⇐⇒ ψk =
(
Id + γ∂(J∗ ◦ −BT )

)−1
(zk − γb).

• Combining all the relations we get

uk =
(
Id + γ∂(R∗ ◦ −AT )

)−1
(2ψk−1 − zk−1),

zk = (1− φ)zk−1 + φ(zk−1 + uk − ψk−1),

ψk =
(
Id + γ∂(J∗ ◦ −BT )

)−1
(zk − γb),

(B.6)

which is exactly the iteration of Douglas–Rachford splitting applied to solve the dual (DADMM).

Define the operators

F
DR

def
= 1

2
Id + 1

2

(
2
(
Id + γ∂(R∗ ◦ −AT )

)−1 − Id
)(

2
(
Id + γ∂(J∗ ◦ −BT )

)−1 − Id
)

and Fφ
DR

= (1− φ)Id + φF
DR

, then (B.6) can be written as the fixed-point iteration in terms of zk

zk = Fφ
DR

(zk−1).
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It should be noted that for zk we have zk = ψk − γByk + γb = ψk−1 + γAxk which is the same as
in (2). Owing to [2], that Fφ

DR
is averaged non-expansive with the set of fixed-points fix(FDR) being

non-empty, and there exists a fixed-point z? ∈ fix(F
DR

) such that zk → z? which concludes the
convergence of {zk}k∈N. Then we have uk, ψk converging to ψ? = (Id+γ∂(J∗◦−BT ))−1(z?−γb)
which is a dual solution of the problem (DADMM). The convergence of the primal ADMM sequences
{xk}k∈N and {yk}k∈N follows immediately.

Owing to the above equivalence between ADMM and Douglas–Rachford splitting, we get the
following relations

||zk − zk−1|| ≤ ||zk−1 − zk−2||,
||ψk − ψk−1|| ≤ ||zk − zk−1|| ≤ ||zk−1 − zk−2||,
||uk − uk−1|| ≤ ||2ψk−1 − zk−1 − 2ψk−2 + zk−2|| ≤ 3||zk−1 − zk−2||,

γ||Axk −Axk−1|| ≤ ||zk − zk−1||+ ||ψk−1 − ψk−2|| ≤ 2||zk−1 − zk−2||,
γ||Byk −Byk−1|| ≤ ||zk − zk−1||+ ||ψk − ψk−1|| ≤ 2||zk−1 − zk−2||,

(B.7)

which are needed in the proofs below.

B.2.2 Symmetric ADMM and Peaceman–Rachford splitting

Below we present a short discussion on the relation between the symmetric ADMM and Peaceman–
Rachford splitting method [30], which was first established in [17].

• For the update of xk, let uk = ψk− 1
2

= ψk−1 +γ(Axk+Byk−1−b) and zk = ψk−γByk+γb.

AsA has full column rank, xk is the unique minimiser ofR(x)+ γ
2 ||Ax+Byk−1−b+ 1

γψk−1||2.
Then owing to duality,

xk = argminx∈Rn R(x) + γ
2 ||Ax+Byk−1 − b+ 1

γψk−1||2

⇐⇒ −ATuk ∈ ∂R(xk)

⇐⇒ xk ∈ ∂R∗(−ATuk)

⇐⇒ uk =
(
Id + γ∂(R∗ ◦ −AT )

)−1
(uk − γAxk)

⇐⇒ uk =
(
Id + γ∂(R∗ ◦ −AT )

)−1
(2ψk−1 − zk−1).

• For yk, the full column rank of B ensures the uniqueness of yk. Since ψk = ψk− 1
2

+ γ(Axk +

Byk − b), then

yk = argminy∈Rm J(y) + γ
2
||Axk +By − b+ 1

γψk− 1
2
||2

⇐⇒ −BTψk ∈ ∂J(yk)

⇐⇒ yk ∈ ∂J∗(−BTψk)

⇐⇒ ψk =
(
Id + γ∂(J∗ ◦ −BT )

)−1
(ψk − γByk)

⇐⇒ ψk =
(
Id + γ∂(J∗ ◦ −BT )

)−1
(zk − γb).

• For zk, since uk = ψk− 1
2

,

zk = ψk − γByk + γb = uk + γAxk = 2uk − ψk−1 − γ(Byk−1 − b) = zk−1 + 2(uk − ψk−1).

Combining the above relations we get

uk =
(
Id + γ∂(R∗ ◦ −AT )

)−1
(2ψk−1 − zk−1),

zk = zk−1 + 2(uk − ψk−1),

ψk =
(
Id + γ∂(J∗ ◦ −BT )

)−1
(zk − γb),

(B.8)

which is the iteration of Peaceman–Rachford splitting when applied to solve (DADMM).

Define the following operator

F
PR

=
(
2
(
Id + γ∂(R∗ ◦ −AT )

)−1 − Id
)(

2
(
Id + γ∂(J∗ ◦ −BT )

)−1 − Id
)
,

7



then (B.8) can be written as the fixed-point iteration in terms of zk, that is

zk = F
PR

(zk−1).

It should be noted that for zk we have zk = ψk−γByk+γb = ψk−1 +γAxk which is the same as in
(B.4). Different to the case of Douglas–Rachford, the operator F

PR
is only non-expansive [2], hence

the conditions for zk to be convergent is stronger than that of F
DR

. However, when it converges, it
tends to be faster than Douglas–Rachford splitting [17].

C More numerical experiments

We present extra numerical experiments to demonstrate the performance of the proposed scheme.
Same as Section 5, ADMM, inertial ADMM and two settings of A3DMM are considered.

C.1 Quadratic programming

Consider the following quadratic optimisation problem

min
x∈Rn

1
2
xTQx+ 〈q, x〉,

such that xi ∈ [`i, ri], i = 1, ..., n.
(C.1)

Define the constraint set Ω = {x ∈ Rn : xi ∈ [`i, ri], i = 1, ..., n}, then (C.1) can be written as

min
x,y∈Rn

1
2
xTQx+ 〈q, x〉+ ιΩ(y) such that x− y = 0,

which is special case of (PADMM) with A = Id, B = −Id and b = 0.

The angle θk of ADMM and the performances of the four schemes are provided in Figure (C.1), from
which we observed that

• The angle θk is decreasing to 0 at the beginning and then starts to increasing for k ≥ 2× 104.
This is mainly due to the fact that for k ≥ 2 × 104, the effects of machine error is becoming
increasingly larger.
• Consistent with the observations in Section 5, the proposed A3DMM schemes provides the best

performance.
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10 -8

10 -4

100

(a) Angle θk

500 1000 1500 2000 2500

10 -4

100

(b) Comparison of ||xk − x?||

Figure C.1: Performance comparisons and {θk}k∈N of ADMM for quadratic programming.

C.2 Total variation based image inpainting

Now we consider a total variation (TV) based image inpainting problem. Let u ∈ Rn×n be an image
and S ∈ Rn×n be a Bernoulli matrix, the observation of u under S is f = PS(u). The TV based
image inpainting can be formulated as

min
x∈Rn×n

||∇x||1 such that PS(x) = f. (C.2)
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Define Ω
def
= {x ∈ Rn×n : PS(x) = f}, then (C.2) becomes

min
x∈Rn×n,y∈R2n×n

||y||1 + ιΩ(x) such that ∇x− y = 0, (C.3)

which is special case of (PADMM) with A = ∇, B = −Id and b = 0. For the update of xk, we have
from (2) that

xk = argminx∈Rn×n ιΩ(x) + γ
2
||∇x− 1

γ (z̄k−1 − 2ψk−1)||2,

which does not admit closed form solution. In the implementation, finite-step FISTA is applied to
roughly solve the above problem.

In the experiment, the cameraman image is used, and 50% of the pixels is removed randomly. The
angle θk of ADMM and the comparisons of the four schemes are provided in Figure C.2:

• Though both functions in (C.3) are polyhedral, since the subproblem of xk is solved approxi-
mately, the eventual angle actually is oscillating instead of being a constant.
• Inertial ADMM again is slower than the original ADMM as the trajectory of ADMM is a spiral.
• For the two A3DMM schemes, their performances are close as previous examples.
• For PSNR the image quality assessment, Figure C.2(c) implies that A3DMM is also the best.
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1

(a) Angle {θk}k∈N of ADMM
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(b) Comparison of ||xk − x?||
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24
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(c) PSNR value

Figure C.2: Property of {θk}k∈N, performance comparison and image quality of ADMM for TV
based image inpainting.

We also compare the visual quality of the images obtained by the four schemes for the 30’th iteration,
which is shown below in Figure C.3. It can be observed that the image quality (2nd row of Figure
C.3) is much better than the 1st row of ADMM and inertial ADMM.

D Preparatory materials

D.1 Polynomial extrapolation

Minimal polynomial extrapolation (MPE) [8]: Given {zk−j}q+1
j=0, let {vk−j}qj=0 be the difference

vectors, where vj
def
= zj − zj−1. Define Vk = [vk · · · vk−q].

1. Let {cj}qj=1 ∈ argminc∈Rq ||Vk−1c− vk||, define c0
def
= 1 and γi = ci/

∑q
i=0 ci for i = 0, . . . , q.

2. The extrapolated point is then defined to be z̄k
def
=
∑q
i=0 γizk−i−1.

Reduced rank extrapolation (RRE) [15, 28] is obtained by replacing the first step by

{γj}qj=0 ∈ argminγ∈Rq+1 ||Vkγ|| subject to
∑
i γi = 1.

The motivation for the use of such methods for the acceleration of fixed point sequences xk+1 =
F(zk) come from considering the spectral properties of the linearization around the limit point. In
particular, if z? is the limit point and zk+1 − z? = T (zk − z?) where T ∈ Rd×d and q is the order of
the minimal polynomial of T with respect to zk−q−1 − z? (i.e. q is the monic polynomial of least
degree such that P (T )(zk−q−1 − z?) = 0), then one can show that z̄k = z?. We refer to [33, 34, 32]
for details on these methods and their acceleration guarantees.
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(a) Original image (b) Observed image

(c) ADMM, PSNR = 26.5448 (d) Inertial ADMM, PSNR = 26.1096

(e) A3DMM s = 100, PSNR = 27.0402 (f) A3DMM s = +∞, PSNR = 27.0402

Figure C.3: Comparison of image quality at the 30’th iteration of ADMM, inertial ADMM and
A3DMM with two different prediction steps.

D.2 Angle between subspaces

Let T1, T2 be two subspaces, and without the loss of generality, assume

1 ≤ p def
= dim(T1) ≤ q def

= dim(T2) ≤ n− 1.
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Definition D.1 (Principal angles). The principal angles θk ∈ [0, π2 ], k = 1, . . . , p between sub-

spaces T1 and T2 are defined by, with u0 = v0
def
= 0, and

cos(θk)
def
= 〈uk, vk〉 = max〈u, v〉 s.t. u ∈ T1, v ∈ T2, ||u|| = 1, ||v|| = 1,

〈u, ui〉 = 〈v, vi〉 = 0, i = 0, · · · , k − 1.

The principal angles θk are unique and satisfy 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp ≤ π/2.
Definition D.2 (Friedrichs angle). The Friedrichs angle θF ∈]0, π2 ] between T1 and T2 is

cos
(
θF (T1, T2)

) def
= max〈u, v〉 s.t. u ∈ T1 ∩ (T1 ∩T2)⊥, ||u|| = 1, v ∈ T2 ∩ (T1 ∩T2)⊥, ||v|| = 1.

The following lemma shows the relation between the Friedrichs and principal angles, whose proof
can be found in [3, Proposition 3.3].
Lemma D.3 (Principal angles and Friedrichs angle). The Friedrichs angle is exactly θd+1 where
d

def
= dim(T1 ∩ T2). Moreover, θF (T1, T2) > 0.

D.3 Riemannian Geometry

Let M be a C2-smooth embedded submanifold of Rn around a point x. With some abuse of
terminology, we shall state C2-manifold instead of C2-smooth embedded submanifold of Rn. The
natural embedding of a submanifoldM into Rn permits to define a Riemannian structure and to
introduce geodesics onM, and we simply sayM is a Riemannian manifold. We denote respectively
TM(x) and NM(x) the tangent and normal space ofM at point near x inM.

Exponential map Geodesics generalize the concept of straight lines in Rn, preserving the zero
acceleration characteristic, to manifolds. Roughly speaking, a geodesic is locally the shortest
path between two points on M. We denote by g(t;x, h) the value at t ∈ R of the geodesic
starting at g(0;x, h) = x ∈ M with velocity ġ(t;x, h) = dg

dt
(t;x, h) = h ∈ TM(x) (which is

uniquely defined). For every h ∈ TM(x), there exists an interval I around 0 and a unique geodesic
g(t;x, h) : I →M such that g(0;x, h) = x and ġ(0;x, h) = h. The mapping

Expx : TM(x)→M, h 7→ Expx(h) = g(1;x, h),

is called Exponential map. Given x, x′ ∈M, the direction h ∈ TM(x) we are interested in is such
that

Expx(h) = x′ = g(1;x, h).

Parallel translation Given two points x, x′ ∈ M, let TM(x), TM(x′) be their corresponding
tangent spaces. Define

τ : TM(x)→ TM(x′),

the parallel translation along the unique geodesic joining x to x′, which is isomorphism and isometry
w.r.t. the Riemannian metric.

Riemannian gradient and Hessian For a vector v ∈ NM(x), the Weingarten map ofM at x is
the operator Wx(·, v) : TM(x)→ TM(x) defined by

Wx(·, v) = −PTM(x)dV [h],

where V is any local extension of v to a normal vector field onM. The definition is independent of
the choice of the extension V , and Wx(·, v) is a symmetric linear operator which is closely tied to
the second fundamental form ofM, see [11, Proposition II.2.1].

Let G be a real-valued function which is C2 along theM around x. The covariant gradient of G at
x′ ∈M is the vector∇MG(x′) ∈ TM(x′) defined by

〈∇MG(x′), h〉 = d
dt
G
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′),

where PM is the projection operator ontoM. The covariant Hessian of G at x′ is the symmetric
linear mapping∇2

MG(x′) from TM(x′) to itself which is defined as

〈∇2
MG(x′)h, h〉 = d2

dt2
G
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′). (D.1)
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This definition agrees with the usual definition using geodesics or connections [29]. Now assume that
M is a Riemannian embedded submanifold of Rn, and that a function G has a C2-smooth restriction
onM. This can be characterized by the existence of a C2-smooth extension (representative) of G,
i.e. a C2-smooth function G̃ on Rn such that G̃ agrees with G onM. Thus, the Riemannian gradient
∇MG(x′) is also given by

∇MG(x′) = PTM(x′)∇G̃(x′), (D.2)

and ∀h ∈ TM(x′), the Riemannian Hessian reads

∇2
MG(x′)h = PTM(x′)d(∇MG)(x′)[h] = PTM(x′)d

(
x′ 7→ PTM(x′)∇MG̃

)
[h]

= PTM(x′)∇2G̃(x′)h+ Wx′
(
h,PNM(x′)∇G̃(x′)

)
,

(D.3)

where the last equality comes from [1, Theorem 1]. WhenM is an affine or linear subspace of Rn,
then obviouslyM = x+ TM(x), and Wx′(h,PNM(x′)∇G̃(x′)) = 0, hence (D.3) reduces to

∇2
MG(x′) = PTM(x′)∇2G̃(x′)PTM(x′).

See [23, 11] for more materials on differential and Riemannian manifolds.

D.4 Preparatory lemmas

The following lemmas characterize the parallel translation and the Riemannian Hessian of nearby
points inM.
Lemma D.4 ([25, Lemma 5.1]). LetM be a C2-smooth manifold around x. Then for any x′ ∈
M∩N , where N is a neighborhood of x, the projection operator PM(x′) is uniquely valued and
C1 around x, and thus

x′ − x = PTM(x)(x
′ − x) + o(||x′ − x||).

If moreoverM = x+ TM(x) is an affine subspace, then x′ − x = PTM(x)(x
′ − x).

Lemma D.5 ([26, Lemma B.1]). Let x ∈ M, and xk a sequence converging to x inM. Denote
τk : TM(xk)→ TM(x) be the parallel translation along the unique geodesic joining x to xk. Then,
for any bounded vector u ∈ Rn, we have

(τkPTM(xk) − PTM(x))u = o(||u||).

The Riemannian gradient and Hessian of partly smooth functions are covered by the lemma below.
Lemma D.6 ([26, Lemma B.2]). Let x, x′ be two close points inM, denote τ : TM(x′)→ TM(x)
the parallel translation along the unique geodesic joining x to x′. The Riemannian Taylor expansion
of R ∈ C2(M) around x reads,

τ∇MR(x′) = ∇MR(x) +∇2
MR(x)PTM(x)(x

′ − x) + o(||x′ − x||). (D.4)

Lemma D.7 (Riemannian gradient and Hessian). IfR ∈ PSFx(Mx), then for any point x′ ∈Mx

near x
∇Mx

R(x′) = PTx′ (∂R(x′)),

and this does not depend on the smooth representation of R onMx. In turn, for all h ∈ Tx′ , let R̃ be
a smooth representative of R onMx,

∇2
Mx

R(x′)h = PTx′∇
2R̃(x′)h+ Wx′

(
h,PT⊥

x′
∇R̃(x′)

)
,

where Wx(·, ·) : Tx × T⊥x → Tx is the Weingarten map ofMx at x.

D.5 Linearization of proximal mapping

In this part, we present one fundamental result led by partial smoothness, the linearization of proximal
mapping. We first discuss the property of the Riemannian Hessian of a partly smooth function. Let
R ∈ Γ0(Rn) be partly smooth at x̄ relative toMx̄ and ū ∈ ∂R(x̄), define the following smooth
perturbation of R

R(x)
def
= R(x)− 〈x, ū〉,

whose Riemannian Hessian at x̄ reads HR
def
= PTx̄∇2

Mx̄
R(x̄)PTx̄ .
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Lemma D.8 ([26, Lemma 4.2]). Let R ∈ Γ0(Rn) be partly smooth at x̄ relative toMx̄, then HR is
symmetric positive semi-definite if either of the following is true:

• ū ∈ ri(∂R(x̄)) is non-degenerate.
• Mx̄ is an affine subspace.

In turn, Id +HR is invertible and (Id +HR)−1 is symmetric positive definite with all eigenvalues
in ]0, 1].

One consequence of Lemma D.8 is that, we can linearize the generalized proximal mapping. For the
sake of generality, let γ > 0, R ∈ Γ0(Rn) and A ∈ Rp×n, define the following generalized proximal
mapping

proxAγR(·) def
= argminx∈RnγR(x) + 1

2
||Ax− ·||2.

Clearly, proxAγR is a single-valued mapping when A has full column rank. Denote ATx̄
def
= A ◦ PTx̄ ,

it is immediate that ATTx̄ATx̄ is positive semidefinite and invertible along Tx̄. In the following we
denote (ATTx̄ATx̄)−1 the inverse along Tx̄ Denote

MR = ATx̄(Id + (ATTx̄ATx̄)−1HR)−1(ATTx̄ATx̄)−1ATTx̄ .

Lemma D.9. Let function R ∈ Γ0(Rn) be partly smooth at the point x̄ relative to the manifoldMx̄

and ū ∈ ri(∂R(x̄)). Suppose that there exists γ > 0, full column rank A ∈ Rp×n and w̄ ∈ Rp such
that x̄ = proxAγR(w̄) and ū = −AT (Ax̄ − w̄)/γ. Let {wk}k∈N be a sequence such that wk → w̄

and xk = proxAγR(wk)→ x̄, then for all k large enough, there hold xk ∈Mx̄ and

ATx̄(xk − xk−1) = MR(wk − wk−1) + o(||wk − wk−1||). (D.5)

Remark D.10. When A = Id, then proxAγR reduces to the standard proximal mapping, and (D.5)
simplifies to

xk − xk−1 = PTx̄
(
Id +HR

)−1
PTx̄(wk − wk−1) + o(||wk − wk−1||).

In [24] and references therein, to study the local linear convergence of first-order methods, lineariza-
tion with respect to the limiting points is provided, that is

xk − x̄ = PTx̄
(
Id +HR

)−1
PTx̄(wk − w̄) + o(||wk − w̄||).

Proof. SinceR is proper convex and lower semi-continuous, we haveR(xk)→ R(x̄) and ∂R(xk) 3
uk = −AT (Axk − wk)/γ → ū ∈ ri(∂R(x̄)), hence dist(uk, ∂R(x̄)) → 0. As a result, we have
xk ∈Mx̄ owing to [21, Theorem 5.3] and uk ∈ ri(∂R(xk)) owing to [35] for all k large enough.

Denote Txk , Txk−1
the tangent spaces ofMx̄ at xk and xk−1. Denote τk : Txk → Txk−1

the parallel
translation along the unique geodesic onMx̄ joining xk to xk−1. From the definition of xk, let
hk = γuk, we get

hk
def
= −AT (Axk − wk) ∈ γ∂R(xk) and hk−1

def
= −AT (Axk−1 − wk−1) ∈ γ∂R(xk−1).

Projecting onto corresponding tangent spaces, applying Lemma D.7 and the parallel translation τk
leads to

γτk∇Mx̄
R(xk) = τkPTxk (hk) = PTxk−1

(hk) +
(
τkPTxk − PTxk−1

)
(hk),

γ∇Mx̄
R(xk−1) = PTxk−1

(hk−1).

The difference of the above two equalities yields

γτk∇Mx̄R(xk)− γ∇Mx̄R(xk−1)−
(
τkPTxk − PTxk−1

)
(hk−1)

= PTxk−1
(hk − hk−1) +

(
τkPTxk − PTxk−1

)
(hk − hk−1).

(D.6)

Owing to the monotonicity of sub-differential, i.e. 〈hk − hk−1, xk − xk−1〉 ≥ 0, we get

〈ATA(xk−xk−1), xk−xk−1〉 ≤ 〈AT (wk−wk−1), xk−xk−1〉 ≤ ||A||||wk−wk−1||||xk−xk−1||.
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Since A has full column rank, ATA is symmetric positive definite, and there exists κ > 0 such
that κ||xk − xk−1||2 ≤ 〈ATA(xk − xk−1), xk − xk−1〉. Back to the above inequality, we get
||xk − xk−1|| ≤ ||A||κ ||wk − wk−1||. Therefore for ||hk − hk−1||, we get

||hk − hk−1|| = ||AT (Axk − wk)−AT (Axk−1 − wk−1)|| ≤ ||A||2||xk − xk−1||+ ||A||||wk − wk−1||

≤
( ||A||3

κ
+ ||A||

)
||wk − wk−1||.

As a result, owing to Lemma D.5, we have for the term (τkPTxk −PTxk−1
)(hk − hk−1) in (D.6) that(

τkPTxk − PTxk−1

)
(hk − hk−1) = o(||hk − hk−1||) = o(||wk − wk−1||).

Define Rk−1(x)
def
= γR(x)− 〈x, hk−1〉 and HR,k−1

def
= PTxk−1

∇2
Mx̄

Rk−1(xk−1)PTxk−1
, then with

Lemma D.6 the Riemannian Taylor expansion, we have for the first line of (D.6)

γτk∇Mx̄R(xk)− γ∇Mx̄R(xk−1)−
(
τkPTxk − PTxk−1

)
(hk−1)

= τk
(
γ∇Mx̄

R(xk)− PTxk (hk−1)
)
−
(
γ∇Mx̄

R(xk−1)− PTxk−1
(hk−1)

)
= τk∇Mx̄

Rk−1(xk)−∇Mx̄
Rk−1(xk−1)

= HR,k−1(xk − xk−1) + o(||xk − xk−1||)
= HR,k−1(xk − xk−1) + o(||wk − wk−1||).

(D.7)

Back to (D.6), we get

HR,k−1(xk − xk−1) = PTxk−1
(hk − hk−1) + o(||wk − wk−1||). (D.8)

Define R(x)
def
= γR(x)− 〈x, h̄〉 and HR = PTx̄∇2

Mx̄
R(x̄)PTx̄ , then from (D.8) that

HR(xk − xk−1) +
(
HR,k−1 −HR

)
(xk − xk−1)

= PTx̄(hk − hk−1) +
(
PTxk−1

− PTx̄
)
(hk − hk−1) + o(||wk − wk−1||).

(D.9)

Owing to continuity, we have HR,k−1 → HR and PTxk−1
→ PTx̄ ,

lim
k→+∞

||(HR,k−1−HR)(xk−xk−1)||
||xk−xk−1|| ≤ lim

k→+∞

||HR,k−1−HR||||xk−xk−1||
||xk−xk−1|| = lim

k→+∞
||HR,k−1 −HR|| = 0,

lim
k→+∞

||(PTxk−1
−PTx̄ )(wk−wk−1)||
||wk−wk−1|| ≤ lim

k→+∞

||PTxk−1
−PTx̄ ||||wk−wk−1||
||wk−wk−1|| = lim

k→+∞
||PTxk−1

− PTx̄ || = 0,

and limk→+∞
||(PTxk−1

−PTx̄ )(xk−xk−1)||
||xk−xk−1|| = 0. Combining this with the definition of uk, the fact that

xk − xk−1 = PTx̄(xk − xk−1) + o(||xk − xk−1||) from Lemma D.4, and denoting ATx̄ = A ◦ PTx̄ ,
equation (D.9) can be written as

HR(xk − xk−1) = PTx̄(uk − uk−1) + o(||wk − wk−1||)
= −PTx̄(AT (Axk − wk)−AT (Axk−1 − wk−1)) + o(||wk − wk−1||)
= −PTx̄ATA(xk − xk−1) + PTx̄A

T (wk − wk−1) + o(||wk − wk−1||)
= −ATTx̄ATx̄(xk − xk−1) +ATTx̄(wk − wk−1) + o(||wk − wk−1||).

(D.10)

Since A has full rank, so is ATx̄ . Hence ATTx̄ATx̄ is invertible along Tx̄ and from above we have(
Id + (ATTx̄ATx̄)−1HR

)
(xk − xk−1) = (ATTx̄ATx̄)−1ATTx̄(wk − wk−1) + o(||wk − wk−1||).

Denote MR = ATx̄(Id + (ATTx̄ATx̄)−1HR)−1(ATTx̄ATx̄)−1ATTx̄ , then

ATx̄(xk − xk−1) = MR(wk − wk−1) + o(||wk − wk−1||), (D.11)

which concludes the proof.
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E Trajectory of ADMM

E.1 Trajectory of ADMM: both R, J are non-smooth

Given a saddle point (x?, y?, ψ?) of L(x, y;ψ), the first-order optimality condition entails−ATψ? ∈
∂R(x?) and −BTψ? ∈ ∂J(y?). Below we impose a stronger condition

−ATψ? ∈ ri
(
∂R(x?)

)
and −BTψ? ∈ ri

(
∂J(y?)

)
. (ND)

Suppose R ∈ PSFx?(MR
x?), J ∈ PSFy?(MJ

y?) are partly smooth, denote TRx? , T
J
y? the tangent

spaces ofMR
x? ,MJ

y? at x?, y?, respectively. Define the following smooth perturbation of R, J ,

R(x)
def
= 1
γ

(
R(x)− 〈x, −ATψ?〉

)
, J(y)

def
= 1
γ

(
J(y)− 〈w, −BTψ?〉

)
, (E.1)

their Riemannian Hessian HR
def
= PTR

x?
∇2
MR

x?
R(x?)PTR

x?
, HJ

def
= PTJ

x?
∇2
MJ

y?
J(y?)PTJ

x?
and

MR
def
= AR

(
Id + (ATRAR)−1HR

)−1
(ATRAR)−1ATR,

MJ
def
= BJ

(
Id + (BTJ BJ)−1HJ

)−1
(BTJ BJ)−1BTJ ,

(E.2)

where AR
def
= A ◦ PTR

x?
, BJ

def
= B ◦ PTJ

y?
. Finally, define

M
def
= 1

2
Id + 1

2
(2MR − Id)(2MJ − Id). (E.3)

Proof of Theorem 2.2. The proof of Theorem 2.2 is split into several steps: finite manifold identifi-
cation of ADMM, local linearization based on partial smoothness, spectral properties of the linearised
matrix, and the trajectory of {zk}k∈N. Let (x?, y?, ψ?) be a saddle-point of L(x, y;ψ).

1. Finite manifold identification of ADMM The finite manifold identification of ADMM is
already discussed in [27], below we present a short discussion for the sake of self-consistency. At
convergence of ADMM, owing to (2) we have

ATψ? = γAT
(
Ax? − 1

γ (z? − 2ψ?)
)

and BTψ? = γBT
(
By? − 1

γ (z? − γb)
)
.

From the update of xk, yk in (2), we have the following monotone inclusions

−γAT
(
Axk − 1

γ (zk−1 − 2ψk−1)
)
∈ ∂R(xk) and −γBT

(
Byk − 1

γ (zk − γb)
)
∈ ∂J(yk),

−γAT
(
Ax? − 1

γ (z? − 2ψ?)
)
∈ ∂R(x?) and −γBT

(
By? − 1

γ (z? − γb)
)
∈ ∂J(y?).

Since A is bounded, it then follows that

dist
(
−ATψ?, ∂R(xk)

)
≤ γ||AT

(
Axk − 1

γ (zk−1 − 2ψk−1)
)
−AT

(
Ax? − 1

γ (z? − 2ψ?)
)
||

≤ γ||A||||A(xk − x?)− 1
γ (zk−1 − z?) + 2

γ (ψk−1 − ψ?)||

≤ γ||A||
(
||A||||xk − x?||+ 1

γ ||zk−1 − z?||+ 2
γ ||ψk−1 − ψ?||

)
→ 0.

and similarly

dist
(
−BTψ?, ∂J(yk)

)
≤ γ||B||

(
||B||||yk − y?||+ 1

γ ||zk − z
?||
)
→ 0.

Since R ∈ Γ0(Rn) and J ∈ Γ0(Rm), then by the sub-differentially continuous property of them we
have R(xk)→ R(x?) and J(yk)→ J(y?). Hence the conditions of [21, Theorem 5.3] are fulfilled
for R and J , and there exists K large enough such that for all k ≥ K, there holds

(xk, yk) ∈MR
x? ×MJ

y? ,

which is the finite manifold identification.
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2. linearization of ADMM For convenience, denote β = 1/γ. For the update of yk, define
wk = −β(zk − γb), we have from (2) that

yk = argminy∈Rm βJ(y) + 1
2
||By − wk||2.

Owing to the optimality condition of a saddle point, define J(y)
def
= βJ(y)− 〈y, −βBTψ?〉 and

its Riemannian Hessian HJ = PTJ
y?
∇2
MJ

y?
J(y?)PTJ

y?
. For B, define BJ = B ◦ PTJ

y?
, and MJ =

BJ(Id + (BTJ BJ)−1HJ)−1(BTJ BJ)−1BTJ . Then owing to Lemma D.9, we get

BJ(yk − yk−1) = MJ(wk − wk−1) + o(||wk − wk−1||)
= −βMJ(zk − zk−1) + o(||zk − zk−1||).

(E.4)

Now consider xk and let wk = β(zk−1 − 2ψk−1), we get from (2) that

xk = argminx∈Rn βR(x) + 1
2
||Ax− wk||2.

Define R(x)
def
= βR(x)− 〈x, −βATψ?〉 and its Riemannian Hessian HR = PTR

x?
∇2
MR

x?
R(x?)PTR

x?
.

Denote AR = A ◦PTR
x?

, and MR = AR(Id + (ATRAR)−1HR)−1(ATRAR)−1ATR. Note from (2) that
ψk−1 − ψk−2 = zk−1 − zk−2 + γB(yk−1 − yk−2), then

wk − wk−1 = β(zk−1 − zk−2)− 2β(ψk−1 − ψk−2)

= −β(zk−1 − zk−2)− 2βγB(yk−1 − yk−2)

= −β(zk−1 − zk−2)− 2BJ(yk−1 − yk−2) + o(||yk−1 − yk−2||),

where yk−1 − yk−2 = PTR
x?

(yk−1 − yk−2) + o(||yk−1 − yk−2||) from Lemma D.4 is applied. From
(B.7), we have o(||yk−1−yk−2||) = o(||zk−1−zk−2||) and o(||wk−1−wk−2||) = o(||zk−1−zk−2||),
then applying Lemma D.9 yields,

AR(xk − xk−1) = MR(wk − wk−1) + o(||wk − wk−1||)
= −βMR(zk−1 − zk−2) + 2MRBJ(yk−1 − yk−2) + o(||zk−1 − zk−2||)
= −βMR(zk−1 − zk−2) + 2βMRMJ(zk−1 − zk−2) + o(||zk−1 − zk−2||).

(E.5)
Finally, from (2), (E.4) and (E.5), we have that

zk − zk−1 =
(
zk−1 + γ(Axk +Byk−1 − b)

)
−
(
zk−2 + γ(Axk−1 +Byk−2 − b)

)
= (zk−1 − zk−2) + γA(xk − xk−1) + γB(yk−1 − yk−2)

= (zk−1 − zk−2) + γAR(xk − xk−1) + γBJ(yk−1 − yk−2) + o(||zk−1 − zk−2||)
= (zk−1 − zk−2)−MR(zk−1 − zk−2) + 2MRMJ(zk−1 − zk−2)

+MJ(zk−1 − zk−2) + o(||zk−1 − zk−2||)
=
(
Id + 2MRMJ −MR −MJ

)
(zk−1 − zk−2) + o(||zk−1 − zk−2||),

which is the desired linearization of ADMM.

3. Spectral properties of M Consider first the case where both R, J are general partly smooth
functions, under which we can shown the non-expansiveness of M . For MR, since A is injective, so
is AR, then ATRAR is symmetric positive definite. Therefore, we have the following similarity result
for MR,

MR = AR
(
(ATRAR)−

1
2

(
Id + (ATRAR)−

1
2HR(ATRAR)−

1
2

)
(ATRAR)

1
2

)−1
(ATRAR)−1ATR

= AR(ATRAR)−
1
2

(
Id + (ATRAR)−

1
2HR(ATRAR)−

1
2

)−1
(ATRAR)

1
2 (ATRAR)−1ATR

= AR(ATRAR)−
1
2

(
Id + (ATRAR)−

1
2HR(ATRAR)−

1
2

)−1
(ATRAR)−

1
2ATR.

(E.6)

Since (ATRAR)−
1
2HR(ATRAR)−

1
2 is symmetric positive definite, hence maximal monotone, then the

matrix
(Id + (ATRAR)−

1
2HR(ATRAR)−

1
2 )−1
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is firmly non-expansive. Let AR = USV T be the SVD of AR, then we have

||AR(ATRAR)−
1
2 || = ||USV T (V SUTUSV T )−

1
2 || = ||USV T (V S2V T )−

1
2 || = ||USV TV S−1V T || = 1.

Then owing to [2, Example 4.14],MR is firmly non-expansive. Similarly,MJ is firmly non-expansive,
and so is M [2, Proposition 4.31]. Therefore, the power Mk is convergent.

Now suppose that both R, J are locally polyhedral around (x?, y?), then MR and MJ become

MR = AR(ATRAR)−1ATR and MJ = BJ(BTJ BJ)−1BTJ ,

which are projection operators onto the ranges of AR and BJ , respectively. Denote these two
subspaces by TAR and TBJ , and correspondingly PTAR

def
= AR(ATRAR)−1ATR and PTBJ

def
=

BJ(BTJ BJ)−1BTJ . Then

M = PTARPTBJ + (Id− PTAR )(Id− PTBJ ).

Denote the dimension of TAR , TBJ by dim(TAR) = p, dim(TBJ ) = q, and the dimension of the
intersection dim(TAR ∩ TBJ ) = d. Without the loss of generality, we assume that 1 ≤ p ≤ q ≤ n.
Consequently, there are r = p− d principal angles (ζi)i=1,...,r between TAR and TBJ that are strictly
greater than 0 and smaller than π/2. Suppose that ζ1 ≤ · · · ≤ ζr. Define the following two diagonal
matrices

C = diag
(
cos(ζ1), · · · , cos(ζr)

)
and S = diag

(
sin(ζ1), · · · , sin(ζr)

)
.

Owing to [4, 13], there exists a real orthogonal matrix U such that

M = U

 C2 CS 0 0
−CS C2 0 0

0 0 0q−p+2d 0
0 0 0 Idn−p−q

UT ,
which indicates M is normal and all its eigenvalues are inside unit disc.

Let M∞ = limk→+∞Mk and M̃ = M −M∞, then we have

M̃ = U

 C2 CS 0
−CS C2 0

0 0 0n−2r

UT . (E.7)

4. Trajectory of ADMM Owing to the polyhedrality of R and J , all the small o-terms in the
linearization proof vanish and we get directly

zk − zk−1 = M(zk−1 − zk−2) = Mk(z0 − z−1). (E.8)

As vk
def
= zk − zk−1 → 0, passing to the limit we get from above

0 = lim
k→+∞

Mkv0 = M∞v0,

which means v0 ∈ ker(M) where ker(M) denotes the kernel of M . Since M∞Mk = M∞, we
have vk ∈ ker(M) holds for any k ∈ N. Then from (E.8) we have

vk = (M −M∞)vk = M̃vk−1.

The block diagonal property of (E.7) indicates that there exists an elementary transformation matrix
E such that

M̃ = UE


B1

. . .
Br

0n−2r

EUT ,
where for each i = 1, ..., r, we have

Bi = cos(ζi)

[
cos(ζi) sin(ζi)
− sin(ζi) cos(ζi)

]
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which is rotation matrix scaled by cos(ζi). It is easy to show that, for each i = 1, ..., d, there holds

lim
k→+∞

Bki = 0,

since the spectral radius of Bi is ρ(Bi) = cos(ζi) < 1.

Suppose for some 1 ≤ e < r, we have

ζ = ζ1 = · · · = ζe < ζe+1 ≤ · · · ≤ ζr.

Consider the following decompositions

Γ1 =


B1

. . .
Be

0n−2e

 and Γ2 =


B1

. . .
Br

0n−2r

− Γ1.

Denote η = cos(ζe+1)
cos(ζ) , it is immediate to see that 1

cosk(ζ)
Γk2 = O(ηk)→ 0, and for each i = 1, ..., e

1
cos(ζ)

Bi =

[
cos(ζ) sin(ζ)
− sin(ζ) cos(ζ)

]
which is a circular rotation. Therefore, 1

cos(ζ)Γ1 is a rotation with respect to the first 2e elements.

Denote uk = EUT vk, then from vk = M̃vk−1 = UE(Γ1 + Γ2)EUT vk, we get

uk = (Γ1 + Γ2)uk = (Γ1 + Γ2)ku0 = Γk1u0 + Γk2u0,

which is an orthogonal decomposition of uk. Define

sk = 1
cosk(ζ)

Γk1u1 and tk = 1
cosk(ζ)

Γk2u1,

then we have that ||sk|| = ||sk−1|| and 〈sk, sk−1〉 = cos(ζ)||sk||2, and tk = O(ηk). As a result, for
cos(θk) we have

cos(θk) =
〈vk, vk−1〉
||vk||||vk−1|| =

〈uk, uk−1〉
||uk||||uk−1|| =

〈sk + tk, sk−1 + tk−1〉
||sk + tk||||sk−1 + tk−1||

=
〈sk, sk−1〉

||sk + tk||||sk−1 + tk−1|| +
〈tk, tk−1〉

||sk + tk||||sk−1 + tk−1||

=
||sk||2 cos(ζ)
||sk||2 + ||tk||2

· ||sk + tk||
||sk−1 + tk−1|| +O(η2k−1).

(E.9)

Using the fact that

||sk||2 cos(ζ)
||sk||2 + ||tk||2

= cos(ζ)
(
1− ||tk||2 +O(||tk||4)

)
= cos(ζ) +O(η2k) and ||sk + tk||

||sk−1 + tk−1|| → 1

we conclude that cos(θk)→ cos(ζ). As a matter of fact, we have cos(θk)− cos(ζ) = O(η2k) which
shows how fast cos(θk) converges to cos(ζ).

E.2 Trajectory of ADMM: R or/and J is smooth

Now we consider the case that at least one function out of R, J is smooth. For simplicity, consider
that R is smooth and J remains non-smooth. Assume that R is locally C2-smooth around x?, the
Hessian of R at x? reads ∇2R(x?) which is positive semi-definite owing to convexity. Define
MR

def
= A

(
Id + 1

γ (ATA)−1∇2R(x?)
)−1

(ATA)−1AT , and redefine

M
def
= 1

2
Id + 1

2
(2MR − Id)(2MJ − Id). (E.10)

Proof of Proposition 2.4. We prove the corollary in two steps.
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1. Linearization of ADMM Following the above proof, we have for yk that
BJ(yk − yk−1) = βMJ(zk − zk−1) + o(||zk − zk−1||).

From (2), for xk+1 and xk, since R is globally smooth differentiable

−AT
(
Axk − β(zk−1 − 2ψk−1)

)
∈ β∇R(xk) and −AT

(
Axk−1 − β(zk−2 − 2ψk−2)

)
∈ β∇R(xk−1),

which leads to, applying the local C2-smoothness of R around x?

−AT
(
Axk − β(zk−1 − 2ψk−1)

)
+AT

(
Axk−1 − β(zk−2 − 2ψk−2)

)
= β∇R(xk)− β∇R(xk−1)

= β∇2R(xk−1)(xk − xk−1) + o(||xk − xk−1||)
= β∇2R(x?)(xk − xk−1) + β

(
∇2R(xk−1)−∇2R(x?)

)
(xk − xk−1) + o(||xk − xk−1||)

= β∇2R(x?)(xk − xk−1) + o(||zk−1 − zk−2||).
Using the fact that ATA is invertible and rearranging terms, we arrive at(

Id + β(ATA)−1∇2R(x?)
)
(xk − xk−1) + o(||zk−1 − zk−2||)

= β(ATA)−1AT (zk−1 − zk−2)− 2β(ATA)−1AT (ψk−1 − ψk−2) + o(||zk−1 − zk−2||)
= −β(ATA)−1AT (zk−1 − zk−2) + 2(ATA)−1ATBJ(yk−1 − yk−2) + o(||zk−1 − zk−2||),

which further leads to, denote MR = A(Id + (ATA)−1HR)−1(ATA)−1AT

A(xk − xk−1) = −βMR(zk−1 − zk−2) + 2MRBJ(yk−1 − yk−2) + o(||zk−1 − zk−2||)
= −βMR(zk−1 − zk−2) + 2βMRMJ(zk−1 − zk−2) + o(||zk−1 − zk−2||).

Finally, from (2), we have that
zk − zk−1 =

(
Id + 2MRMJ −MR −MJ

)
(zk−1 − zk−2) + o(||zk−1 − zk−2||).

2. Trajectory of ADMM Since A is full rank square matrix and hence invertible, from (E.6) we
have

MR = A(Id + 1
γ (ATA)−1∇2R(x?))−1(ATA)−1AT

= A(ATA)−
1
2

(
Id + 1

γ (ATA)−
1
2∇2R(x?)(ATA)−

1
2

)−1
(ATA)−

1
2AT

∼
(
Id + 1

γ (ATA)−
1
2∇2R(x?)(ATA)−

1
2

)−1
,

where
(
Id + 1

γ (ATA)−
1
2∇2R(x?)(ATA)−

1
2

)−1
is symmetric positive definite. If we choose γ such

that
1
γ ||(A

TA)−
1
2∇2R(x?)(ATA)−

1
2 || < 1,

then all the eigenvalues of MR are in ]1/2, 1], hence WR
def
= 2MR − Id is symmetric positive definite.

Therefore, we get
1
2

Id + 1
2
WR

(
2MJ − Id

)
= W

1/2
R

(
1
2

Id + 1
2
W

1/2
R

(
2MJ − Id

)
W

1/2
R

)
W
−1/2
R

∼ 1
2

Id + 1
2
W

1/2
R

(
2MJ − Id

)
W

1/2
R ,

and M def
= 1

2 Id + 1
2W

1/2
R (2MJ − Id)W

1/2
R is symmetric positive semi-definite with all eigenvalues

in [0, 1]. Hence, by similarity, the eigenvalues of M are all real and contained in [0, 1].

F Adaptive acceleration for ADMM

F.1 Convergence of A3DMM

Proof of Proposition 4.2. From the perturbation formulation zk = F(zk−1 + εk−1), we have that

zk = F(zk−1 + εk−1) = F(zk−1) +
(
F(zk−1 + εk−1)−F(zk−1)

)
.

Given any z? ∈ fix(F), since F is firmly non-expansive, hence non-expansive, we have
||zk − z?|| ≤ ||F(zk−1)−F(z?)||+ ||F(zk−1 + εk)−F(zk−1)|| ≤ ||zk−1 − z?||+ ||εk−1||,

which means that {zk}k∈N is quasi-Fejér monotone with respect to fix(F). Then invoke [2, Proposi-
tion 5.34] we obtain the convergence of the sequence {zk}k∈N.
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F.2 Acceleration guarantee of A3DMM

Recall the definition of Vk−1, ck, Ck and z̄k,s in the beginning of the section. By definition,

Vk = MVk−1. (F.1)

Define Ek,j
def
= VkC

j
k − Vk+1 for j ≥ 1 and

Ek,0
def
= Vk−1Ck − Vk = [(Vk−1ck − vk) 0 · · · 0] . (F.2)

We obtain the relation between the extrapolated point z̄k,s and the (k + s)’th point of {zk}k∈N

z̄k,s = zk +
∑s

j=1
(vj+k + (Ek,j)(:,1)) = zk+s +

∑s

j=1
(Ek,j)(:,1)

In the following, given a matrix M , we let ρ(M) denote the spectral radius of M and λ(M) denote
its spectrum.

Proof of Proposition 4.3. We first prove (i) that the extrapolation error is controlled by the coeffi-
cients fitting error. Since k ∈ N is fixed, for ease of notation, we also write E` = Ek,` and C = Ck.
We first show that for ` ∈ N, we have

E` =
∑`

j=1
M jE0C

`−j . (F.3)

We prove this by induction. Note that

VkC
(F.1)
= (MVk−1)C

(F.2)
= MVk +ME0

(F.1)
= Vk+1 +ME0.

Therefore, E1 = ME0 as required. Assume that (F.4) is true up to ` = m. Then,

VkC
m+1 (F.1)

= (MVk−1)Cm+1 (F.2)
= MVkC

m +ME0C
m = M(Vm+k + Em) +ME0C

m

(F.1)
= Vm+2 +MEm +ME0C

m

So, plugging in our assumption on Em, we have

Em+1 = MEm +ME0C
m = ME0C

m +M
(∑m

j=1
M jE0C

m−j) =
∑m+1

j=1
M jE0C

m+1−j .

To bound the extrapolation error,∑s

m=1
Em =

∑s

m=1
(
∑m

j=1
M jE0C

m−j) =
∑s−1

`=0

(∑s−`
j=1

M j
)
E0C

` =
∑s

`=1
M `E0

(∑s−`
i=0

Ci
)

Therefore,

||z̄k,s − z?|| ≤ ||zk+s − z?||+
∑s

`=1
||M `||||E0||||

∑s−`
i=0

Ci(1,1)||.

In the case of s = +∞, we have

||z̄k,∞ − z?|| ≤
∑∞

`=1
||M `||||E0(Id− C)−1

(:,1)|| =
||E0||

1−∑
ici

∑∞
`=1
||M `||.

The fact that Bs is uniformly bounded in s if ρ(M) < 1 and ρ(C) < 1 follows because this implies
that

∑∞
`=1 ||M `|| <∞ thanks to the Gelfand formula, and

∑∞
i=0 C

i = (Id− C)−1 and its (1, 1)th

entry is precisely 1
1−

∑
i ci

. Since k ∈ N is fixed, for ease of notation, we also write E` = Ek,` and
C = Ck. We first show that for ` ∈ N, we have

E` =
∑`

j=1
M jE0C

`−j . (F.4)

We prove this by induction. Note that

VkC
(F.1)
= (MVk−1)C

(F.2)
= MVk +ME0

(F.1)
= Vk+1 +ME0.

Therefore, E1 = ME0 as required. Assume that (F.4) is true up to ` = m. Then,

VkC
m+1 (F.1)

= (MVk−1)Cm+1

(F.2)
= MVkC

m +ME0C
m = M(Vm+k + Em) +ME0C

m

(F.1)
= Vm+2 +MEm +ME0C

m.
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So, plugging in our assumption on Em, we have

Em+1 = MEm +ME0C
m = ME0C

m +M
(∑m

j=1
M jE0C

m−j) =
∑m+1

j=1
M jE0C

m+1−j .

To bound the extrapolation error,
s∑

m=1

Em =

s∑
m=1

(∑m

j=1
M jE0C

m−j) =

s−1∑
`=0

(∑s−`
j=1

M j
)
E0C

` =

s∑
`=1

M `E0

(∑s−`
i=0

Ci
)

Therefore,

||z̄k,s − z?|| ≤ ||zk+s − z?||+
∑s

`=1
||M `||||E0||||

∑s−`
i=0

Ci(1,1)||.

In the case of s = +∞, we have

||z̄k,∞ − z?|| ≤
∞∑
`=1

||M `||||E0(Id− C)−1
(:,1)|| =

||E0||
1−∑

ici

∑∞
`=1
||M `||.

The fact that Bs is uniformly bounded in s if ρ(M) < 1 and ρ(C) < 1 follows because this implies
that

∑∞
`=1 ||M `|| <∞ thanks to the Gelfand formula, and

∑∞
i=0 C

i = (Id− C)−1 and its (1, 1)th

entry is precisely 1
1−

∑
i ci

.

To control the coefficients fitting error εk, we follow closely the arguments of [32, Section 6.7],
since this amounts to understanding the behaviour of the coefficients ck, which are precisely the
MPE coefficients. Recall our assumption that M is diagonalisable, so M = U>ΣU where U is an
orthogonal matrix and Σ is a diagonal matrix with the eigenvalues of M as its diagonal. Then, letting
uk

def
= Uvk,

εk = min
c∈Rq
||
∑q

i=1
civk−i − vk||

= min
c∈Rq
||
∑q

i=1
ciΣ

k−iu0 − Σku0|| = min
g∈Pq

||Σk−qg(Σ)u0|| ≤ ||u0|| min
g∈Pq

max
z∈λ(M)

|z|k−q|g(z)|

where Pq is the set of monic polynomials of degree q and λ(M) is the spectrum of M . Choosing
g =

∏q
j=1(z − λj), we have g(λj) = 0 for j = 1, . . . , q, so

εk ≤ ||u0|||λq+1|k−q max
`>q

q∏
j=1

|λj − λ`|. (F.5)

The claim that ρ(Ck) < 1 holds since the eigenvalues of C are precisely the roots of the polynomial
Q(z) = zk−1 −

∑k−1
i=1 cjz

k−1−i, and from [32], if |λq| > |λq+1|, then Q has precisely q roots
r1, . . . , rq satisfying rj = λj + O(|λq+1/λj |k). So, |rj | < 1 for all k sufficiently large. To
prove the non-asymptotic bounds on εk, first observe that zk+1 − zk = M(zk − zk−1) implies
zk+1−z? = M(zk−z∗) and zk+1−zk = (M − Id)(zk−z?). So, letting γi = −ck,i/(1−

∑
i ck,i)

for i = 1, . . . , q and γ0 = 1/(1−
∑
i ck,i), we have

1
1−∑

ick,i

(
vk −

∑q

i=1
ck,ivk−i

)
=
∑q

i=0
γivk−i = (M − Id)

∑q

i=0
γi(zk−i−1 − z?). (F.6)

Now, y def
=
∑q
i=0 γizk−i−1 is precisely the MPE update and norm bounds on this are presented in

[32]. For completeness, we reproduce their arguments here: Let A def
= Id−M , by our assumption of

λ(M) ⊂ (−1, 1), we have that A is positive definite. Then,

||A1/2(y − z?)||2 = 〈A(y − z?), (y − z?)〉
= −〈∑q

i=0γivk−i, (y − z?) + w〉

wherew =
∑q
j=1 ajvk−j with a ∈ Rq being arbitrary, since by definition of γ, 〈

∑q
i=0 γivk−i, v`〉 =

0 for all ` = k − q, . . . , k − 1. We can write

w =

q∑
j=1

aj(M − Id)(zk−j−1 − z?) =

q∑
j=1

aj(M − Id)Mk−j−1(z0 − z?) = f(M)(z0 − z?)
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where f(z) = zk−q−1(z − 1)
∑q
j=1 ajz

q−j , and we can write

y − z? =

q∑
i=0

γiM
k−i−1(z0 − z?) = g(M)(z0 − z?)

where g(z) = zk−q−1
∑q
i=0 γiz

q−i. Therefore, f(z)+g(z) = zk−1−qh(z), where h is a polynomial
of degree q such that h(1) = 1. Moreover, since the coefficients aj are arbitrary, h can be considered
as an arbitrary element of P̃q , the set of all polynomials of degree q such that h(1) = 1. Therefore

||A−1/2(y − z?)||2 ≤ ||A−1/2(y − z?)|| min
h∈P̃q

||Mnh(M)(z0 − z?)||

≤ ||A−1/2(y − z?)|| min
h∈P̃q

max
t∈λ(M)

|tnh(t)|||z0 − z?||

In particular, combining this with (F.6), we have
εk

|1−∑
ick,i|

≤ ||z0 − z?||||(Id−M)1/2||ρ(M)n min
h∈P̃q

max
t∈λ(M)

|h(t)|

Finally, in our case where λ(M) = [α, β] with 1 > β > α > −1, it is well known that
minh∈P̃q maxt∈λ(M) |h(t)| has an explicit expression (see, for example, [6] or [32, Section 7.3.1]):

min
h∈P̃q

max
z∈λ(M)

|h(z)| ≤ max
z∈λ(M)

|h∗(z)|,

where h∗(z)
def
=

Tq(
2z−α−β
β−α )

Tq(
2−α−β
β−α )

where Tq(x) is the qth Chebyshev polynomial and it is well known that

min
h∈P̃q

max
z∈[α,β]

|h(z)| ≤ 2
(√

η − 1√
η + 1

)q
(F.7)

where η = 1−α
1−β .
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